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Abstract

Higher-order languages that encourage currying are typically implemented using one of
two basic evaluation models: push/enter or eval/apply. Implementors use their intuition
and qualitative judgements to choose one model or the other.

Our goal in this paper is to provide, for the first time, a more substantial basis for this
choice, based on our qualitative and quantitative experience of implementing both models
in a state-of-the-art compiler for Haskell.

Our conclusion is simple, and contradicts our initial intuition: compiled implementations
should use eval/apply.

1 Introduction

There are two basic ways to implement curried function application in a higher-
order language, when the function is unknown: the push/enter model or the
eval/apply model (Peyton Jones, 1992). To illustrate the difference, consider the
higher-order function zipWith, which zips together two lists, using a function k to
combine corresponding list elements:

zipWith :: (a->b->c) -> [a]l -> [b] -> [c]
zipWith k [] (] =[]
zipWith k (x:xs) (y:ys) = k x y : zipWith k xs ys

Here k is an unknown function, passed as an argument; global flow analysis aside, the
compiler does not know what function k is bound to. What code should the compiler
generate to execute the call k x y in the body of zipWith? It cannot blithely pass
two arguments to k, because k might in reality take just one argument and compute
for a while before returning a function that consumes the next argument; or k might
take three arguments, so that the result of the zipWith is a list of functions.

In the push/enter model, the call proceeds by pushing the arguments x and y on
the stack, and entering the code for k. Every function’s entry code is required to
check how many arguments are on the stack, and behave appropriately: if there are
too few arguments, the function must construct a partial application and return.

* An earlier version of this paper appeared in the International Conference on Functional Pro-
gramming 2004 (ICFP’04), pp4-15, ACM Press
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If there are too many arguments, then only the required arguments are consumed,
the rest of the arguments are left on the stack to be consumed later, presumably
by the function that will be the result of this call.

In the eval/apply approach, the caller first evaluates the function k, and then
applies it to the correct number of arguments. The latter step involves some run-
time case analysis, based on information extracted from the closure for k. If k takes
two arguments, we can call it straightforwardly. If it takes only one, we must call
it passing x, and then call the function it returns passing y; if it takes more than
two, we must build a closure for the partial application (k x y) and return that
closure.

The crucial difference between push/enter and eval/apply is this. When a function
of statically-unknown arity is applied, two pieces of information come together at
run-time: the arity of the function and the number of arguments in the call. The
two models differ in whether they place responsibility for arity-matching with the
function itself, or with the caller:

Push/enter: the function, which statically knows its own arity, examines the stack
to figure out how many arguments it has been passed, and where they are. The
nearest analogy is C’s “varargs” calling convention.

Eval/apply: the caller, which statically knows what the arguments are, examines
the function closure, extracts its arity, and makes an exact call to the function.

Which of the two is best in practice? The trouble is that the evaluation model has
a pervasive effect on the implementation, so it is too much work to implement both
and pick the best. Historically, compilers for strict languages (using call-by-value)
have tended to use eval/apply, while those for lazy languages (using call-by-need)
have often used push/enter, but either approach will work in both settings. In
practice, implementors choose one of the two approaches based on a qualitative
assessment of the trade-offs. In this paper we put the choice on a firmer basis:

e We explain precisely what the two models are, in a common notational frame-
work (Section 4). Surprisingly, this has not been done before.

e The choice of evaluation model affects many other design choices in subtle

but pervasive ways. We identify and discuss these effects in Sections 5 and
6, and contrast them in Section 7. There are lots of nitty-gritty details here,
for which we make no apology — they were far from obvious to us, and
articulating these details is one of our main contributions.
In terms of its impact on compiler and run-time system complexity, eval/apply
seems decisively superior, principally because push/enter requires a stack like
no other: stack-walking is more difficult, and compiling to an intermediate
language like C or C-- is awkward or impossible.

e We give the first detailed quantitative measurements that contrast the two
approaches (Section 8), based on a credible, optimising compiler (the Glasgow
Haskell Compiler, GHC). We give both bottom-line results such as wall-clock
time, total instruction count and allocation, and also some more insightful
numbers such as breakdowns of call patterns.
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Our experiments show that the execution costs of push/enter and eval/apply
are very similar, despite their pervasive differences. What you gain on the
swings you lose on the roundabouts.

Our conclusion is simple, and contradicts the abstract-machine heritage of the lazy
functional-language community: eval/apply is a clear win, at least for a compiled
implementation. We have now adopted eval/apply for GHC.

2 Background: efficient currying

The choice between push/enter and eval/apply is only important if the language
encourages currying. In a higher-order language one can write a multi-argument
function in two ways:

f :: (Int,Int) —> Int
f (x,y) = x*xy

g :: Int -> Int -> Int
g Xy = X¥y

Here, f is un-curried. It takes a single argument that is a pair, unpacks the pair,
and multiplies its components. On the other hand, g is curried. Notionally at least,
g takes one argument, and returns a function that takes a second argument, and
multiplies the two. The type of g should be read right-associatively, thus:

g :: Int -> (Int -> Int)

Currying appeals to our sense of beauty, because multi-argument functions come
“for free”; one does not need data structures to support them.

We said that “notionally at least g takes one argument”, but suppose that, given
the above definition of g, the compiler is faced with the call (g 3 4). The call is
to a known function — one whose definition the compiler can “see”. It would be
ridiculous to follow the currying story literally. To do that, we would call g passing
one argument, 3, get a function closure in return, and then call that function,
again passing one argument, 4. No, in this situation, any decent compiler must
load the arguments 3 and 4 into registers, or on the stack, and call the code for
g directly, and that is true whether the basic evaluation model is push/enter or
eval/apply. In the rest of this paper we will take it for granted that saturated calls
to “known” functions are compiled using an efficient argument-passing convention
(see e.g. (Peyton Jones, 1992; Appel, 1992)). The push/enter and eval/apply models
differ only in how they handle calls to “unknown” functions.

In any higher-order language one can write curried functions, simply by writing
a function that returns a function, but languages differ in the degree to which their
syntax encourages it. For the purposes of this paper, we assume that currying is to
be regarded as the native way to define multi-argument functions, and that we wish
to make multi-argument curried functions as fast as possible. Qur measurements
of Haskell programs show that on average around 20% of calls are to unknown
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Variables z,y, f,g

Constructors C Defined in data type declarations
Literals lit == i|d Unboxed integer or double
Atoms a,v u= lit|zx Function arguments are atomic
Function arity k == o Unknown arity

| n Known arity n > 1

Expressions e = a Atom
| ffai...an Function call (n > 1)
| ®ai...an Saturated primitive operation (n > 1)
| letxz=objine
| caseeof {alti;...;alt,} (n>1)

Alternatives alt == Cxi...Ty — e (n>0)
| z—> e Default alternative

Heap objects obj 1= FUN(z1...zn —e) Function (arity =n > 1)
| PAP(fai...an) Partial application (f is always a

FUN with arity(f) >n > 1)
| CON(Cai...an) Saturated constructor (n > 0)
| THUNK e Thunk
| BLACKHOLE [only during evaluation]
Programs prog == fi=o0bji;...; fn=0bjn

Fig. 1. Syntax

functions, and on average 40% of those calls (8% of all calls) have more than one
argument (Section 8), although these figures can vary significantly from program
to program.

3 Language

To make our discussion concrete we use a small, non-strict intermediate language
similar to that used inside the Glasgow Haskell Compiler. Its syntax is given in
Figure 1. In essence it is the STG language (Peyton Jones, 1992), but we have
adjusted some of the details for this paper.

Although the push/enter vs eval/apply question applies equally to strict and
non-strict languages, we treat a non-strict one here because it is the slightly more
complicated case, and because our quantitative data is for Haskell.

The idea is that each syntactic construct in Figure 1 has a direct operational
reading. We give these operational intuitions here, and we will make them precise
in Section 4:

e A literal is an unbozed 32-bit integer, i, or 64-bit double-precision floating-
point number, d. We have more to say about unboxed values in Section 3.3.
e Acall, f¥ a; ...ay, applies the function f to the arguments a; .. .a,. Each ar-
gument of an application is an atom (literal or variable), there is no argument
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preparation to perform first. The superscript k& describes the statically-known
information about the function’s arity. It takes two forms:

— f™, where n is an integer, indicates that the compiler statically knows the
arity of f, usually because there is a lexically-enclosing binding for f that
binds it to a FUN object with arity n.

— f* indicates that the compiler has no static information about f’s arity.
It would be safe to annotate every application with e.

There is no guarantee that the function’s arity (whether statically known or
not) matches the number of arguments supplied at the call site.

e A let expression (and only a let) allocates an object in the heap. We discuss
the forms of heap object in Section 3.1. In this paper we will only discuss
simple, non-recursive let expressions. GHC supports a mutually-recursive
letrec as well, of course, but recursive bindings do not affect the issues
discussed this paper, so we omit them to save clutter. The top-level definitions
of a program are recursive, however.

e A case evaluates a sub-expression, called the scrutinee, and optionally per-
forms case analysis on its value. More concretely, case saves any live variables
that are needed in the case alternatives, pushes a return address, and then
evaluates the scrutinee. At the return address, it performs case analysis on the
returned value. All case expressions are exhaustive: either there is a default
alternative as a catch-all, or the patterns cover all the possibilities in the data
type. We often omit the curly braces in our informal examples, using layout
instead.

3.1 Heap objects

The language does not provide a syntactic form of expression for constructor appli-
cations, or for anonymous lambdas; instead, they must be explicitly allocated using
let. In general, let performs heap allocation, and the right hand side of a let is
a heap object. There are exactly five kinds of heap objects:

FUN(zy ...z, — e) is a function closure, with arguments z; and body e (which
may have free variables other than the x;). The function is curried — that is, it
may be applied to fewer than n, or more than n, arguments — but it still has an
arity of n.

PAP(f a1 ...a,) represents a partial application of function f to arguments
ai -..a,. Here, f is guaranteed to be FUN object, and the arity of that FUN is
guaranteed to be strictly greater than n.

CON(C ay ...ay) is a data value, the saturated application of constructor C' to
arguments ay ... an,.

THUNK e represents a thunk, or suspension. When its value is needed, e is evalu-
ated, and the thunk overwritten with (an indirection to) the value of e.

BLACKHOLE is used only during evaluation of a thunk, never in a source program.
While a thunk is being evaluated, it is replaced by BLACKHOLF to avoid space
leaks and to catch certain forms of divergence (Jones, 1992).
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Of these, FUN, PAP and CON objects are values, and cannot be evaluated any
further.

A top-level definition creates a statically-allocated object, at a fixed address,
whereas a let allocates a heap object dynamically.

3.2 Case expressions

The language offers conventional algebraic data type declarations, such as

data Tree a = Leaf a | Branch (Tree a) (Tree a)
data Bool False | True

data List a = Nil | Cons a (List a)

Values of type Tree are built with the constructors Leaf and Branch, and can be
discriminated and taken apart with a case expression. The boolean type Bool is
just a regular algebraic data type, so that a conditional is implemented by a case
expression. Constructors are always saturated; unsaturated constructors can always
be saturated by eta expansion.

To give the idea, here is the Haskell definition of the map function:

map £ [1 = []
map f (x:xs) = f x : map £ xs

and here is its rendition into our intermediate language:

nil = CON Nil
map = FUN (f xs ->
case xs of
Nil -> nil
Cons y ys -> let h = THUNK (f y)
t = THUNK (map f ys)
r = CON (Cons h t)
in r

)

The top-level definition of nil is automatically generated by GHC, so that there
is a value to hand for map to return in the Nil case alternative. A similar top-level
definition is generated for each nullary constructor.

The scrutinee of a case expression is an ezpression rather than an atom. This is
important, because it lets us write, for example, case (null xs) of ..., rather
than

let y = THUNK (null xs) in case y of

There is no need to construct a thunk!

3.3 Unbozxed values

Another slightly unusual feature of our language is the use of unbozed values (Pey-
ton Jones & Launchbury, 1991). Supporting unboxed values is vital for performance,
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but it has significant consequences for the implementation: both heap objects and
the stack may contain a mix of pointer and non-pointer values.

Most values are represented by a pointer to a heap object, including all data
structures, function closures, and thunks. Our intermediate language also supports
a handful of primitive, unboxed data types, of which we consider only Int# and
Double# here. An Int# is a 32-bit integer, in the native machine representation;
it is not a pointer. Similarly, a Double# is a 64-bit double-precision floating-point
value in IEEE representation. These unboxed values can be passed as a arguments
to a function, returned as results, stored in data structures, and so on. For example,
here is how the (boxed) type Int is defined, as an ordinary algebraic data type:

data Int = I# Int#

That is, an Int value is a heap-allocated data structure, built with the I# construc-
tor, containing an Int#.

Having explicit unboxed values allows us to make boxing and unboxing operations
explicit in our intermediate language. For example, here is how Int addition is
defined:

plusInt :: Int -> Int -> Int
plusInt a b
= case a of { I# x ->
case b of { I# y —>
I# (x +# y)
1}

The first case expression evaluates the argument a (in case it is a thunk) and takes
it apart; the second case does the same to b; the (x +# y) adds the two unboxed
values using the primitive addition operator +#, while the final use of I# boxes the
result back into an Int.

4 The two evaluation models

It is now time to become precise about what we mean by a “push/enter” or
“eval /apply” model. We do so by giving an operational semantics that exposes
the key differences between these models, while still hiding some representation
details that only confuse the picture. Douence and Fradet give a completely differ-
ent, combinator-based, formalism that allows them to contrast push/enter with
eval/apply (Douence & Fradet, 1998), although their treatment only considers
single-argument functions whereas we are interested in how to perform multiple
application without building intermediate function closures. Furthermore, the se-
mantics we present here maps more directly to operational intuitions.

Figure 2 gives the operational semantics for both evaluation models, using a
small-step transition relation of the form

er; s1; Hi = es; s2; Hi

The components of the program state are:
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Rules common to push/enter and eval/apply

H[f]isa FUN or PAP

letz=objine; s; H = e[z'/z]; s; H[z' — obj] (LET)
z' fresh
casevof {...;Cx1...2n — €;...}; 85 Hv— CON(Cai...an)]
= elai/z1...an/zn]; 83 H (CASECON)
casevof {...;x —e}; s H = elv/z]; s; H (CASEANY)
if v is a literal or H[v] is a value, and does not
match any other case alternative
caseeof {...}; s; H = e; caseeof {...}:s; H (cAsE)
v; caseeof {...}:s; H = vcasevof{..}; s; H (RET)
if v is a literal or H[v] is a value
x; s; Hlx— THUNKe] = e Updzxe:s; H[x— BLACKHOLE) (THUNK)
y; Updxze:s; H = y; s; Hlx— Hy]] (UPDATE)
if H[y] is a value
f"ai...an; s; H[f — FUN(z1...2n — €)]
= elai/z1...an/zn]; 55 H (KNOWNCALL)
®ar...an; 55 H = a; s H (PRIMOP)
where a is the result of applying the primitive
operation ¢ to arguments a1 ...an
Rules for push/enter
fkar...am; s; H = f; Argai:...: Argamy :s; H (PUsH)
f; Argai:...: Argan:s; H[f — FUN(z1...zn — e)]
= elai/z1...an/zn]; 55 H (FENTER)
f; Argai:...: Argam :s; H[f+— FUN(z1...zn — €)]
= p; s; Hp— PAP(f a1...am)] (paP1)
if m > 1; m < n; the top element of s is not of
the form Arg y; p fresh
f; Arg any1:s; H[f — PAP(gai...an)]
= g¢g; Argai:...: Argan : Arg an+1:8; H (PENTER)
Rules for eval/apply
f®ai...an; s; H[f = FUN(z1...2n — €)]
= elai/z1...an/zn]; 83 H (EXACT)
fEar...am; s; H[f = FUN(z1...zn — €)]
= elai/z1...an/Tn]; (® Gnt1...am):s; H  (CALLK)
ifm>n
= p; s; Hjp— PAP(f a1...am)] (PAP2)
if m < n, p fresh
f®ai...am; s; H[f - THUNK e]
= f; (ear...am):s; H (ToALL)
¥ ant1...am; s; H[f = PAP(ga1...as)]
= g¢%ai...an Gpt1-.-am; S; H (PcALL)
f; (ea1...an):s; H = f*ai...an; s H (RETFUN)

Fig. 2. The evaluation rules
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The code e, is the expression under evaluation, in the syntax of Figure 1.

The stack s, is a stack of continuations that says what to do when the current
expression is evaluated. We use the notation “:” to means cons in the context of
a stack.

The heap H, is a finite mapping from variables (which we treat as synonymous
with heap addresses) to heap objects. The latter have the syntax given in Figure 1.
To reduce clutter, we use the convention that no binding is ever removed from
the heap. For example, in rule CASECON the heap H on the right-hand side of
the rule still has a binding for v.

The stack continuations, &, take the following forms:

k == caseeof {alty;...;alt,}
| Updte Update thunk ¢ with returned
value

| (eaj...an) Apply the returned function to
aj ...ay [eval/apply only]

| Arga Pending argument [push/enter
only]

The meaning of these continuations should become clear as we discuss the evaluation
rules. The rules themselves are fairly dense, so the following subsections explain
them in some detail. After that, we sketch how the operational semantics is mapped
onto a real machine by the Glasgow Haskell Compiler.

4.1 Rules common to both models

The first block of evaluation rules in Figure 2 are common to both push/enter and
eval/apply.

The first rule, LET, says what happens when the expression to be evaluated is a
let form. Following Launchbury (Launchbury, 1993), we simply allocate the right-
hand side obj in the heap, using a fresh name z’, extend the heap thus H[z' + obj].
The use of a fresh name corresponds to allocating an unused address in the heap.
Lastly, we substitute 2’ for z in e, the body of the let, before continuing. In a real
implementation this substitution would be managed by keeping a pointer to the
new object in a register, or accessing it by offset from the allocation pointer, but
we do not need to model those details here.

The next group of four rules deal with case expressions. Rule CASE, starts the
evaluation of a case expression by pushing a case continuation on the stack, and
evaluating the scrutinee, e. When evaluation is complete, a value v (either a literal
or a pointer to a heap value) is returned to the case continuation by RET.

If v is (a pointer to) a constructor, rule CASECON applies; it resumes the appro-
priate branch of the case, binding the constructor arguments to x;. If the returned
value does not match any other case alternative, the default alternative is used
(rule CASEANY). These two rules precede CASE because they overlap it, and we use
the convention that the first applicable rule takes precedence.

The next two rules deal with thunks. If the expression to be evaluated is a
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thunk, we push an update continuation (or update frame), Upd t e, which points
to the thunk to be updated (rule THUNK). While the thunk ¢ is being evaluated
we update the heap so that ¢ points to a BLACKHOLE. No left-hand sides match
BLACKHOLEF so evaluation will “get stuck” if we try to evaluate a thunk during its
own evaluation. This simple trick has been known for a long time, and is also cru-
cially important to avoid space leaks (Jones, 1992). When evaluation is complete,
we overwrite the thunk with the value (rule UPDATE).

The last two rules deal with saturated applications of known functions, either
primitive operations (PRIMOP) or user-defined ones (KNOWNCALL). Both are very
simple and can be compiled efficiently, with fast parameter-passing mechanisms.
Notice that the call to f is a tail call. No continuation is pushed; instead control is
simply transferred to f’s body.

The big remaining question is how function application is handled when the
function is unknown, or is applied to too many or too few arguments. And that is
the key point at which the two evaluation models differ, of course.

4.2 The push/enter model

The rules in the second block of Figure 2 are the ones specific to the push/enter
model. First consider rule PUSH, which deals with function applications. It simply
pushes the arguments onto the stack, as pending arguments, using the Arg contin-
uation, and enters the function. The next three rules deal with what “entering the
function” means:

e First, the function f might turn out to be a FUN object of arity n, and there
might be n or more arguments on the stack. In that case (rule FENTER), we can
proceed to evaluate the body of the function, binding the actual arguments
to the formal parameters as usual. Any excess pending arguments are left on
the stack, to be consumed by the function that e (presumably) evaluates to.

e What if there aren’t enough pending arguments on the stack? This could
happen either because a function-valued thunk pushed an update frame, or
because a case expression evaluated a function (see Section 3.2). In either
case, we must construct a value to return to the “caller” and that value is a
partial application, or PAP, as rule PAP1 shows.

e What if f is a PAP and not a FUN? In that case, we simply unpack the
PAP’s arguments onto the stack, and enter the function (rule PENTER).

The three cases above do not exhaust the possible forms of f. It might also be a
THUNK , but we have already dealt with that case (rule THUNK). It might be a
CON , in which case there cannot be any pending arguments on the stack, and rules
UPDATE or RET apply.

4.3 The eval/apply model

The last block of Figure 2 shows how the eval/apply model deals with function
application. The first three rules all deal with the case of a FUN applied to some
arguments:
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4 )
Info pointer
® Payload
Info table
> @——» Entry code
Object type
Layout info
Type-specific
fields
& J

Fig. 3. A heap object

o If there are exactly the right number of arguments, we behave exactly like
rule KNOWNCALL, by tail-calling the function. Rule EXACT is still necessary
— and indeed has a direct counterpart in the implementation — because the
function might not be statically known.

e If there are too many arguments, rule CALLK pushes a call continuation on the
stack, which captures the excess arguments. This is the essence of eval/apply.
Given an application f x y where f takes one argument, first call £ x, and
then apply the resulting function to y.

e If there are too few arguments, we build a PAP (rule PAP2), which becomes
the value of the expression.

These rules work by dynamically inspecting the arity of the function closure in
the heap, which works fine for both known and unknown calls; we could do better
for known calls, but rule KNOWNCALL has already dealt with the saturated known
case, and it is probably not worth the bother of treating under- and over-saturated
known calls specially because they are very uncommon (see Section 8).

Another possibility is that the function in an application is a THUNK (rule
TCALL). This case is very like the over-applied function of rule CALLK; we push a
call continuation and enter the thunk. (This in turn will push an update frame via
rule THUNK.)

Finally, the function in an application might be a partial application of another
function g (rule PcALL). In that case we unpack the PAP and apply ¢ to its new
arguments. Since g is sure to be a FUN, this will take us back to one of the cases
in rules EXACT, CALLK or PAP2.

That concludes the rules for function application. We need one last rule, RETFUN,
which returns a function value (PAP or FUN) to a call continuation, in the obvious
way. This rule re-activates a call continuation, exactly as rule RET re-activates a
case continuation.
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4.4 Heap objects

To provide the context for our subsequent discussion, we now sketch briefly how
GHC maps the operational semantics onto a real machine. Figure 3 shows the layout
of a heap object. In GHC, the first word of every object is called the object’s info
pointer, and points to an immutable, statically-allocated info table (Peyton Jones,
1992). The remainder of the object is called the payload, and may consist of a
mixture of pointers and non-pointers. For example, the object CON(C a; ...a,)
would be represented by an object whose info pointer represented the constructor
C and whose payload is the arguments a; ... a,.
The info table contains:

e Executable code for the object. For example, a FUN object has code for the
function body.

e An object-type field, which distinguishes the various kinds of objects (FUN,
PAP, CON etc) from each other.

e Layout information for garbage collection purposes, which describes the size
and layout of the payload. By “layout” we mean which fields contain pointers
and which contain non-pointers, information that is essential for accurate
garbage collection.

e Type-specific information, which varies depending on the object type. For
example, a FUN object contains its arity; a CON object contains its con-
structor tag, a small integer that distinguishes the different constructors of a
data type; and so on.

In the case of a PAP, the size of the object is not fixed by its info table; instead, its
size is stored in the object itself. The layout of its fields (e.g. which are pointers) is
described by the (initial segment of) an argument-descriptor field in the info table
of the FUN object which is always the first field of a PAP. The other kinds of heap
object all have a size that is statically fixed by their info table.

A very common operation is to jump to the entry code for the object, so GHC
uses a slightly-optimised version of the representation in Figure 3. GHC places
the info table at the addresses immediately before the entry code, and reverses the
order of its fields, so that the info pointer is the entry-code pointer, and all the
other fields of the info table can be accessed by negative offsets from this pointer.
This is a somewhat delicate hack, because it involves juxtaposing code and data,
but (sadly) it does improve performance significantly (on the order of 5%). Again,
however, is not germane to this paper and we ignore it from now on.

4.5 The evaluation stack

In GHC, the evaluation stack s, in Section 4, is represented by a contiguous block
of memory!. The abstract stack of Section 4 is a stack of continuations, k. These

! In fact, GHC supports lightweight concurrency, so there are many threads. Fach has its own
stack, of limited size. The compiler generates explicit stack-overflow tests, and grows the stack
when necessary. None of this is relevant to the discussion of this paper, so we do not discuss
concurrency or stack overflow any further.
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continuations are each represented concretely by a stack frame. The stack frames
for the two continuations common to both push/enter and eval/apply are these:

e An update continuation Upd x e is represented by a small stack frame, con-
sisting of a return address and a pointer to the thunk to be updated, z. In
the push/enter model, an update frame must contain a second word, which
points to the next update frame down in the stack (see Section 5). Having a
return address in the update frame means that a value can simply return to
the topmost return address, without having to test whether the top frame is
an update continuation or a case continuation.

The return address for every update frame can be identical, though; it points
to a hand-written code fragment, part of the runtime system, that performs
the update, pops the update frame, and returns to the next frame.

e A case continuation case e of {alts} is represented by a return address,
together with the free variables of the alternatives alts, which must be saved
on the stack across the evaluation of the scrutinee. For example, consider this
function:

f :: (Int,Int) -> (Bool,Int) -> Int
f x y = case hl x of
(_,b) -> case h2 y of
w —-> w+b

Across the call to h1 x, we must save y on the stack, because it is used later,
but we need not save x; then across the call to h2 y we must save b, but we
need not save y.

Unlike an update frame, the return address for each case expression is differ-
ent: it points to code for the case alternatives of that particular case expres-
sion.

In both cases, the frame can be thought of as a stack-allocated function closure:
the return address is the info pointer, and the rest of the frame is the payload. The
return address “knows” the layout of the rest of the frame — that is, where the
pointers, non-pointers and (in the case of case continuations) dead slots are. In our
implementation, the stack grows downward, so the return address is at the lowest
address, and a stack frame looks exactly like Figure 3. A return address has an info
table that the garbage collector uses to navigate over the frame.

In the next sections we describe how the other two continuations are implemented:
the Arg continuation for push/enter (Section 5) and the (e a; ...a,) continuation
for eval/apply (Section 6).

5 Implementing push/enter

The push/enter model uses the stack to store pending arguments, represented by
continuations of form Arg a. Unlike the other continuations, these have no return
address. When a function with arity n is entered, it begins work by grabbing the
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top n arguments from the stack (rule FENTER), not by returning to them! This is
precisely the difference alluded to in the Introduction: the function is in control.

How does the function know how many arguments are on the stack? It needs to
know this so that it can perform rule FENTER or PAP1 respectively. In GHC the
answer is this: we dedicate a register?, called Su (“u” for “update”), to point to the
topmost update frame or case frame, rather like the frame pointer in a conventional
compiler. Then the function can see if there are enough arguments by taking the
difference between the stack pointer and Su. (The function knows not only how
many arguments it is expecting, but how many words they occupy.) This is the
so-called argument satisfaction check.

Every function is compiled with two entry points. The fast entry point is used for
known calls; it expects its arguments in registers (plus some on the stack if there are
too many to fit in registers). The slow entry point expects all its arguments on the
stack, and begins by performing the argument-satisfaction check. If the argument-
satisfaction check fails, the slow entry point builds a PAP and returns to the return
address pointed to by Su; if it succeeds, the slow entry point loads the arguments
from the stack into registers and jumps (or falls through, in fact) to the fast entry
point.

5.1 Reducing the number of Su pushes

In conventional compilers, the frame pointer is really only needed to support de-
bugging, and some compilers provide a flag to omit it, thereby freeing up a register.
We cannot get rid of Su altogether, but when pushing a new frame it is often
unnecessary to save Su and make it point to the new frame. Consider:

case x of { (a,b) > .... }

We know for sure that x will evaluate to a pair, not to a function! There is no need
to make Su point to the case frame during evaluation of x. The only time we need
to do so is when the scrutinee cannot statically be determined to be a non-function
type. The classic example is the polymorphic seq function:

seq :: a—>b ->b
seq ab=caseaof {x->b1}

In some calls to seq, a will evaluate to a function, while in others it will not. In the
former case we must ensure that Su points to the case frame, so that rule PAP1
applies.

In principle, the same idea would allow us to omit Su from many update frames,
but in practice there are several reasons that we want to walk the chain of update
frames (see Section 7) so GHC always saves Su in every update frame.

To avoid that some case frames have a saved Su and some do not, we instead
never save Su in a case frame. Instead, in the (rare) situation of a non-data-typed
case, we push two continuations, a regular case continuation, and, on top of it, a

2 or a memory location on register-starved architectures
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4 )

Pending arguments
A A A =

Regular frame, with return address

Fig. 4. Stack layout for push/enter

seq frame containing Su. A seq frame is like an update frame with no update: it
serves only to restore Su before returning to the case frame underneath.

5.2 Accurate stack walking

The most painful aspect of the push/enter model is the problem of representing
Arg continuations, which hold pending arguments. Consider these functions:

g :: Int -> Int -> Int# -> Double# -> Int
gxX = ....

f :: Int -> Int
fx=gxx34.5

Under the push/enter model, we push the pending arguments x (a pointer), 3 (a 32-
bit unboxed value), and 4.5 (a 64-bit unboxed float) onto the stack before making
the tail call g x. The function g might compute for a very long time before returning
a function that consumes the pending arguments. During this period, the pending
arguments simply sit on the stack waiting to be consumed.

An accurate garbage collector must be able to identify every pointer in the stack.
The push/enter model leads to stack layout that looks like Figure 4. Update and
case continuations, whose representation was discussed in Section 4.5, are repre-
sented by “regular” stack frames, consisting of a return address (shown black) on
top of a block of data (shown white) whose exact layout is “kmown” to the return
address. The garbage collector can use the return address to access the info table for
the return address (Section 4.5 again), just as it does for a heap-allocated closure.
The info table describes the layout of the stack frame, including exactly where in
the frame the (live) pointers are stored, so that the garbage collector can follow
them; it also gives the size of the frame, so that the garbage collector knows where
to start looking for the next frame.

These regular stack frames are the easy (and well-understood) part. However,
between each regular stack frame are zero or more Arg continuations, or pending
arguments (shown grey). The difficulty is that there is no description of their num-
ber or layout in the stack data structure. The function that pushed them “knows”
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what they are, and the function that consumes them knows too — but an arbitrar-
ily long period may elapse between push and consumption, and during that time
the garbage collector must somehow deal with them. There are two sub-problems:

e Identifying which are pointers and which are non-pointers; as the example
above showed, there may be a mixture.

e Distinguishing the last pending argument from the next return address on
the stack, which heralds a new stack frame.

One alternative is to have a separate stack for pending arguments, which solves the
second of these sub-problems, but not the first. Or, the separate stack could be for
pending non-pointer arguments only, which solves the first sub-problem, but not
the second. However, a separate stack carries heavy costs of its own, to allocate it,
maintain a pointer to the stack top, and check for overflow. We do not consider this
alternative further.

Another alternative is to use a conservative garbage collector, but there are a
number of problems with this approach. Firstly, to plug space leaks we would then
have to use extra memory writes to stub off dead pointers, something the frame
layout maps deal with automatically; this turns out to be very important in practice.
Second, there are other reasons that GHC’s runtime system has to walk the stack
accurately: to black-hole thunks under evaluation, and to raise exceptions. Third,
stacks may have to move in order to grow; a stack can only be moved if it has no
internal pointers (we can’t find the internal pointers, because this is conservative
GCO), so instead of pushing Su on the stack we would have to push an offset (Su-Sp).

Failing these alternatives, the obvious approach is to add a tag word to each
Arg continuation. The tag word distinguishes pointer-carrying from non-pointer-
carrying Arg continuations, specifies the size of latter kind, and can be distinguished
from the return address that heralds the next regular stack frame. Easy enough, but
inefficient. In the following two sections we describe two optimisations that GHC
uses to reduce the tagging cost.

5.2.1 Omitting tags on pointers

Our first optimisation is to not to tag pointer arguments at all. This is attractive
because pointer arguments dominate (see Section 8). Furthermore it looks relatively
easy to distinguish a heap pointer from the return address that heralds the next
stack frame, whereas non-pointer arguments, which can hold any bit-pattern what-
soever, cannot, be distinguished in general. We were wrong to think it was easy,
though: the problem of distinguishing heap pointers from return addresses is much
trickier than it looks, as we now discuss.

GHC allocates some heap objects statically, compiling them directly into the
binary. So an address on the stack may belong to one of three classes:

R: pointers to return addresses
D: pointers to dynamic heap objects
S: pointers to a static objects
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When traversing the stack, we want to identify pointers in R, an apparently
simple task:

1. In a simple setup, R is a contiguous region starting at zero, so a simple
boundary test suffices. Unfortunately, we found no platform-independent way
to identify the end of region R, so the test became platform-specific.

2. The simple upper-boundary test failed in later versions of Linux, which some-
times placed D below R, although R was still contiguous, and S always
followed R. One would think that two boundary tests would suffice, but we
found no way (not even a platform-specific way) to identify the beginning of
R reliably. We finessed this problem by first distinguishing D — we know
the address ranges occupied by the dynamically-allocated heap — instead of
using a boundary test at the low end of R. That is, an address is in R if (a)
it is not in D and (b) it is a lower address than the upper boundary of R.
On a 32-bit architecture, the address map for D can be held as an efficient
bit-map, because D is allocated in aligned one-megabyte chunks, so 2'2 bits
suffices to cover the whole address space.

3. Even test (2) fails in the presence of dynamic linking, which leads to multiple,
discontiguous R regions, intermingled with D and S. However, our dynamic
loader can tell us the exact address ranges of all the R-regions except the
first, statically-linked one, so we refined the test further: an address is in R if
it is in one of the dynamically-loaded regions of R, or if it satisfies test (2)
above. Alas, maintaining and searching the address map for R is inefficient;
we have none of the size and alignment guarantees that we have for D.

All of this is tiresomely complicated, and involves tricky interactions with the plat-
form. We explored another more portable alternative: keep an address map for D,
and put a zero word before every static heap object in S. Now an address is in R if
(a) it is not in D, and (b) it is not preceded by a zero word (return addresses are
never preceded by a zero word). The problem with this is that the test involves
de-referencing the pointer, which increases memory traffic. A reviewer suggested
yet another somewhat-similar idea, that we have not tried: arrange that objects in
S are 16-byte aligned, and return addresses are never are.

The problem of distinguishing pointers from return addresses also could be solved
in an entirely different way: by saving Su in a known place every regular frame, as
well as every update frame. Then the stack-walker could rely on an Su chain linking
every regular frame, so it would always know where the next regular frame began.
However, building a chain of all frames would impose a non-trivial run-time cost
by increasing memory traffic. We have not quantified this effect in isolation, but
the results of Section 8 indicate that removing Su from update frames contributes
to a worthwhile reduction in memory traffic. Adding Su to regular frames would do
exactly the opposite.

Our conclusion is this: leaving pending-argument pointers un-tagged seems at-
tractive, but we found no way to walk the resulting stack that was simple, portable,
and efficient. Our efforts to gain efficiency led to a swamp of complexity and
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platform-specific code, and one that was all the more annoying because of the
apparent triviality of the goal.

5.2.2 Lazy tagging

Tagging non-pointer pending arguments carries only a modest run-time cost, be-
cause (in Haskell at least) it is rare to call a function that returns a function that
consumes non-pointer arguments. The push/enter version of GHC therefore tags
non-pointer Arg continuations straightforwardly, with a tag word pushed on top of
the non-pointer argument, containing the length in words of the non-pointer argu-
ment (usually 1 or 2). A tag can always be distinguished from a pointer argument,
because pointer arguments never point to very low addresses.

Even tagging non-pointers is tiresome. When calling the fast entry point of a
function, we can pass some arguments in registers, but when there are too many we
pass them on the stack. It would make sense for the stack layout of these overflow
parameters to be the same as the latter part of the stack layout expected by the
slow entry point (which takes all its arguments on the stack). The latter has tagged
slots for non-pointers, so the former had better do so too. But we do not want
to take the instructions to explicitly tag the slots when making a fast call — fast
calls to functions taking non-pointer arguments are not at all rare — so we allocate
space for the tags but do not fill the tags in. However, in a call to a known function
when too many arguments are supplied, we must generate code to tag the “extra”
arguments but not the “known” ones.

So the invariant at the fast entry point is that there is space for the tags of
the non-pointer arguments passed on the stack, but these slots are not necessarily
initialised. The fast entry point typically starts with a heap-overflow check; if it
fails, it must remember to fill in the tags, so that the top frame of the stack is
self-describing.

The exact details are unimportant here. The point is that, while tagging non-
pointers in the stack is feasible and reasonably efficient, it imposes a significant
complexity burden on both code generator and the the run-time system.

5.3 Generating C——

Some compilers generate native code directly, but a very popular alternative route
is to generate code in C, or a portable assembly language such as C-- (Peyton Jones
et al., 1999), leaving to another compiler the tasks of instruction selection, regis-
ter allocation, instruction scheduling, and so on. A significant disadvantage of the
push/enter model is that it makes this attractive route much harder, or at least
much less efficient.

The problem, again, is the pending arguments. Suppose that we want to generate
C. We plainly cannot push the pending arguments onto the C stack, because C
controls its own stack layout. There is just no way to have C stack frames separated
by chunks of pending arguments.

The only way out of this is to maintain a separate stack for pending arguments.
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In fact, GHC uses C as a code generator, and it keeps everything on the separately-
maintained stack: pending arguments, saved variables, return addresses, and so on.
Indeed, GHC does not use the C stack at all, so we only have to maintain a single
stack.

Unfortunately, we thereby give up much of the benefit of the portable assembly
language. If we do not use the C stack, we cannot use C’s parameter-passing mech-
anisms. Instead, we pass arguments either in global variables that are explicitly
allocated in registers (using a gcc directive) or on the explicit stack. We have to
perform our own liveness analysis to figure out what variables are live across a call,
and generate code to save them to to the explicit stack. In short, we only use C to
compile basic blocks, managing the entire call/return interface manually.

There are other reasons why we could not use C’s stack, however. There is no
easy way to check for stack overflow, or to move stacks around (both important
in our concurrent Haskell system). C may save live variables across a call, but
does not generate stack descriptors for the garbage collector (Section 5.2). Portable
exception handing is tricky. And so on.

C--, on the other hand, is a portable assembly language designed specifically to
act as a back end for high-level-language compilers. It provides explicit and very
general support for tail calls, garbage collection, exception handling, and concur-
rency, and so addresses many of C’s deficiencies. Yet, we have found no general or
clean way to extend C--’s design to incorporate pending arguments. So, like C, C—-
provides no way to push an arbitrary number of words on the stack that should
persist beyond the end of the current call.

The bottom line is this. The pending arguments required by the push/enter model
are incompatible with any portable assembly language known to us, except by using
that language in a way that vitiates many of its advantages. We count this as a
serious strike against the push/enter model.

6 Implementing eval/apply

Next, we turn our attention to the implementation details for eval/apply. The
eval/apply model uses call continuations, of form (e ay ...a,), which are repre-
sented by a stack frame consisting of a return address, together with the argu-
ments a; ...a,. This return address is entered when a function has evaluated to
a value (FUN or PAP), and returns. This is the moment when the complicated
rules (EXACT, CALLK, PAP2, and so on) are needed, and that involves quite a lot of
code. So we do not generate a fresh batch of code for each call site; instead, we pre-
generate a range of call-continuation return addresses, for 1, 2, 3, ... N arguments.
What if we need to push a call continuation for more than N arguments? Then
we push a succession of call continuations, each for as many arguments as possible,
given the range of pre-generated return addresses. In effect, this reverts to some-
thing more like the argument-at-a-time function application process, except that
we deal with the arguments N at a time. We can measure how often this happens,
and arrange to pre-generate enough call continuations to cover 99.9% of the cases
(Section 8). The remainder are handled by pushing multiple call continuations.
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An important complication is that we need different call continuations when some
of the arguments are unboxed. Why? Because: (a) the calling convention for the
function that the continuation will call may depend on the types of its arguments
(e.g. a floating-point argument might be passed in a floating-point register); and
(b) the call-continuation return address must (like any return address) have layout
information to guide the garbage collector. So cannot get away with just N continu-
ations, but (in principle) we need 3"V. The “3” comes from the three basic cases we
deal with: pointer, 32-bit non-pointer and 64-bit non-pointer. There might well be
more if, for example, a 32-bit float was passed in a different register than a 32-bit
integer. Hence the importance of measurements, to identify the common cases.

6.1 Generic application in more detail

To be more concrete, we will imagine that we compile Haskell into C-- (Pey-
ton Jones et al., 1999). We will introduce any unusual features of C-- as we go
along. Here is the code that the call £ 3 x, where f is an unknown function, might
generate:

jump stgApplyNP( £, 3, x )

This transfers control — the “jump” indicates a tail call — to a pre-generated piece
of run-time system code, stgApplyNP, where the “NP” suffix means “one 32-bit
non-pointer, and one pointer”. The first parameter is the address of the closure
for £. It’s just as if the original Haskell call had been (stgApplyNP f 3 x), where
stgApplyNP is a known function, so we make a fast call to it.

The run-time system provides a whole bunch of stgApply functions, for various
argument combinations. Indeed, we generate them by feeding the desired argument
combinations to a generator program.

What do we do with an unknown call for which there is no pre-generated
stgApplyX function? Answer, we just split it into two (or more) chunks. For exam-
ple, suppose we only had stgApplyX functions for a single argument. Then our call
f 3 x would compile to:

f1 = stgApplyN( £, 3 );
jump stgApplyP( f1, x );

Of course, the C-- implementation must arrange to save x across the call to
stgApplyN.

6.2 The run-time stgdpply functions

Figure 5 shows (approximately) is the code we generate for stgApplyNP. In this
code we assume that TYPE(f) is a macro that gets the type field from the info table
of heap object £, ARITY(£f) gets the arity from the info table of a FUN object, and
so on. CODE(f) gets the fast entry point of the function, which takes the function
arguments in registers (plus stack if necessary).

First, the function might be a THUNK; in that case, we evaluate it (by calling
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stghApplyNP( £, a, b ) {
/* Apply f to arguments a and b */

switch TYPE(f) {
case THUNK:
fun_code = CODE(f) ;
f = fun_code( f );
/* a,b saved across this call */
jump stgApplyNP( f, a, b )

case FUN:
switch ARITY(f) {
case 1: /* Too many args */
fun_code = CODE(f) ;
f = fun_code( f, a );
/* b saved across this call */
jump stgApplyP( £, b );

case 2: /* Exactly right! */
fun_code = CODE(f) ;
jump fun_code( f, a, b );

other: /* Too few args */
...check for enough heap
space to allocate PAP...
r = ...build PAP for (f a b)...
return( r )

case PAP:
switch PAP_ARITY(f) {
case 1: /* Too many args */
f = applyPapN( f, a ) ;
jump stghpplyP( £, b );

case 2: /* Just right */
jump applyPapNP( f, a, b )

other: /* Too few args */
...check for enough heap...
r = ...build PAP for (f a b)...
return( r )

Fig. 5. The generic apply function StgApplyNP

its entry point, passing the thunk itself as an argument), before looping around to
stgApplyNP again.

Next, consider the FUN case, which begins by switching on the arity of the func-
tion:

e case 2:if it takes exactly two arguments, we just jump to the function’s code,
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passing the arguments a and b. We also pass a pointer to f, the function
closure itself, because the free variables of the function are stored therein.
Note that if we end up taking this route, then the function arguments might
not even hit the stack: a and b can be passed in registers to stgApplyNP, and
passed again in registers when performing the final call. This is an improve-
ment over push/enter, where arguments to unknown function calls are always
stored on the stack.

e case 1:if the function takes fewer arguments than the number required by
f — in this case there is just one such branch — we must save the excess
arguments, make the call, and then apply the resulting function to the re-
maining arguments. The code for an N-ary stgApply must have a case for
each i < N. So we get a quadratic number of cases, but since it’s all generated
mechanically, and the smaller arities cover almost all cases, this is not much
of a problem in practice.

e other: otherwise the function is applied to too few arguments, so we should
build a partial application in the heap.

The third case is that £ might be a partial application. The three cases are similar to
those for a FUN, but they make use of an auxiliary family of functions applyPapX etc
which apply a saturated PAP. This apply operation is not entirely straightforward,
because PAP contains a statically-unknown number of arguments. One solution is to
copy the argument block from the PAP, followed by the argument(s) to applyPapX
to a temporary chunk of memory, and call a separate entry point for the function
that expects its arguments in a contiguous chunk of memory. The advantage of
this approach is that it requires no knowledge of the calling convention. Another
solution (currently used by GHC) is to exploit knowledge of the calling convention
to make a generic call; in GHC’s case we just copy the arguments onto the stack.

6.3 Variations on the theme

There are several opportunities for optimisation. First, we can have specialised FUN
types for functions of small arity (1, 2, 3, say); that way we could combine the
node-type and arity tests. Second, a top level function has no (non-constant) free
variables, so there is no need to pass its function closure as its first argument. We
would need another FUN node type to distinguish this case. At the time of writing,
GHC does not implement either of these optimisations.

In the FUN case of Figure 5 we used a macro CODE(f) to extract the fast entry
point of a function closure f. Since this is a very common operation, we use this
fast-entry code as the info pointer of the closure (see Figure 3), so that we can get
the fast-entry code with a single memory reference. There is a down-side to this
choice, however: functions are no longer self-evaluating. Under push/enter, we had
the convention that jumping to the code for a closure would always evaluate the
closure or, in the case of a function, apply the function to the available arguments
on the stack and return the result. Hence to evaluate a closure to head normal form
we could just enter the closure’s code with no arguments on the stack (Su==Sp).



Push/Enter vs. Eval/Apply for Higher-order Languages 23

If we use the fast-entry code of a function as its closure’s info pointer, we cannot
evaluate an arbitrary closure to head normal form simply by entering it. Instead,
we must first check the type of the closure: if it is a function we can return the
result immediately, otherwise we enter the closure. Fortunately evaluating an ar-
bitrary closure is rare; most of the time the code generator knows the type of the
closure being entered, and can generate the right kind of eval sequence. The classic
function that does require the polymorphic eval code is seq, which evaluates its
first argument without knowing its type.

An alternative approach would be to give every function closure an info pointer
that returns immediately, and have a separate entry point in a function’s info table
(accessed by CODE(£)) for calling the function. This would make polymorphic eval
code simpler, but would would result in larger info tables and an extra indirection
when calling an unknown function.

7 A qualitative comparison

Having described the two implementations, we now summarise the main differences.
In favour of eval/apply:

e When calling an unknown function with the right number of arguments, the
arguments can be passed in registers rather than on the stack. For a register-
rich architecture, this may be the strongest single reason for using eval/apply;
the push/enter approach pretty much forces arguments to unknown functions
to be passed on the stack.

e Much easier to map to a portable assembly language, such as C-- or C.

e No need to distinguish return addresses from heap pointers. This is a big win
(Section 5.2.1).

¢ No tagging for non-pointers; this reduces complexity and makes stack frames
and PAPs a little smaller.

e No need for the Su pointer, perhaps saving a register; and update frames
become one word smaller, because there is no need to save Su.

e Because the arity-matching burden is on the caller, not the callee, run-time
system support functions, callable from Haskell, become more convenient to
write.

In favour of push/enter:

e Appears to be a natural fit with currying.

e Eliminates some PAP allocations compared to eval/apply.

e The payload of a PAP object can be self-describing because the arguments are
tagged. In contrast, an eval/apply PAP object relies on its FUN to describe the
layout of the payload; this results in some extra complication in the garbage
collector, and an extra global invariant: a PAP must contain a FUN, it cannot
contain another PAP3.

3 This restriction might not apply in general, but in GHC’s case it is forced by an invariant of the
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Plain differences:

e Push/enter requires a slow entry point for each function, incorporating the
argument-satisfaction check. Eval/apply does not need this, but (in some ren-
ditions) may require an entry point in which the arguments are in a contiguous
memory block.

e The Su pointer saved in each update frame makes it easy to walk the chain of
update frames. That is useful for two reasons. First, at garbage collection time
we want to black-hole any thunks that are under evaluation (Jones, 1992). Sec-
ond, a useful optimisation is to collapse sequences of adjacent update frames
into a single frame, by choosing one of the objects to be updated and making
all the others be indirections to it. Under eval/apply, however, one can still
find the update frames by a single stack walk; but it may take a little longer
because the stack-walk must examine other frames on the stack in order to
hop over them. Notice, though, that there is nothing to stop us adding an Su
register, pointing to the topmost update frame, to the eval/apply model, if
that turned out to be faster for the reasons just described. We have not tried
this.

From this list we conclude two things. First, it is essentially impossible to come to
a rational conclusion about performance based on these differences. The only way
is to build both both models and measure the difference. Second, the eval/apply
model seems to have decisive advantages in terms of complexity. Yes, the stgApplyX
generator is a new component, but it is well isolated, and not too large (it amounts
to some 580 lines of Haskell including comments). The big wins are that complex-
ity elsewhere is reduced, and it is easier to map the code to a portable assembly
language.

The bottom line is this: if eval/apply is no more expensive than push/enter, it is
definitely to be preferred.

8 Measurements

Our measurements are made on the Glasgow Haskell Compiler version 5.04 (ap-
proximately; it does not correspond exactly to any released version). We made
measurements across the entire nofib benchmark suite of 88 programs (Partain,
1992), and our tables will give minimum, maximum and mean figures across the
whole suite. However, for reasons of presentation we couldn’t include detailed re-
sults for all 88 programs in the tables, so we have left out some of the programs
with less interesting results (but the aggregate results were still calculated using
the whole suite). Outlying results, many of which are discussed in the text, are
highlighted in a grey box.

The nofib benchmark suite contains programs ranging from micro-benchmarks

compacting GC algorithm used, which requires that the layout of any object be determined by
its info table and other objects reachable by at most one pointer indirection. In any case, having
to traverse a chain of objects to determine the layout of a PAP adds another linear component
to the worst-case performance in the GC.
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(tak, rfib) to larger programs solving “real” problems: for example, cacheprof
is a program for automatically translating assembly code to insert instructions
for dynamic cache profiling, compress is an implementation of LZW compression,
prolog is a Prolog interpreter, and hidden is a program for hidden-line removal in
3D rendering. We make no apology for including the micro-benchmarks: in practice
even the larger programs often have small inner loops, and the micro-benchmarks
are useful for illustrating the boundary cases.

Where appropriate, we will attempt to explain any unusual or extreme results.
We investigated individual programs using the following tools:

e GHC has a lightweight profiling system called “ticky-ticky” profiling, which
counts the occurrence of certain events during a program run. The events
include global counts such as the number of allocations of various kinds and
the number of updates, but also per-function counts of the number of calls
and allocations within each function. The latter are particularly useful for
identifying inner loops for further investigation.

e Cachegrind (part of Valgrind (Seward, n.d.)), the tool we use for counting
instructions and memory references, can also give these counts at the gran-
ularity of a labelled code block. We found it particularly helpful to compare
these results between the push/enter and eval/apply versions of a program,
to quickly identify sections of code that were performing a different number
of operations — most blocks remained the same or close between the two
models. Of course instruction counts and memory references are only a rough
indicator of real performance, though.

8.1 The anatomy of calls

First of all, we present data on the dynamic frequency of the different categories of
function call. These figures are independent of evaluation model; they are simply
facts about programs in our benchmark suite, as compiled by GHC.

Figure 6 shows the relative dynamic frequency of:

e Calls to an unknown (lambda-bound or case-bound) function which turned
out to be unevaluated (as a percentage of the total calls),

e Calls to unknown functions with (a) too few arguments, (b) exactly the right
number of arguments, and (¢) too many arguments (each as a percentage of
the total calls),

e Calls to a known (let-bound) function with (a) too few arguments, (b) exactly
the right number of arguments, and (¢) too many arguments (again, each as
a percentage of the total calls).

The last six columns of the table together cover all calls, and add up to 100%.
Note that “known” simply means that a let(rec) binding for the function is stat-
ically visible at the call site; the function may be bound at top level, or may be
nested. GHC propagates arity information across module boundaries, which greatly
increases the number of known calls. Also notice that every over-saturated applica-
tion of a known or unknown function gives rise to a subsequent call to the unknown
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Uneval Unknown (%) Known (%)
Program Lines Calls (%) < = > < = >
anna 9561 4047084 0.8 0.0 25.5 0.0 0.6 73.8 0.0
atom 188 10237920 0.0 0.0 5.2 0.0 0.0 94.8 0.0
boyer2 723 295984 0.0 0.0 0.0 0.0 0.0 100.0 0.0
boyer 1014 1387158 0.5 0.0 10.5 0.0 0.5 88.9 0.0
bspt 2141 273402 0.0 0.0 1.9 0.0 0.0 98.1 0.0
cacheprof 2151 19597901 0.3 0.0 25.2 0.0 0.2 745 0.0
cichelli 244 5790007 0.0 0.0 19.3 0.0 0.0 80.7 0.0
circsim 668 30421443 0.0 0.0 14.5 0.0 0.0 85.5 0.0
clausify 179 2186312 0.0 0.0 1.7 0.0 0.0 98.3 0.0
comp_lab_zift 884 8581682 0.0 0.0 20.9 0.0 0.0 79.1 0.0
compress2 199 1721537 0.0 0.0 26 0.0 0.0 974 0.0
compress 736 7816380 0.0 0.0 1.6 0.0 0.0 984 0.0
cse 464 24878 1.4 04 74 0.0 0.2 91.7 0.3
exp3_8 93 8079893 0.0 0.0 0.0 0.0 0.0 100.0 0.0
expert 525 10755 0.3 0.2 19.6 0.0 0.1 80.1 0.1
fem 1286 1440406 0.0 0.0 54 0.0 0.0 94.6 0.0
fibheaps 296 1548796 5.1 58 83 0.0 0.0 85.3 0.6
fluid 2401 392664 2.4 0.0 48.3 0.0 0.1 504 1.2
fulsom 1397 4333456 0.4 0.0 25.0 0.0 0.2 74.8 0.0
gamteb 701 2239319 0.0 0.0 7.1 0.0 0.1 91.2 1.6
genfft 502 1587626 0.0 0.0 7.2 0.0 0.0 92.8 0.0
gg 812 397004 0.0 0.0 23.5 0.0 0.1 764 0.1
grep 356 102 4.9 49 275 0.0 3.9 62.7 1.0
hidden 521 36030177 0.1 0.0 13.8 0.0 0.0 86.1 0.1
hpg 2067 2470202 5.3 3.0 21.1 1.1 2.0 727 0.1
infer 594 1823681 0.1 0.0 18.8 0.0 0.1 81.1 0.0
integer 68 125287103 0.0 0.0 49.3 0.0 0.0 50.7 0.0
knights 887 233593 0.0 0.1 40.1 0.0 0.0 59.8 0.0
lcss 60 4155607 0.0 0.0 49.0 0.0 0.0 51.0 0.0
life 53 8395883 0.0 0.0 82 0.0 0.0 91.8 0.0
lift 2033 21173 18.7 0.5 31.5 0.3 3.6 639 0.1
listcopy 527 6372584 0.0 0.0 1.8 0.0 0.0 98.2 0.0
maillist 175 629501 9.5 8.3 35.3 0.0 1.9 53.9 0.5
mandel 498 8396707 0.3 0.0 629 0.0 0.0 37.1 0.0
mkhprog 803 59097 0.4 0.3 29 0.0 0.0 96.8 0.0
nucleic2 3391 870440 0.0 0.0 10.1 0.0 0.0 89.9 0.0
para 1781 30122407 0.0 0.0 45.0 0.0 0.0 55.0 0.0
paraffins 91 1254290 0.0 0.0 49.5 0.0 0.0 50.5 0.0
parser 3139 865802 0.6 0.0 374 0.2 0.0 62.4 0.0
parstof 1280 184871 0.2 0.0 52.9 0.0 0.0 47.1 0.0
pic 527 168978 1.3 0.0 14.8 0.0 0.0 85.0 0.1
pretty 265 1562 3.6 3.6 9.2 0.0 0.1 87.1 0.1
prolog 641 64723 2.1 0.1 249 0.1 2.0 73.0 0.0
puzzle 170 7936980 0.0 0.0 31.8 0.0 0.0 68.2 0.0
reptile 1522 359506 0.2 0.1 4.6 0.0 0.0 95.2 0.1
rsa 74 369801 0.0 0.0 0.0 0.0 0.0 100.0 0.0
sce 100 629 1.1 1.0 49.1 0.0 0.2 49.8 0.0
sched 555 856125 0.0 0.0 0.0 0.0 0.0 100.0 0.0
sCs 585 28431366 0.5 0.0 17.3 0.0 0.0 82.5 0.2
simple 1129 14398577 0.0 0.0 49.2 0.0 0.0 50.8 0.0
sorting 162 40322 0.0 0.0 22.3 0.0 0.0 77.7 0.0
symalg 1146 80079 0.1 0.0 1.2 0.0 0.0 98.7 0.1
tak 16 2494307 0.0 0.0 0.0 0.0 0.0 100.0 0.0
treejoin 121 3604474 0.0 0.0 10.5 0.0 0.0 89.5 0.0
typecheck 658 18043268 0.5 0.0 27.3 0.0 0.5 72.2 0.0
veritas 11124 21133 1.9 04 6.9 0.0 0.1 924 0.2
wang 357 1325827 0.0 0.0 4.8 0.0 0.0 95.2 0.0
x2nl 35 1289082 0.0 0.0 78.8 0.0 0.0 21.2 0.0
Min 0.0 0.0 0.0 0.0 0.0 21.2 0.0
Max 18.7 8.3 788 1.1 3.9 100.0 1.6
Average 1.0 0.4 20.3 0.0 0.2 79.0 0.1

Fig. 6. Anatomy of calls
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function returned as its result; these unknown calls are included in one of the “un-
known calls” columns. For example, each execution of the call id £ x would count
as one call to a known function (id) with too many arguments, and one call to the
unknown function returned by id.

These numbers lead to three immediate conclusions. First, known calls are com-
mon, and often dominate, but unknown calls can be the majority in some programs
(e.g. x2n1, mandel). Unknown calls must be handled efficiently. Second, known calls
are almost always saturated; the efficiency of handling under- or over-saturated
known calls is not important, and they can be treated like unknown calls (c.f. Sec-
tion 4.3). Third, even unknown calls are almost always to an evaluated function
with the correct number of arguments, so it is worth optimising this case. For ex-
ample, we can pass the arguments to the generic apply function in registers, in the
hope that it can just pass them directly to the function (our current implementa-
tion does not currently perform this optimisation, however, as we explain in more
detail in Section 8.3). Conversely, if under- or over-saturated unknown calls are
expensive, this is unlikely to affect the final runtime significantly; and in fact it is
in these cases that eval/apply can be more expensive than push/enter.

Another thing to note from these results is the wide variety of behaviours; even
amongst the larger programs there is significant variation in the proportion of un-
known calls made: bspt with 2141 lines makes only 1.9% unknown calls, but fluid
with 2401 lines makes 48.3% unknown calls. One might perhaps guess that larger
programs would exhibit “average” behaviour, but this is not reliably the case; exe-
cution is often dominated by a handful of inner loops.

There are few remarkable results in Table 6. An extreme out-lier is x2n1, which
has the highest proportion of unknown function calls (78.8%). The x2n1 program is
micro-benchmark characterised by lots of floating point operations. The inner loop
contains this function:

f :: Int -> Complex Double
f n = mkPolar 1 ((2#pi)/fromIntegral n) ~ n

The function mkPolar ends up fully inlined and reduced to a constructor applica-
tion and a couple of primitive floating point operations, similarly the division and
fromIntegral are reduced to primitives.

The exponentiation operator, (*), unfortunately remains overloaded. It is defined
in the Prelude, and makes calls to overloaded functions on each iteration; and by
definition each call to an overloaded function will be unknown at the call site.
Overloading is a plentiful source of unknown function calls. Other optimisations
(such as specialisation) could improve the quality of the code here, but that is an
orthogonal issue as far as this paper is concerned.

8.2 Argument patterns

Figure 7 classifies the unknown calls of Figure 6, by their argument patterns. This
data is helpful in deciding how many different versions of stgApply to generate.
Only the unknown calls are included: we don’t care about known functions because
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Argument pattern (% of all unknown calls)

Program v P PV PP PPV ppp PPPV PpPP PpPPP OTHER
anna, 0.0 296 0.0 69.3 0.0 1.1 0.0 0.0 0.0 0.0
atom 0.0 4.8 0.0 0.6 0.0 946 0.0 0.0 0.0 0.0
boyer2 58.3 41.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
boyer 0.0 92.8 0.0 72 0.0 0.0 0.0 0.0 0.0 0.0
bspt 0.5 70.2 0.0 6.2 0.0 11.8 0.0 11.3 0.0 0.0
cacheprof 0.0 91.6 0.0 81 0.0 0.3 0.0 0.0 0.0 0.0
cichelli 0.0 104 00 896 0.0 0.0 0.0 0.0 0.0 0.0
circsim 0.0 70.2 0.0 86 0.0 21.2 0.0 0.0 0.0 0.0
clausify 0.0 04 00 996 0.0 00 0.0 0.0 0.0 0.0
comp_lab_zift 0.0 3.4 0.0 966 00 0.0 00 0.0 0.0 0.0
compress2 1.1 98.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
compress 0.4 739 00 129 0.0 127 0.0 0.0 0.0 0.0
cse 0.4 59.2 0.0 9.9 0.0 30.6 0.0 0.0 0.0 0.0
exp3_8 56 59.3 0.0 345 0.6 0.0 0.0 0.0 0.0 0.0
expert 25 626 0.1 324 04 2.0 0.0 0.0 0.0 0.0
fem 0.0 91.3 0.0 81 0.0 06 0.0 0.0 0.0 0.0
fibheaps 0.0 43.2 13.7 43.1 0.0 0.0 0.0 0.0 0.0 0.0
fluid 0.0 61.9 00 342 0.0 39 0.0 0.0 0.0 0.0
fulsom 0.0 175 0.0 825 0.0 00 0.0 0.0 0.0 0.0
gamteb 0.1 96.4 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0
genfTt 00 1.6 00 984 0.0 00 0.0 0.0 0.0 0.0
gg 0.0 53.7 00 463 0.0 0.0 0.0 0.0 0.0 0.0
grep 58.6 34.5 3.4 0.0 34 0.0 0.0 0.0 0.0 0.0
hidden 0.2 487 0.0 14.3 0.0 36.8 0.0 0.0 0.0 0.0
hpg 24.1 552 0.0 104 2.7 1.4 62 0.0 0.0 0.0
infer 0.0 51.8 0.0 481 0.0 0.1 0.0 0.0 0.0 0.0
integer 0.0 50.0 0.0 500 0.0 00 0.0 0.0 0.0 0.0
knights 0.0 41 00 959 0.0 00 0.0 0.0 0.0 0.0
Icss 0.0 1.1 0.0 0.0 0.0 989 0.0 0.0 0.0 0.0
life 0.0 33 0.0 0.2 0.0 965 0.0 0.0 0.0 0.0
lift 0.1 57.9 0.0 404 0.0 1.6 0.0 0.0 0.0 0.0
listcopy 0.2 285 00 713 0.0 00 0.0 0.0 0.0 0.0
maillist 31.8 351 1.1 1.1 155 144 1.1 0.0 0.0 0.0
mandel 0.0 134 00 8.6 0.0 0.0 0.0 0.0 0.0 0.0
mkhprog 12.2 487 2.1 315 37 1.9 00 0.0 0.0 0.0
nucleic2 0.0 56.0 0.0 44.0 0.0 0.0 0.0 0.0 0.0 0.0
para 0.0 225 00 774 0.0 0.0 0.0 0.0 0.0 0.0
paraffins 0.0 99.9 0.0 0.0 0.0 00 0.0 0.0 0.0 0.1
parser 0.0 11.5 0.0 885 0.0 0.0 0.0 0.0 0.0 0.0
parstof 0.0 943 0.0 57 0.0 0.0 0.0 0.0 0.0 0.0
pic 87 758 0.0 154 0.0 0.0 0.1 0.0 0.0 0.0
pretty 36 26 00 939 0.0 00 0.0 0.0 0.0 0.0
prolog 0.4 782 00 21.3 0.0 00 0.0 0.0 0.0 0.0
puzzle 0.0 100.0 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0
reptile 0.2 721 0.0 269 0.0 09 0.0 0.0 0.0 0.0
rsa 29.1 69.6 1.3 0.0 0.0 00 0.0 0.0 0.0 0.0
sce 29 128 0.0 84.3 0.0 00 0.0 0.0 0.0 0.0
sched 58.3 41.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
scs 14 196 0.0 79.0 0.0 0.0 00 0.0 0.0 0.0
simple 0.0 201 0.0 799 0.0 0.0 0.0 0.0 0.0 0.0
sorting 0.3 665 00 333 0.0 0.0 0.0 0.0 0.0 0.0
symalg 83 55.0 00 368 0.0 00 0.0 0.0 0.0 0.0
tak 1.9 61.8 0.0 357 06 0.0 00 0.0 0.0 0.0
treejoin 0.2 99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
typecheck 0.0 895 00 105 0.0 00 0.0 0.0 0.0 0.0
veritas 1.2 473 0.0 502 0.0 1.1 0.0 0.0 0.3 0.0
wang 0.0 0.0 0.0 1000 0.0 0.0 0.0 0.0 0.0 0.0
x2n1 0.0 176 00 824 0.0 00 0.0 0.0 0.0 0.0
Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 58.6 100.0 13.7 100.0 15.5 98.9 6.2 11.3 0.3 0.1
Average 52 544 03 344 03 52 0.1 0.1 0.0 0.0

Fig. 7. Argument patterns
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we generate inline code for their calls. The column headings use one character per
argument to indicate the pattern, with the key: p = pointer, v = void. pp, for
example, means a call with two pointer arguments.

A “void” argument is an argument of size zero; such arguments are used for the
“state token” used in the implementation of the I0 and ST monads. The state token
is always passed as the last argument, which is why we need ppv but not pvp and
vpp, for example.

The table has columns for the nine most popular argument patterns, and a single
column (OTHER) which covers all the other patterns. The general conclusion is clear:
9 argument patterns is enough to cope with 99.99% of all situations. Unknown calls
involving unboxed arguments (integers, floats etc.) turn out to be very rare: they
all end up in the OTHER column, which at most accounted for 0.1% of the total
unknown calls.

Some programs have unusual results:

e fibheaps has an unusually large number of pv calls. A simple inspection of
the program shows that it contains a lot of code in the ST monad, which
accounts for the high use of the pv pattern.

e maillist does a lot of file manipulation work in the I0 monad. This accounts
for its use of the ppv pattern.

e boyer2, grep and sched appeared to perform a high proportion of v calls,
but in fact these programs performed a very low number of unknown calls in
total (26 for grep, and 12 for boyer2 and sched). It just so happened that
the small amount of I0 monad code at the top level of the program accounted
for many of those unknown calls.

Several of the programs appear to have a preference for one or two of the argument
patterns. For example, wang performs almost exclusively pp calls. Investigating the
program reveals why: these calls all come from a local copy of the foldr function
(this benchmark is automatically generated code):

f_foldr::(t1 —> t2 -> t2) > t2 -> [t1] —> t2;
f_foldr a_op a_r [l=a_r;
f_foldr a_op a_r (a_a:a_x)=a_op a_a (f_foldr a_op a_r a_x);

Calls to the unknown function a_op in the body of £f_foldr are pp calls, and by
looking back at Figure 6 we can see that they were all in fact calls to functions of
two arguments.

The other programs which have a high proportion of one particular argument
pattern are similar: there is often a single unknown call in the inner loop of the
program.

8.3 The bottom line

What really matters in the end is time and space. Figure 8 shows the percentage
change we measured in moving from push/enter to eval/apply. The runtime figures
are wall-clock times, averaged over 5 runs, discounting any programs that ran for
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Eval/apply change (A%)

Code Heap Memory
Program size Alloc Instrs reads writes Runtime
anna -5.1 +1.7 +4+2.0 426 -3.3 -0.8
atom -0.8 +40.0 -7.4 -5.2  -12.0 -5.5
boyer +4.1 +0.5 -2.5 -1.3  -10.5 -
boyer2 +4.0 +0.0 -2.7 -0.1 -3.2 -
bspt -0.8 -0.0 -6.1 -3.6 -8.3 -
cacheprof -4.0 +0.4 +10.8 +10.3 +40.3 +4.1
cichelli +2.9 -0.0 -1.8  +0.4 -6.1 -2.4
circsim +0.3 -0.0 +4+0.3 +1.1 -9.5 -4.7
clausify +6.1  -0.0 -1.5 +4+2.0 +0.8 -
comp_lab_zift +3.3 -0.0 -1.3 +0.2 -9.6 -7.5
compress +2.2  -0.0 +1.8 +3.2 +3.7 +1.8
compress2 +3.0 -0.0 -0.7 -0.4 -0.3 -1.9
cse +5.0 -0.0 -5.9 -4.3 -8.8 -
exp3-8 +1.5 +0.0 2.5 +1.6 -9.8 -23.2
expert +1.3 2.4 +0.6 +1.7 -6.3 -
fem -0.9 +0.0 -5.6 -3.3 -7.8 -
fibheaps +1.1 +0.9 +3.4 +4.5 -3.1 -
fluid -2.8 +40.1 +58 +5.9 -4.9 -
fulsom -2.2  40.1 -2.5 -2.4 -8.0 -3.7
gamteb -0.8 +40.1 -0.5  +0.8 -0.8 +2.2
genfft +5.8 -0.0 -8.1 -6.3 -11.0 -
gg 2.6 40.1  -0.8 +0.5  -5.1 -
grep +1.8 +0.1 -0.0  +0.0 -0.5 -
hidden -24 400 +3.3 +4.0 -6.1 +2.1
hpg -28 402 440 +54 -4.6 -5.6
infer -1.6 +0.2 425 424 -1.0 +0.0
integer +2.0 +0.0 +3.8 +3.5 =-13.7 -0.8
knights +2.7 -0.2 +7.5 +6.1 -0.5 -
less +14 -0.0 +1.8 +04 -6.9 -0.4
life +6.5 +0.0 -5.0 -3.5 -9.3 -5.4
lift +2.5  -0.1 -2.2 -1.2 -8.9 -
listcopy +5.6 +0.0 -10.2 -8.1 -11.3 -2.4
maillist +3.4 +0.0 +3.8 +34 -3.6 -
mandel -0.6 4+0.0 +4.4 +43.4 -5.2 +3.3
mkhprog +2.5 +0.0 -6.8 -4.4 -8.4 -
nucleic2 +0.6 -0.0 -4.3 -3.3 -7.1 -8.6
para +2.2 -0.0 +6.2 456 -8.8 +6.9
paraffins +0.7 -0.0 +1.0 +0.8 -1.9 +1.1
parser -1.1 -0.0 +41.8 +42.6 -4.3 -
parstof -0.3 +40.0 +11.6 +9.4 -3.6 -
pic -0.8 -0.0 +40.2 +40.7 -1.1 -
pretty +0.8 -0.0 -1.3 -0.8 -5.9 -
prolog +1.5 +2.8 +5.2 454 -1.2 -
puzzle +5.3 -0.0 +1.2 +1.1 -5.9 -12.1
reptile -1.9  -0.0 -7.7 -4.9 -8.8 -
rsa +0.5 -0.0 +1.3 +1.6 +1.5 +0.0
sce +7.7 +40.1 +1.2  +1.2 -1.0 -
sched +6.2 -0.0 -1.2 +0.2 -7.6 -
scs -24 400 +40.7 414 -2.4 -3.6
simple -1.8 40.0 +43.5 +2.5 -4.7 +1.5
sorting +3.9 -0.0 +1.8 426 -5.3 -
symalg -1.9 40.0  40.0 40.1  +0.2 3.1
tak +1.9 +0.4 +9.1 +20.8 +21.4 -
treejoin +3.6 +0.0 -2.7 -1.6 -5.7 -0.9
typecheck +4.6 +1.2 +6.8 +6.7 -4.8 +3.1
veritas -5.2  -0.7 -4.6 -3.5 -8.0 -
wang +0.8 -0.0 -1.9 -1.6 -4.7 -3.0
x2n1l -0.4 -0.0 +45.5 +3.9 -5.9 -20.5
Min 5.2 -24  -10.2 -8.1  -13.7 -23.2
Max +7.7 +2.8 +11.6 +20.8 +21.4 +6.9
Geometric Mean +1.8 +0.1 +0.0 +1.1 -4.9 -2.8

Fig. 8. Space and time
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less than 0.5 seconds on our 1GHz Pentium III (around half of the suite). The
machine was otherwise unloaded at the time of the test.

Somewhat to our surprise, there is only a small difference between the two models,
with eval/apply edging out push/enter by around 2-3% of runtime on average. We
discuss the runtime differences in more detail in the rest of this section.

The table also gives differences in code size, heap allocations, instructions exe-
cuted and memory read/write references. Code size differences are due to two main
factors:

e Increased size of the runtime due to the addition of the stgApply functions.
e Reduction of the size of individual compiled modules, due to the removal of
the per-function slow entry code.

In small programs, the increased size of the runtime outweighs the per-module
reduction, and we see a small overall increase in code size. On larger programs (e.g.
anna, veritas) the per-module reduction starts to win out, and we see a reduction
in code size.

Heap allocation is largely unaffected by the change from push/enter to eval/apply,
as can be seen in the “Alloc” column of Figure 8. The small change in alloca-
tion is the difference between two factors pulling in opposite directions. Firstly,
eval/apply will allocate a PAP when returning a function applied to too few ar-
guments, whereas push/enter may get away without heap allocation because the
function can find its missing arguments on the stack. Hence eval /apply will allocate
more PAPs. Secondly, however, the PAPs in eval/apply may be slightly smaller than
those for push/enter, because there is no need to tag their non-pointer components
(Section 4.4).

Instructions and memory references were measured using the Cachegrind tool,
which is a part of the Valgrind dynamic program analysis tool-set. Cachegrind
has the ability to produce per-function instruction and memory reference counts,
which we used to try to narrow down and explain differences in real-time perfor-
mance. When examining programs in this way, we found that differences between
the push/enter and eval/apply versions of programs fell into the following cate-
gories:

e Updates. Under eval/apply, update frames are one word smaller than under
push/enter (2 words instead of 3), because there is no Su register to save in
the frame. Furthermore, in the x86 implementation on which these results
were taken, the Su “register” was actually stored in a memory location due
to the lack of real machine registers. Both of these factors lead to reduced
memory traffic when Su is eliminated (Figure 8).

e Walking the chain of update frames. The benefit due to the reduction in
the size of update frames is balanced to some extent by the extra work that
has to be done when traversing the chain of update frames on the stack, as
described in Section 7.

e Unknown call overhead. The difference in unknown call behaviour shows
up as a high instruction count in the stgApply routines for eval/apply, com-
pared to instructions spread out amongst the slow entry points of the functions
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being called in push/enter. An unknown call in eval/apply will be slightly
more expensive because the generic apply code needs to extract the arity of
the function from the function’s info table, whereas in push/enter a function
statically knows its own arity. Comparing the totals gives instruction counts
that are roughly the same, with eval /apply perhaps taking a few more instruc-
tions in unknown call overhead. However, we expect there to be a performance
benefit due to the extra code locality in the eval/apply version.

e Calling conventions. In general, when calling a function, our code generator
dedicates one register to pass the address of the function closure. This is
unnecessary in the case of a top-level function, which has no free variables,
so in principle it would be possible to re-use the function-pointer register as
an argument register for calls to top-level functions.

For push/enter we implemented this optimisation, so that top-level functions
have a different calling convention than non-top-level ones. However, under
eval/apply we found that a consistent calling convention for both top-level
and non-top-level functions avoided a lot of complexity in the stgApply func-
tions. Moreover, if the calling convention for all functions is the same, we can
adopt that same calling convention for the stgApply functions, and hence op-
timise the common case where the function is evaluated and has the correct
arity, and stgApply is just transferring control directly to the function. In
practical terms, this means we can pass arguments in registers to stgApply,
and stgApply can simply jump to the entry code for the function.

On the x86 architecture, in fact there are no registers available for parameter
passing, although we do have a machine register for passing the address of the
function closure. This means that with eval/apply, no arguments to top-level
functions are passed in registers, compared to one argument with push/enter.
We do not have measurements that isolate the effect of this difference taken
by itself, but we believe it to have little real effect on run-times. In some of
the programs we investigated we saw some small savings in push/enter due
to the argument register, and we also saw cases where it made the code worse
(because the register had to be immediately saved on the stack on entry to
the function, perhaps requiring an extra stack check).

e Entry convention. In Section 6.3 we discussed the fact that we chose to
make the info pointer of a function closure into its fast-entry code, at the
cost of extra tests in polymorphic eval code. This decision affects the para
benchmark, as we discuss below.

We can now offer some explanation for some of the programs with outlying results
in Figure &, in terms of the factors outlined above:

e exp3_8 was 23.2% faster. This is largely due to the fact that exp3_8 spends
most of its time doing updates. In this case, the extra memory reads when
traversing the update frame chain balance out the memory reads saved by the
smaller size of update frames, but the difference in writes is much greater.

e x2n1 was 20.5% faster. These savings again appear to be mostly due to im-
provements in the update code: the heaviest-hit basic block in x2n1 is the
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update routine. There are lots of small changes in instruction counts for basic
blocks across this program however, so this is probably not the whole story.
This program performs a lot of unknown calls, and so we see a lot of activity
in the stgApply routines in the eval/apply version, compared with activity
spread across the slow entry points for various functions in the push/enter
case, as we would expect. We also noticed some differences due to calling
conventions.

e puzzle was 12.1% faster. Again, updates dominate the runtime, and
eval/apply consequently gains a bonus.

e para was 6.9% slower with eval/apply. There are some savings in the update
code as usual, but there are some losses in the unknown call code. There are
some further losses due to having to check closure types for an eval in the
runtime (see entry conventions above). Interestingly, while investigating this
program we discovered one place in the eval/apply version of the runtime
which was checking the closure type for an eval unnecessarily; fixing that
reduced the difference in instructions for this test from +6.2% to +3.2%, but
did not have any effect on runtime®.

On a register-rich architecture, a major benefit of the eval/apply approach is that
it becomes possible to use registers for argument-passing in a call to an unknown
functions, by using registers to pass arguments to the stgApply family of functions.
Doing this is pretty much impossible under push/enter.

We are unable to quantify this effect, however, because our current implemen-
tation does not take advantage of this optimisation. The trouble is that on x86,
our primary implementation architecture, there are very few registers in the first
place, and this shortage is exacerbated by our use of C as a target language. The
few registers that we can use exclusively (by using C compiler extensions) already
have important roles in our execution model — the stack pointer and heap pointer,
for example — so there are no registers left for argument passing. This restric-
tion would not apply to a C-- implementation, because C-- has complete control
over the calling convention, and hence is free to use general-purpose registers for
argument passing.

In short, on a register-rich architecture we believe that eval/apply would out-
perform push/enter by a significantly greater margin than on x86. It would be
interesting further work to quantify this margin.

9 Related work

Two of the most popular and influential abstract machines for lazy languages, the
G-machine (Johnsson, 1984) and the Three Instruction Machine (TIM) (Fairbairn
& Wray, 1987), both use push/enter. As a result, many compilers for lazy languages,
including GHC and hbc, use push/enter.

However Faxén’s OCP compiler for the lazy language Plain uses eval/apply

4 We did not re-run the entire testsuite with this change.
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(Faxén, 1997). Rather than have generic stgApplyXX application procedures, OCP
creates specialised function entry points. For each function f of arity n, and for each
i < n,j <=n—1i, OCP makes an entry point f_ij that expects to find i arguments
in a PAP object, and j extra arguments passed in registers. That looks like an aw-
ful lot of entry points, but a global flow analysis allows OCP to prune many entry
points that cannot be used. The possibility of such specialisation is an additional
benefit of eval /apply (Boquist (Boquist, 1999) describes an extreme version). Eager
Haskell, an unusual implementation of Haskell based on eager evaluation, also uses
eval/apply (Maessen, 2002).

Caml, a call-by-value language, uses push/enter for the interpreter (Leroy, 1990),
but eval/apply for the compiler, largely for the reasons outlined in Section 7.

10 Conclusions

Our main conclusion is easy to state: for a high-performance, compiled implementa-
tion of a higher order language, use eval/apply! There is not much to choose between
the two models on performance grounds, and eval/apply makes it noticeably easier
to manage the complexity of a compiler and runtime system for a higher order
language, as Section 7 explained. We are confident of this result for a non-strict
language, and we speculate that the benefit is likely to be more pronounced for a
strict one. Our measurements were based on a stack-based calling convention, but
we expect that using registers for argument passing would result in greater gains
for eval/apply, because the majority of unknown calls are to evaluated functions
with the correct arity.

Many of the complexities of push/enter are caused by efficiency hacks. For an
interpreter, where performance is not such an issue, these hacks are not important,
and push/enter may well be a more elegant solution.

Acknowledgements. Many thanks to Robert Ennals, Karl-Filip Faxén, Xavier
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