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Abstract

We present a study on how grammar binariza-
tion empirically affects the efficiency of the
CKY parsing. We argue that binarizations af-
fect parsing efficiency primarily by affecting
the number of incomplete constituents gener-
ated, and the effectiveness of binarization also
depends on the nature of the input. We pro-
pose a novel binarization method utilizing rich
information learnt from training corpus. Ex-
perimental results not only show that differ-
ent binarizations have great impacts on pars-
ing efficiency, but also confirm that our learnt
binarization outperforms other existing meth-
ods. Furthermore we show that it is feasible to
combine existing parsing speed-up techniques
with our binarization to achieve even better
performance.

1 Introduction

Binarization, which transforms an n-ary grammar
into an equivalent binary grammar, is essential for
achieving an O(n3) time complexity in the context-
free grammar parsing. O(n3) tabular parsing al-
gorithms, such as the CKY algorithm (Kasami,
1965; Younger, 1967), the GHR parser (Graham
et al., 1980), the Earley algorithm (Earley, 1970) and
the chart parsing algorithm (Kay, 1980; Klein and
Manning, 2001) all convert their grammars into bi-
nary branching forms, either explicitly or implicitly
(Charniak et al., 1998).

In fact, the number of all possible binarizations
of a production with n + 1 symbols on its right
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hand side is known to be the nth Catalan Number
Cn = 1

n+1

(
2n
n

)
. All binarizations lead to the same

parsing accuracy, but maybe different parsing effi-
ciency, i.e. parsing speed. We are interested in in-
vestigating whether and how binarizations will af-
fect the efficiency of the CKY parsing.

Do different binarizations lead to different pars-
ing efficiency? Figure 1 gives an example to help
answer this question. Figure 1(a) illustrates the cor-
rect parse of the phrase “get the bag and go”. We
assume that NP → NP CC NP is in the original
grammar. The symbols enclosed in square brackets
in the figure are intermediate symbols.
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Figure 1: Parsing with left and right binarization.

If a left binarized grammar is used, see Fig-
ure 1(b), an extra constituent [NP CC] spanning
“the bag and” will be produced. Because rule
[NP CC] → NP CC is in the left binarized gram-
mar and there is an NP over “the bag” and a CC
over the right adjacent “and”. Having this con-
stituent is unnecessary, because it lacks an NP to
the right to complete the production. However, if a
right binarization is used, as shown in Figure 1(c),
such unnecessary constituent can be avoided.

One observation from this example is that differ-
ent binarizations affect constituent generation, thus
affect parsing efficiency. Another observation is that



for rules like X → Y CC Y , it is more suitable to
binarize them in a right branching way. This can
be seen as a linguistic nature: for “and”, usually
the right neighbouring word can indicate the correct
parse. A good binarization should reflect such ligu-
istic nature.

In this paper, we aim to study the effect of bina-
rization on the efficiency of the CKY parsing. To our
knowledge, this is the first work on this problem.

We propose the problem to find the optimal bina-
rization in terms of parsing efficiency (Section 3).
We argue that binarizations affect parsing efficiency
primarily by affecting the number of incomplete
constituents generated, and the effectiveness of bi-
narization also depends on the nature of the input
(Section 4). Therefore we propose a novel binariza-
tion method utilizing rich information learnt from
training corpus (Section 5). Experimental results
show that our binarization outperforms other exist-
ing methods (Section 7.2).

Since binarization is usually a preprocessing step
before parsing, we argue that better performance can
be achieved by combining other parsing speed-up
techniques with our binarization (Section 6). We
conduct experiments to confirm this (Section 7.3).

2 Binarization

In this paper we assume that the original gram-
mar, perhaps after preprocessing, contains no ε-
productions or useless symbols. However, we allow
the existence of unary productions, since we adopt
an extended version of the CKY algorithm which
can handle the unary productions. Moreover we do
not distinguish nonterminals and terminals explic-
itly. We treat them as symbols. What we focus on is
the procedure of binarization.

Definition 1. A binarization is a function π, map-
ping an n-ary grammar G to an equivalent binary
grammar G′. We say that G′ is a binarized grammar
of G, denoted as π(G).

Two grammars are equivalent if they define the
same probability distribution over strings (Charniak
et al., 1998).

We use the most widely used left binarization
(Aho and Ullman, 1972) to show the procedure of
binarization, as illustrated in Table 1, where p and q
are the probabilities of the productions.

Original grammar Left binarized grammar
Y → AB C : p [AB] → AB : 1.0
Z → AB D : q Y → [AB] C : p

Z → [AB] D : q

Table 1: Left binarization

In the binarized grammar, symbols of form [A B]
are new (also called intermediate) nonterminals.
Left binarization always selects the left most pair of
symbols and combines them to form an intermedi-
ate nonterminal. This procedure is repeated until all
productions are binary.

In this paper, we assume that all binarizations fol-
low the fashion above, except that the choice of pair
of symbols for combination can be arbitrary. Next
we show three other known binarizations.

Right binarization is almost the same with left
binarization, except that it always selects the right
most pair, instead of left, to combine.

Head binarization always binarizes from the head
outward (Klein and Manning, 2003b). Please refer
to Charniak et al. (2006) for more details.

Compact binarization (Schmid, 2004) tries to
minimize the size of the binarized grammar. It leads
to a compact grammar. We therefore call it compact
binarization. It is done via a greedy approach: it al-
ways selects the pair that occurs most on the right
hand sides of rules to combine.

3 The optimal binarization

The optimal binarization should help CKY parsing
to achieve its best efficiency. We formalize the idea
as follows:

Definition 2. The optimal binarization is π∗, for a
given n-ary grammar G and a test corpus C:

π∗ = arg min
π

T (π(G), C) (1)

where T (π(G), C) is the running time for CKY to
parse corpus C, using the binarized grammar π(G).

It is hard to find the optimal binarization directly
from Definition 2. We next give an empirical anal-
ysis of the running time of the CKY algorithm and
simplify the problem by introducing assumptions.

3.1 Analysis of CKY parsing efficiency
It is known that the complexity of the CKY algo-
rithm is O(n3L). The constant L depends on the bi-



narized grammar in use. Therefore binarization will
affect L. Our goal is to find a good binarization that
makes parsing more efficient.

It is also known that in the inner most loop of
CKY as shown in Algorithm 1, the for-statement in
Line 1 can be implemented in several different meth-
ods. The choice will affect the efficiency of CKY.
We present here four possible methods:

M1 Enumerate all rules X → Y Z, and check if Y is in
left span and Z in right span.

M2 For each Y in left span, enumerate all rules X →
Y Z, and check if Z is in right span.

M3 For each Z in right span, enumerate all rules X →
Y Z, and check if Y is in left span.

M4 Enumerate each Y in left span and Z in right span1,
check if there are any rules X → Y Z.

Algorithm 1 The inner most loop of CKY

1: for X → Y Z, Y in left span and Z in right span
2: Add X to parent span

3.2 Model assumption

We have shown that both binarization and the for-
statement implementation in the inner most loop of
CKY will affect the parsing speed.

About the for-statement implementations, no pre-
vious study has addressed which one is superior.
The actual choice may affect our study on binariza-
tion. If using M1, since it enumerates all rules in
the grammar, the optimal binarization will be the
one with minimal number of rules, i.e. minimal bi-
narized grammar size. However, M1 is usually not
preferred in practice (Goodman, 1997). For other
methods, it is hard to tell which binarization is op-
timal theoretically. In this paper, for simplicity rea-
sons we do not consider the effect of for-statement
implementations on the optimal binarization.

On the other hand, it is well known that reduc-
ing the number of constituents produced in parsing
can greatly improve CKY parsing efficiency. That
is how most thresholding systems (Goodman, 1997;
Tsuruoka and Tsujii, 2004; Charniak et al., 2006)
speed up CKY parsing. Apparently, the number of

1Note that we should skip Y (Z) if it never appears as the
first (second) symbol on the right hand side of any rule.

constituents produced in parsing is not affected by
for-statement implementations.

Therefore we assume that the running time of
CKY is primarily determined by the number of con-
stituents generated in parsing. We simplify the opti-
mal binarization to be:

π∗ ≈ arg min
π

E(π(G), C) (2)

where E(π(G), C) is the number of constituents
generated when CKY parsing C with π(G).

We next discuss how binarizations affect the num-
ber of constituents generated in parsing, and present
our algorithm for finding a good binarization.

4 How binarizations affect constituents

Throughout this section and the next, we will use an
example to help illustrate the idea. The grammar is:

X → A B C D
Y → A B C
C → C D
Z → A B C E
W → F C D E

The input sentence is 0A1B2C3D4E5, where the
subscripts are used to indicate the positions of spans.
For example, [1, 3] stands for B C. The final parse2

is shown in Figure 2. Symbols surrounded by dashed
circles are fictitious, which do not actually exist in
the parse.

F

B:[1,2]A:[0,1] C:[2,3] D:[3,4] E:[4,5]

WY:[0,3] X:[0,4] C:[2,4]

Y:[0,4] Z:[0,5]

Figure 2: Parse of the sentence AB C D E

4.1 Complete and incomplete constituents

In the procedure of CKY parsing, there are two kinds
of constituents generated: complete and incomplete.

Complete constituents (henceforth CCs) are those
composed by the original grammar symbols and

2More precisely, it is more than a parse tree for it contains
all symbols recognized in parsing.



spans. For example in Figure 2, X : [0, 4], Y : [0, 3]
and Y :[0, 4] are all CCs.

Incomplete constituents (henceforth ICs) are
those labeled by intermediate symbols. Figure 2
does not show them directly, but we can still read the
possible ones. For example, if the binarized gram-
mar in use contains an intermediate symbol [AB C],
then there will be two related ICs [AB C]:[0, 3] and
[AB C]:[0, 4] (the latter is due to C:[2, 4]) produced
in parsing. ICs represent the intermediate steps to
recognize and complete CCs.

4.2 Impact on complete constituents

Binarizations do not affect whether a CC will be pro-
duced. If there is a CC in the parse, whatever bi-
narization we use, it will be produced. The differ-
ence merely lies on what intermediate ICs are used.
Therefore given a grammar and an input sentence,
no matter what binarization is used, the CKY pars-
ing will generate the same set of CCs.

For example in Figure 2 there is a CC X : [0, 4],
which is associated with rule X → AB C D. No
matter what binarization we use, this CC will be rec-
ognized eventually. For example if using left bina-
rization, we will get [AB]:[0, 2], [AB C]:[0, 3] and
finally X :[0, 4]; if using right binarization, we will
get [C D]:[2, 4], [B C D]:[1, 4] and again X:[0, 4].

4.3 Impact on incomplete constituents

Binarizations do affect the generation of ICs, be-
cause they generate different intermediate symbols.
We discuss the impact on two aspects:

Shared IC. Some ICs can be used to generate
multiple CCs in parsing. We call them shared. If a
binarization can lead to more shared ICs, then over-
all there will be fewer ICs needed in parsing.

For example, in Figure 2, if we use left binariza-
tion, then [AB]:[0, 2] can be shared to generate both
X :[0, 4] and Y :[0, 3], in which we can save one IC
overall. However, if right binarization is used, there
will be no common ICs to share in the generation
steps of X :[0, 4] and Y :[0, 3], and overall there are
one more IC generated.

Failed IC. For a CC, if it can be recognized even-
tually by applying an original rule of length k, what-
ever binarization to use, we will have to generate the
same number of k − 2 ICs before we can complete
the CC. However, if the CC cannot be fully recog-

nized but only partially recognized, then the number
of ICs needed will be quite different.

For example, in Figure 2, the rule W → F C D E
can be only partially recognized over [2, 5], so it can-
not generate the corresponding CC. Right binariza-
tion needs two ICs ([D E]:[3, 5] and [C D E]:[2, 5])
to find that the CC cannot be recognized, while left
binarization needs none.

As mentioned earlier, ICs are auxiliary means to
generate CCs. If an IC cannot help generate any
CCs, it is totally useless and even harmful. We call
such an IC failed, otherwise it is successful. There-
fore, if a binarization can help generate fewer failed
ICs then parsing would be more efficient.

4.4 Binarization and the nature of the input

Now we show that the impact of binarization also
depends on the actual input. When the input
changes, the impact may also change.

For example, in the previous example about the
rule W → F C D E in Figure 2, we believe that
left binarization is better based on the observation
that there are more snippets of [C D E] in the in-
put which lack for F to the left. If there are more
snippets of [F C D] in the input lacking for E to the
right, then right binarization would be better.

The discussion above confirms such a view: the
effect of binarization depends on the nature of the
input language, and a good binarization should re-
flect this nature. This accords with our intuition. So
we use training corpus to learn a good binarization.
And we verify the effectiveness of the learnt bina-
rization using a test corpus with the same nature.

In summary, binarizations affect the efficiency of
parsing primarily by affecting the number of ICs
generated, where more shared and fewer failed ICs
will help lead to higher efficiency. Meanwhile, the
effectiveness of binarization also depends on the na-
ture of its input language.

5 Towards a good binarization

Based on the analysis in the previous section, we
employ a greedy approach to find a good binariza-
tion. We use training corpus to compute metrics
for every possible intermediate symbol. We use this
information to greedily select the best pair to com-
bine.



5.1 Algorithm

Given the original grammar G and training corpus
C, for every sentence in C, we firstly obtain the final
parse (like Figure 2). For every possible intermedi-
ate symbol, i.e. every ngram of the original symbols,
denoted by w, we compute the following two met-
rics:

1. How many ICs labeled by w can be generated
in the final parse, denoted by num(w) (number
of related ICs).

2. How many CCs can be generated via ICs la-
beled by w, denoted by ctr(w) (contribution of
related ICs).

For example in Figure 2, for a possible inter-
mediate symbol [AB C], there are two related ICs
([AB C] : [0, 3] and [AB C] : [0, 4]) in the parse,
so we have num([AB C]) = 2. Meanwhile, four
CCs (Y : [0, 3], X : [0, 4], Y : [0, 4] and Z : [0, 5]) can
be generated from the two related ICs. Therefore
ctr([AB C]) = 4. We list the two metrics for every
ngram in Figure 2 in Table 2. We will discuss how
to compute these two metrics in Section 5.2.

w num ctr w num ctr

[AB] 1 4 [B C E] 1 1
[AB C] 2 4 [C D] 1 2
[AB C D] 1 1 [C D E] 1 0
[AB C E] 1 1 [C E] 1 1
[B C] 2 4 [D E] 1 0
[B C D] 1 1

Table 2: Metrics of every ngram

The two metrics indicate the goodness of a possi-
ble intermediate symbol w: num(w) indicates how
many ICs labeled by w are likely to be generated in
parsing; while ctr(w) represents how much w can
contribute to the generation of CCs. If ctr(w) is
larger, the corresponding ICs are more likely to be
shared. If ctr is zero, those ICs are surely failed.
Therefore the smaller num(w) is and the larger
ctr(w) is, the better w would be.

Combining num and ctr, we define a utility func-
tion for each ngram w in the original grammar:

utility(w) = f(num(w), ctr(w)) (3)

where f is a ranking function, satisfying that f(x, y)
is larger when x is smaller and y is larger. We will
discuss more details about it in Section 5.3.

Using utility as the ranking function, we sort all
pairs of symbols and choose the best to combine.
The formal algorithm is as follows:

S1 For every symbol pair of 〈v1, v2〉 (where v1 and
v2 can be original symbols or intermediate symbols
generated in previous rounds), let w1 and w2 be the
ngrams of original symbols represented by v1 and
v2, respectively. Let w = w1w2 be the ngram rep-
resented by the symbol pair. Compute utility(w).

S2 Select the ngram w with the highest utility(w), let
it be w∗ (in case of a tie, select the one with a
smaller num). Let the corresponding symbol pair
be 〈v∗1 , v∗2〉.

S3 Add a new intermediate symbol v∗, and replace all
the occurrences of 〈v∗1 , v∗2〉 on the right hand sides
of rules with v∗.

S4 Add a new rule v∗ → v∗1v∗2 : 1.0.

S5 Repeat S1 ∼ S4, until there are no rules with more
than two symbols on the right hand side.

5.2 Metrics computing
In this section, we discuss how to compute num and
ctr in details.

Computing ctr is straightforward. First we get
final parses like in Figure 2 for training sentences.
From a final parse, we traverse along every parent
node and enumerate every subsequence of its child
nodes. For example in Figure 2, from the parent
node of X : [0, 4], we can enumerate the follow-
ing: [AB] : [0, 2], [AB C] : [0, 3], [A B C D] : [0, 4],
[B C]:[1, 3], [B C D]:[1, 4], [C D]:[2, 4]. We add 1 to
all the ctr of these ngrams, respectively.

To compute num, we resort to the same idea
of dynamic programming as in CKY. We perform
a normal left binarization except that we add all
ngrams in the original grammar G as intermediate
symbols into the binarized grammar G′. For exam-
ple, for the rule of S → AB C : p, the constructed
grammar is as follows:

[AB] → A B : 1.0
S → [AB] C : p

[B C] → B C : 1.0

Using the constructed G′, we employ a normal
CKY parsing on the training corpus and compute



how many constituents are produced for each ngram.
The result is num. Suppose the length of the train-
ing sentence is n, the original grammar G has N
symbols, and the maximum length of rules is k,
then the complexity of this method can be written
as O(Nkn3).

5.3 Ranking function
We discuss the details of the ranking function f used
to compute the utility of each ngram w. We come
up with two forms for f : linear and log-linear

1. linear: f(x, y) = −λ1x + λ2y

2. log-linear3: f(x, y) = −λ1 log(x) + λ2 log(y)

where λ1 and λ2 are non-negative weights subject to
λ1 + λ2 = 14.

We will use development set to determine which
form is better and to learn the best weight settings.

6 Combination with other techniques

Binarization usually plays a role of preprocessing in
the procedure of parsing. Grammars are binarized
before they are fed into the stage of parsing. There
are many known works on speeding up the CKY
parsing. So we can expect that if we replace the
part of binarization by a better one while keeping
the subsequent parsing unchanged, the parsing will
be more efficient. We will conduct experiment to
confirm this idea in the next section.

We would like to make more discussions be-
fore we advance to the experiments. The first is
about parsing accuracy in combining binarization
with other parsing speed-up techniques. Binariza-
tion itself does not affect parsing accuracy. When
combined with exact inference algorithms, like the
iterative CKY (Tsuruoka and Tsujii, 2004), the ac-
curacy will be the same. However, if combined with
other inexact pruning techniques like beam-pruning
(Goodman, 1997) or coarse-to-fine parsing (Char-
niak et al., 2006), binarization may interact with
those pruning methods in a complicated way to af-
fect parsing accuracy. This is due to different bina-
rizations generate different sets of intermediate sym-

3For log-linear form, if num(w) = 0 (and consequently
ctr(w) = 0), we set f(num(w), ctr(w)) = 0; if num(w) >
0 but ctr(w) = 0, we set f(num(w), ctr(w)) = −∞.

4Since f is used for ranking, the magnitude is not important.

bols. With the same complete constituents, one bi-
narization might derive incomplete constitutes that
could be pruned while another binarization may not.
This would affect the accuracy. We do not address
this interaction on in this paper, but leave it to the
future work. In Section 7.3 we will use the iterative
CKY for testing.

In addition, we believe there exist some speed-up
techniques which are incompatible with our bina-
rization. One such example may be the top-down
left-corner filtering (Graham et al., 1980; Moore,
2000), which seems to be only applicable to the pro-
cess of left binarization. A detailed investigation on
this problem will be left to the future work.

The last issue is how our binarization performs
on a lexicalized parser, like Collins (1997). Our in-
tuition is that we cannot apply our binarization to
Collins (1997). The key fact in lexicalized parsers
is that we cannot explicitly write down all rules
and compute their probabilities precisely, due to the
great number of rules and the severe data sparsity
problem. Therefore in Collins (1997) grammar rules
are already factorized into a set of probabilities.
In order to capture the dependency relationship be-
tween lexcial heads Collins (1997) breaks down the
rules from head outwards, which prevents us from
factorizing them in other ways. Therefore our bina-
rization cannot apply to the lexicalized parser. How-
ever, there are state-of-the-art unlexicalized parsers
(Klein and Manning, 2003b; Petrov et al., 2006), to
which we believe our binarization can be applied.

7 Experiments

We conducted two experiments on Penn Treebank II
corpus (Marcus et al., 1994). The first is to com-
pare the effects of different binarizations on parsing
and the second is to test the feasibility to combine
our work with iterative CKY parsing (Tsuruoka and
Tsujii, 2004) to achieve even better efficiency.

7.1 Experimental setup

Following conventions, we learnt the grammar from
Wall Street Journal (WSJ) section 2 to 21 and mod-
ified it by discarding all functional tags and empty
nodes. The parser obtained this way is a pure un-
lexicalized context-free parser with the raw treebank
grammar. Its accuracy turns out to be 72.46% in



terms of F1 measure, quite the same as 72.62% as
stated in Klein and Manning (2003b). We adopt this
parser in our experiment not only because of sim-
plicity but also because we focus on parsing effi-
ciency.

For all sentences with no more than 40 words in
section 22, we use the first 10% as the development
set, and the last 90% as the test set. There are 158
and 1,420 sentences in development set and test set,
respectively. We use the whole 2,416 sentences in
section 23 as the training set.

We use the development set to determine the bet-
ter form of the ranking function f as well as to
tune its weights. Both metrics of num and ctr
are normalized before use. Since there is only one
free variable in λ1 and λ2, we can just enumerate
0 ≤ λ1 ≤ 1, and set λ2 = 1 − λ1. The increasing
step is firstly set to 0.05 for the approximate loca-
tion of the optimal weight, then set to 0.001 to learn
more precisely around the optimal.

We find that the optimal is 5,773,088 (constituents
produced in parsing development set) with λ1 =
0.014 for linear form, while for log-linear form the
optimal is 5,905,292 with λ1 = 0.691. Therefore we
determine that the better form for the ranking func-
tion is linear with λ1 = 0.014 and λ2 = 0.986.

The size of each binarized grammar used in the
experiment is shown in Table 3. “Original” refers
to the raw treebank grammar. “Ours” refers to the
learnt binarized grammar by our approach. For the
rest please refer to Section 2.

# of Symbols # of Rules
Original 72 14,971
Right 10,654 25,553
Left 12,944 27,843
Head 11,798 26,697
Compact 3,644 18,543
Ours 8,407 23,306

Table 3: Grammar size of different binarizations

We also tested whether the size of the training set
would have significant effect. We use the first 10%,
20%, · · · , up to 100% of section 23 as the training
set, respectively, and parse the development set. We
find that all sizes examined have a similar impact,
since the numbers of constituents produced are all
around 5,780,000. It means the training corpus does

not have to be very large.
The entire experiments are conducted on a server

with an Intel Xeon 2.33 GHz processor and 8 GB
memory.

7.2 Experiment 1: compare among
binarizations

In this part, we use CKY to parse the entire test set
and evaluate the efficiency of different binarizations.

The for-statement implementation of the inner
most loop of CKY will affect the parsing time
though it won’t affect the number of constituents
produced as discussed in Section 3.2. The best im-
plementations may be different for different bina-
rized grammars. We examine M1∼M4, testing their
parsing time on the development set. Results show
that for right binarization the best method is M3,
while for the rest the best is M2. We use the best
method for each binarized grammar when compar-
ing the parsing time in Experiment 1.

Table 4 reports the total number of constituents
and total time required for parsing the entire test set.
It shows that different binarizations have great im-
pacts on the efficiency of CKY. With our binariza-
tion, the number of constituents produced is nearly
20% of that required by right binarization and nearly
25% of that by the widely-used left binarization. As
for the parsing time, CKY with our binarization is
about 2.5 times as fast as with right binarization and
about 1.75 times as fast as with left binarization.
This illustrates that our binarization can significantly
improve the efficiency of the CKY parsing.

Binarization Constituents Time (s)
Right 241,924,229 5,747
Left 193,238,759 3,474
Head 166,425,179 3,837
Compact 94,257,478 2,302
Ours 52,206,466 2,182

Table 4: Performance on test set

Figure 3 reports the detailed number of complete
constituents, successful incomplete constituents and
failed incomplete constituents produced in parsing.
The result proves that our binarization can signifi-
cantly reduce the number of failed incomplete con-
stituents, by a factor of 10 in contrast with left bi-
narization. Meanwhile, the number of successful in-



complete constituents is also reduced by a factor of
2 compared to left binarization.
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Figure 3: Comparison on various constituents

Another interesting observation is that parsing
with a smaller grammar does not always yield a
higher efficiency. Our binarized grammar is more
than twice the size of compact binarization, but ours
is more efficient. It proves that parsing efficiency is
related to both the size of grammar in use as well as
the number of constituents produced.

In Section 1, we used an example of “get the
bag and go” to illustrate that for rules like X →
Y CC Y , right binarization is more suitable. We
also investigated the corresponding linguistic nature
that the word to the right of “and” is more likely to
indicate the true relationship represented by “and”.
We argued that a better binarization can reflect such
linguistic nature of the input language. To our sur-
prise, our learnt binarization indeed captures this lin-
guistic insight, by binarizing NP → NP CC NP
from right to left.

Finally, we would like to acknowledge the limi-
tation of our assumption made in Section 3.2. Ta-
ble 4 shows that the parsing time of CKY is not
always monotonic increasing with the number of
constituents produced. Head binarization produces
fewer constituents than left binarization but con-
sumes more parsing time.

7.3 Experiment 2: combine with iterative CKY
In this part, we test the performance of combining
our binarization with the iterative CKY (Tsuruoka
and Tsujii, 2004) (henceforth T&T) algorithm.

Iterative CKY is a procedure of multiple passes
of normal CKY: in each pass, it uses a threshold to
prune bad constituents; if it cannot find a successful
parse in one pass, it will relax the threshold and start

another; this procedure is repeated until a successful
parse is returned. T&T used left binarization. We
re-implement their experiments and combine itera-
tive CKY with our binarization. Note that iterative
CKY is an exact inference algorithm that guarantees
to return the optimal parse. As discussed in Sec-
tion 6, the parsing accuracy is not changed in this
experiment.

T&T used a held-out set to learn the best step of
threshold decrease. They reported that the best step
was 11 (in log-probability). We found that the best
step was indeed 11 for left binarization; for our bina-
rizaiton, the best step was 17. T&T used M4 as the
for-statement implementation of CKY. In this part,
we follow the same method.

The result is shown in Table 5. We can see that
iterative CKY can achieve better performance by us-
ing a better binarization. We also see that the reduc-
tion by binarization with pruning is less significant
than without pruning. It seems that the pruning itself
in iterative CKY can counteract the reduction effect
of binarization to some extent. Still the best per-
formance is archieved by combining iterative CKY
with a better binarization.

CKY + Binarization Constituents Time (s)
Tsuruoka and Tsujii (2004)

CKY + Left 45,406,084 1,164
Iterative CKY + Left 17,520,427 613

Reimplement
CKY + Left 52,128,941 932
CKY + Ours 14,892,203 571
Iterative CKY + Left 23,267,594 377
Iterative CKY + Ours 10,966,272 314

Table 5: Combining with iterative CKY parsing

8 Related work

Almost all work on parsing starts from a binarized
grammar. Usually binarization plays a role of pre-
processing. Left binarization is widely used (Aho
and Ullman, 1972; Charniak et al., 1998; Tsuruoka
and Tsujii, 2004) while right binarization is rarely
used in the literature. Compact binarization was in-
troduced in Schmid (2004), based on the intuition
that a more compact grammar will help acheive a
highly efficient CKY parser, though from our exper-
iment it is not always true.



We define the fashion of binarizations in Sec-
tion 2, where we encode an intermediate symbol us-
ing the ngrams of original symbols (content) it de-
rives. This encoding is known as the Inside-Trie (I-
Trie) in Klein and Manning (2003a), in which they
also mentioned another encoding called Outside-
Trie (O-Trie). O-Trie encodes an intermediate sym-
bol using the its parent and the symbols surrounding
it in the original rule (context). Klein and Manning
(2003a) claimed that O-Trie is superior for calculat-
ing estimates for A* parsing. We plan to investigate
binarization defined by O-Trie in the future.

Both I-Trie and O-Trie are equivalent encodings,
resulting in equivalent grammars, because they both
encode using the complete content or context infor-
mation of an intermediate symbol. If we use part of
the information to encode, for example just parent in
O-Trie case, the encoding will be non-equivalent.

Proper non-equivalent encodings are used to gen-
eralize the grammar and prevent the binarized gram-
mar becoming too specific (Charniak et al., 2006). It
is equipped with head binarization to help improve
parsing accuracy, following the traditional linguistic
insight that phrases are organized around the head
(Collins, 1997; Klein and Manning, 2003b). In con-
trast, we focus our attention on parsing efficiency
not accuracy in this paper.

Binarization also attracts attention in the syntax-
based models for machine translation, where trans-
lation can be modeled as a parsing problem and bi-
narization is essential for efficient parsing (Zhang
et al., 2006; Huang, 2007).

Wang et al. (2007) employs binarization to de-
compose syntax trees to acquire more re-usable
translation rules in order to improve translation ac-
curacy. Their binarization is restricted to be a mix-
ture of left and right binarization. This constraint
may decrease the power of binarization when ap-
plied to speeding up parsing in our problem.

9 Conclusions and future work

We have studied the impact of grammar binarization
on parsing efficiency and presented a novel bina-
rization which utilizes rich information learnt from
training corpus. Experiments not only showed that
our learnt binarization outperforms other existing
ones in terms of parsing efficiency, but also demon-

strated the feasibility to combine our binarization
with known parsing speed-up techniques to achieve
even better performance.

An advantage of our approach to finding a good
binarization would be that the training corpus does
not need to be parsed sentences. Only POS tagged
sentences will suffice for training. This will save the
effort to adapt the model to a new domain.

Our approach is based on the assumption that the
efficiency of CKY parsing is primarily determined
by the number of constituents produced. This is a
fairly sound one, but not always true, as shown in
Section 7.2. One future work will be relaxing the
assumption and finding a better appraoch.

Another future work will be to apply our work to
chart parsing. It is known that binarization is also
essential for an O(n3) complexity of chart parsing,
where dotted rules are used to binarize the grammar
implicitly from left. As shown in Charniak et al.
(1998), we can binarize explicitly and use intermedi-
ate symbols to replace dotted rules in chart parsing.
Therefore chart parsing can use multiple binariza-
tions. We expect that a better binarization will also
help improve the efficiency of chart parsing.
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