
Under
onsideration for publi
ation in J. Fun
tional Programming 1

Making a Fast Curry: Push/Enter vs.

Eval/Apply for Higher-order Languages�

Simon Marlow and Simon Peyton Jones

Mi
rosoft Resear
h, Cambridge

Abstra
t

Higher-order languages that en
ourage
urrying are typi
ally implemented using one of

two basi
 evaluation models: push/enter or eval/apply. Implementors use their intuition

and qualitative judgements to
hoose one model or the other.

Our goal in this paper is to provide, for the �rst time, a more substantial basis for this

hoi
e, based on our qualitative and quantitative experien
e of implementing both models

in a state-of-the-art
ompiler for Haskell.

Our
on
lusion is simple, and
ontradi
ts our initial intuition:
ompiled implementations

should use eval/apply.

1 Introdu
tion

There are two basi
 ways to implement
urried fun
tion appli
ation in a higher-

order language, when the fun
tion is unknown: the push/enter model or the

eval/apply model (Peyton Jones, 1992). To illustrate the di�eren
e,
onsider the

higher-order fun
tion zipWith, whi
h zips together two lists, using a fun
tion k to

ombine
orresponding list elements:

zipWith :: (a->b->
) -> [a℄ -> [b℄ -> [
℄

zipWith k [℄ [℄ = [℄

zipWith k (x:xs) (y:ys) = k x y : zipWith k xs ys

Here k is an unknown fun
tion, passed as an argument; global
ow analysis aside, the

ompiler does not know what fun
tion k is bound to. What
ode should the
ompiler

generate to exe
ute the
all k x y in the body of zipWith? It
annot blithely pass

two arguments to k, be
ause k might in reality take just one argument and
ompute

for a while before returning a fun
tion that
onsumes the next argument; or k might

take three arguments, so that the result of the zipWith is a list of fun
tions.

In the push/enter model, the
all pro
eeds by pushing the arguments x and y on

the sta
k, and entering the
ode for k. Every fun
tion's entry
ode is required to

he
k how many arguments are on the sta
k, and behave appropriately: if there are

too few arguments, the fun
tion must
onstru
t a partial appli
ation and return.

� An earlier version of this paper appeared in the International Conferen
e on Fun
tional Pro-

gramming 2004 (ICFP'04), pp4-15, ACM Press

2 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

If there are too many arguments, then only the required arguments are
onsumed,

the rest of the arguments are left on the sta
k to be
onsumed later, presumably

by the fun
tion that will be the result of this
all.

In the eval/apply approa
h, the
aller �rst evaluates the fun
tion k, and then

applies it to the
orre
t number of arguments. The latter step involves some run-

time
ase analysis, based on information extra
ted from the
losure for k. If k takes

two arguments, we
an
all it straightforwardly. If it takes only one, we must
all

it passing x, and then
all the fun
tion it returns passing y; if it takes more than

two, we must build a
losure for the partial appli
ation (k x y) and return that

losure.

The
ru
ial di�eren
e between push/enter and eval/apply is this. When a fun
tion

of stati
ally-unknown arity is applied, two pie
es of information
ome together at

run-time: the arity of the fun
tion and the number of arguments in the
all. The

two models di�er in whether they pla
e responsibility for arity-mat
hing with the

fun
tion itself, or with the
aller:

Push/enter: the fun
tion, whi
h stati
ally knows its own arity, examines the sta
k

to �gure out how many arguments it has been passed, and where they are. The

nearest analogy is C's \varargs"
alling
onvention.

Eval/apply: the
aller, whi
h stati
ally knows what the arguments are, examines

the fun
tion
losure, extra
ts its arity, and makes an exa
t
all to the fun
tion.

Whi
h of the two is best in pra
ti
e? The trouble is that the evaluation model has

a pervasive e�e
t on the implementation, so it is too mu
h work to implement both

and pi
k the best. Histori
ally,
ompilers for stri
t languages (using
all-by-value)

have tended to use eval/apply, while those for lazy languages (using
all-by-need)

have often used push/enter, but either approa
h will work in both settings. In

pra
ti
e, implementors
hoose one of the two approa
hes based on a qualitative

assessment of the trade-o�s. In this paper we put the
hoi
e on a �rmer basis:

� We explain pre
isely what the two models are, in a
ommon notational frame-

work (Se
tion 4). Surprisingly, this has not been done before.

� The
hoi
e of evaluation model a�e
ts many other design
hoi
es in subtle

but pervasive ways. We identify and dis
uss these e�e
ts in Se
tions 5 and

6, and
ontrast them in Se
tion 7. There are lots of nitty-gritty details here,

for whi
h we make no apology | they were far from obvious to us, and

arti
ulating these details is one of our main
ontributions.

In terms of its impa
t on
ompiler and run-time system
omplexity, eval/apply

seems de
isively superior, prin
ipally be
ause push/enter requires a sta
k like

no other: sta
k-walking is more diÆ
ult, and
ompiling to an intermediate

language like C or C-- is awkward or impossible.

� We give the �rst detailed quantitative measurements that
ontrast the two

approa
hes (Se
tion 8), based on a
redible, optimising
ompiler (the Glasgow

Haskell Compiler, GHC). We give both bottom-line results su
h as wall-
lo
k

time, total instru
tion
ount and allo
ation, and also some more insightful

numbers su
h as breakdowns of
all patterns.

Push/Enter vs. Eval/Apply for Higher-order Languages 3

Our experiments show that the exe
ution
osts of push/enter and eval/apply

are very similar, despite their pervasive di�eren
es. What you gain on the

swings you lose on the roundabouts.

Our
on
lusion is simple, and
ontradi
ts the abstra
t-ma
hine heritage of the lazy

fun
tional-language
ommunity: eval/apply is a
lear win, at least for a
ompiled

implementation. We have now adopted eval/apply for GHC.

2 Ba
kground: eÆ
ient
urrying

The
hoi
e between push/enter and eval/apply is only important if the language

en
ourages
urrying. In a higher-order language one
an write a multi-argument

fun
tion in two ways:

f :: (Int,Int) -> Int

f (x,y) = x*y

g :: Int -> Int -> Int

g x y = x*y

Here, f is un-
urried. It takes a single argument that is a pair, unpa
ks the pair,

and multiplies its
omponents. On the other hand, g is
urried. Notionally at least,

g takes one argument, and returns a fun
tion that takes a se
ond argument, and

multiplies the two. The type of g should be read right-asso
iatively, thus:

g :: Int -> (Int -> Int)

Currying appeals to our sense of beauty, be
ause multi-argument fun
tions
ome

\for free"; one does not need data stru
tures to support them.

We said that \notionally at least g takes one argument", but suppose that, given

the above de�nition of g, the
ompiler is fa
ed with the
all (g 3 4). The
all is

to a known fun
tion | one whose de�nition the
ompiler
an \see". It would be

ridi
ulous to follow the
urrying story literally. To do that, we would
all g passing

one argument, 3, get a fun
tion
losure in return, and then
all that fun
tion,

again passing one argument, 4. No, in this situation, any de
ent
ompiler must

load the arguments 3 and 4 into registers, or on the sta
k, and
all the
ode for

g dire
tly, and that is true whether the basi
 evaluation model is push/enter or

eval/apply. In the rest of this paper we will take it for granted that saturated
alls

to \known" fun
tions are
ompiled using an eÆ
ient argument-passing
onvention

(see e.g. (Peyton Jones, 1992; Appel, 1992)). The push/enter and eval/apply models

di�er only in how they handle
alls to \unknown" fun
tions.

In any higher-order language one
an write
urried fun
tions, simply by writing

a fun
tion that returns a fun
tion, but languages di�er in the degree to whi
h their

syntax en
ourages it. For the purposes of this paper, we assume that
urrying is to

be regarded as the native way to de�ne multi-argument fun
tions, and that we wish

to make multi-argument
urried fun
tions as fast as possible. Our measurements

of Haskell programs show that on average around 20% of
alls are to unknown

4 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

Variables x; y; f; g

Constru
tors C De�ned in data type de
larations

Literals lit ::= i j d Unboxed integer or double

Atoms a; v ::= lit j x Fun
tion arguments are atomi

Fun
tion arity k ::= � Unknown arity

j n Known arity n � 1

Expressions e ::= a Atom

j f

k

a

1

: : : a

n

Fun
tion
all (n � 1)

j � a

1

: : : a

n

Saturated primitive operation (n � 1)

j let x = obj in e

j
ase e of falt

1

; : : : ; alt

n

g (n � 1)

Alternatives alt ::= C x

1

: : : x

n

! e (n � 0)

j x! e Default alternative

Heap obje
ts obj ::= FUN (x

1

: : : x

n

! e) Fun
tion (arity = n � 1)

j PAP(f a

1

: : : a

n

) Partial appli
ation (f is always a

FUN with arity(f) > n � 1)

j CON (C a

1

: : : a

n

) Saturated
onstru
tor (n � 0)

j THUNK e Thunk

j BLACKHOLE [only during evaluation℄

Programs prog ::= f

1

= obj

1

; : : : ; f

n

= obj

n

Fig. 1. Syntax

fun
tions, and on average 40% of those
alls (8% of all
alls) have more than one

argument (Se
tion 8), although these �gures
an vary signi�
antly from program

to program.

3 Language

To make our dis
ussion
on
rete we use a small, non-stri
t intermediate language

similar to that used inside the Glasgow Haskell Compiler. Its syntax is given in

Figure 1. In essen
e it is the STG language (Peyton Jones, 1992), but we have

adjusted some of the details for this paper.

Although the push/enter vs eval/apply question applies equally to stri
t and

non-stri
t languages, we treat a non-stri
t one here be
ause it is the slightly more

ompli
ated
ase, and be
ause our quantitative data is for Haskell.

The idea is that ea
h synta
ti

onstru
t in Figure 1 has a dire
t operational

reading. We give these operational intuitions here, and we will make them pre
ise

in Se
tion 4:

� A literal is an unboxed 32-bit integer, i, or 64-bit double-pre
ision
oating-

point number, d. We have more to say about unboxed values in Se
tion 3.3.

� A
all, f

k

a

1

: : : a

n

, applies the fun
tion f to the arguments a

1

: : : a

n

. Ea
h ar-

gument of an appli
ation is an atom (literal or variable), there is no argument

Push/Enter vs. Eval/Apply for Higher-order Languages 5

preparation to perform �rst. The supers
ript k des
ribes the stati
ally-known

information about the fun
tion's arity. It takes two forms:

| f

n

, where n is an integer, indi
ates that the
ompiler stati
ally knows the

arity of f , usually be
ause there is a lexi
ally-en
losing binding for f that

binds it to a FUN obje
t with arity n.

| f

�

indi
ates that the
ompiler has no stati
 information about f 's arity.

It would be safe to annotate every appli
ation with �.

There is no guarantee that the fun
tion's arity (whether stati
ally known or

not) mat
hes the number of arguments supplied at the
all site.

� A let expression (and only a let) allo
ates an obje
t in the heap. We dis
uss

the forms of heap obje
t in Se
tion 3.1. In this paper we will only dis
uss

simple, non-re
ursive let expressions. GHC supports a mutually-re
ursive

letre
 as well, of
ourse, but re
ursive bindings do not a�e
t the issues

dis
ussed this paper, so we omit them to save
lutter. The top-level de�nitions

of a program are re
ursive, however.

� A
ase evaluates a sub-expression,
alled the s
rutinee, and optionally per-

forms
ase analysis on its value. More
on
retely,
ase saves any live variables

that are needed in the
ase alternatives, pushes a return address, and then

evaluates the s
rutinee. At the return address, it performs
ase analysis on the

returned value. All
ase expressions are exhaustive: either there is a default

alternative as a
at
h-all, or the patterns
over all the possibilities in the data

type. We often omit the
urly bra
es in our informal examples, using layout

instead.

3.1 Heap obje
ts

The language does not provide a synta
ti
 form of expression for
onstru
tor appli-

ations, or for anonymous lambdas; instead, they must be expli
itly allo
ated using

let. In general, let performs heap allo
ation, and the right hand side of a let is

a heap obje
t. There are exa
tly �ve kinds of heap obje
ts:

FUN (x

1

: : : x

n

! e) is a fun
tion
losure, with arguments x

i

and body e (whi
h

may have free variables other than the x

i

). The fun
tion is
urried | that is, it

may be applied to fewer than n, or more than n, arguments | but it still has an

arity of n.

PAP(f a

1

: : : a

n

) represents a partial appli
ation of fun
tion f to arguments

a

1

: : : a

n

. Here, f is guaranteed to be FUN obje
t, and the arity of that FUN is

guaranteed to be stri
tly greater than n.

CON (C a

1

: : : a

n

) is a data value, the saturated appli
ation of
onstru
tor C to

arguments a

1

: : : a

n

.

THUNK e represents a thunk, or suspension. When its value is needed, e is evalu-

ated, and the thunk overwritten with (an indire
tion to) the value of e.

BLACKHOLE is used only during evaluation of a thunk, never in a sour
e program.

While a thunk is being evaluated, it is repla
ed by BLACKHOLE to avoid spa
e

leaks and to
at
h
ertain forms of divergen
e (Jones, 1992).

6 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

Of these, FUN , PAP and CON obje
ts are values, and
annot be evaluated any

further.

A top-level de�nition
reates a stati
ally-allo
ated obje
t, at a �xed address,

whereas a let allo
ates a heap obje
t dynami
ally.

3.2 Case expressions

The language o�ers
onventional algebrai
 data type de
larations, su
h as

data Tree a = Leaf a | Bran
h (Tree a) (Tree a)

data Bool = False | True

data List a = Nil | Cons a (List a)

Values of type Tree are built with the
onstru
tors Leaf and Bran
h, and
an be

dis
riminated and taken apart with a
ase expression. The boolean type Bool is

just a regular algebrai
 data type, so that a
onditional is implemented by a
ase

expression. Constru
tors are always saturated; unsaturated
onstru
tors
an always

be saturated by eta expansion.

To give the idea, here is the Haskell de�nition of the map fun
tion:

map f [℄ = [℄

map f (x:xs) = f x : map f xs

and here is its rendition into our intermediate language:

nil = CON Nil

map = FUN (f xs ->

ase xs of

Nil -> nil

Cons y ys -> let h = THUNK (f y)

t = THUNK (map f ys)

r = CON (Cons h t)

in r

)

The top-level de�nition of nil is automati
ally generated by GHC, so that there

is a value to hand for map to return in the Nil
ase alternative. A similar top-level

de�nition is generated for ea
h nullary
onstru
tor.

The s
rutinee of a
ase expression is an expression rather than an atom. This is

important, be
ause it lets us write, for example,
ase (null xs) of ..., rather

than

let y = THUNK (null xs) in
ase y of ...

There is no need to
onstru
t a thunk!

3.3 Unboxed values

Another slightly unusual feature of our language is the use of unboxed values (Pey-

ton Jones & Laun
hbury, 1991). Supporting unboxed values is vital for performan
e,

Push/Enter vs. Eval/Apply for Higher-order Languages 7

but it has signi�
ant
onsequen
es for the implementation: both heap obje
ts and

the sta
k may
ontain a mix of pointer and non-pointer values.

Most values are represented by a pointer to a heap obje
t, in
luding all data

stru
tures, fun
tion
losures, and thunks. Our intermediate language also supports

a handful of primitive, unboxed data types, of whi
h we
onsider only Int# and

Double# here. An Int# is a 32-bit integer, in the native ma
hine representation;

it is not a pointer. Similarly, a Double# is a 64-bit double-pre
ision
oating-point

value in IEEE representation. These unboxed values
an be passed as a arguments

to a fun
tion, returned as results, stored in data stru
tures, and so on. For example,

here is how the (boxed) type Int is de�ned, as an ordinary algebrai
 data type:

data Int = I# Int#

That is, an Int value is a heap-allo
ated data stru
ture, built with the I#
onstru
-

tor,
ontaining an Int#.

Having expli
it unboxed values allows us to make boxing and unboxing operations

expli
it in our intermediate language. For example, here is how Int addition is

de�ned:

plusInt :: Int -> Int -> Int

plusInt a b

=
ase a of { I# x ->

ase b of { I# y ->

I# (x +# y)

}}

The �rst
ase expression evaluates the argument a (in
ase it is a thunk) and takes

it apart; the se
ond
ase does the same to b; the (x +# y) adds the two unboxed

values using the primitive addition operator +#, while the �nal use of I# boxes the

result ba
k into an Int.

4 The two evaluation models

It is now time to be
ome pre
ise about what we mean by a \push/enter" or

\eval/apply" model. We do so by giving an operational semanti
s that exposes

the key di�eren
es between these models, while still hiding some representation

details that only
onfuse the pi
ture. Douen
e and Fradet give a
ompletely di�er-

ent,
ombinator-based, formalism that allows them to
ontrast push/enter with

eval/apply (Douen
e & Fradet, 1998), although their treatment only
onsiders

single-argument fun
tions whereas we are interested in how to perform multiple

appli
ation without building intermediate fun
tion
losures. Furthermore, the se-

manti
s we present here maps more dire
tly to operational intuitions.

Figure 2 gives the operational semanti
s for both evaluation models, using a

small-step transition relation of the form

e

1

; s

1

; H

1

) e

2

; s

2

; H

2

The
omponents of the program state are:

8 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

Rules
ommon to push/enter and eval/apply

let x = obj in e; s; H) e[x

0

=x℄; s; H[x

0

7! obj℄ (let)

x

0

fresh

ase v of f: : : ;C x

1

: : : x

n

! e; : : :g; s; H[v 7! CON (C a

1

: : : a

n

)℄

) e[a

1

=x

1

: : : a

n

=x

n

℄; s; H (
ase
on)

ase v of f: : : ;x! eg; s; H) e[v=x℄; s; H (
aseany)

if v is a literal or H[v℄ is a value, and does not

mat
h any other
ase alternative

ase e of f: : :g; s; H) e;
ase � of f: : :g : s; H (
ase)

v;
ase � of f: : :g : s; H)
ase v of f: : :g; s; H (ret)

if v is a literal or H[v℄ is a value

x; s; H[x 7! THUNK e℄) e; Upd x � : s; H[x 7! BLACKHOLE ℄ (thunk)

y; Upd x � : s; H) y; s; H[x 7! H[y℄℄ (update)

if H[y℄ is a value

f

n

a

1

: : : a

n

; s; H[f 7! FUN (x

1

: : : x

n

! e)℄

) e[a

1

=x

1

: : : a

n

=x

n

℄; s; H (known
all)

� a

1

: : : a

n

; s; H) a; s; H (primop)

where a is the result of applying the primitive

operation � to arguments a

1

: : : a

n

Rules for push/enter

f

k

a

1

: : : a

m

; s; H) f ; Arg a

1

: : : : : Arg a

m

: s; H (push)

f ; Arg a

1

: : : : : Arg a

n

: s; H[f 7! FUN (x

1

: : : x

n

! e)℄

) e[a

1

=x

1

: : : a

n

=x

n

℄; s; H (fenter)

f ; Arg a

1

: : : : : Arg a

m

: s; H[f 7! FUN (x

1

: : : x

n

! e)℄

) p; s; H[p 7! PAP(f a

1

: : : a

m

)℄ (pap1)

if m � 1; m < n; the top element of s is not of

the form Arg y; p fresh

f ; Arg a

n+1

: s; H[f 7! PAP(g a

1

: : : a

n

)℄

) g; Arg a

1

: : : : : Arg a

n

: Arg a

n+1

: s; H (penter)

Rules for eval/apply

f

�

a

1

: : : a

n

; s; H[f 7! FUN (x

1

: : : x

n

! e)℄

) e[a

1

=x

1

: : : a

n

=x

n

℄; s; H (exa
t)

f

k

a

1

: : : a

m

; s; H[f 7! FUN (x

1

: : : x

n

! e)℄

) e[a

1

=x

1

: : : a

n

=x

n

℄; (� a

n+1

: : : a

m

) : s; H (
allk)

if m > n

) p; s; H[p 7! PAP(f a

1

: : : a

m

)℄ (pap2)

if m < n, p fresh

f

�

a

1

: : : a

m

; s; H[f 7! THUNK e℄

) f ; (� a

1

: : : a

m

) : s; H (t
all)

f

k

a

n+1

: : : a

m

; s; H[f 7! PAP(g a

1

: : : a

n

)℄

) g

�

a

1

: : : a

n

a

n+1

: : : a

m

; s; H (p
all)

f ; (� a

1

: : : a

n

) : s; H) f

�

a

1

: : : a

n

; s; H (retfun)

H[f ℄ is a FUN or PAP

Fig. 2. The evaluation rules

Push/Enter vs. Eval/Apply for Higher-order Languages 9

The
ode e, is the expression under evaluation, in the syntax of Figure 1.

The sta
k s, is a sta
k of
ontinuations that says what to do when the
urrent

expression is evaluated. We use the notation \:" to means
ons in the
ontext of

a sta
k.

The heap H , is a �nite mapping from variables (whi
h we treat as synonymous

with heap addresses) to heap obje
ts. The latter have the syntax given in Figure 1.

To redu
e
lutter, we use the
onvention that no binding is ever removed from

the heap. For example, in rule
ase
on the heap H on the right-hand side of

the rule still has a binding for v.

The sta
k
ontinuations, �, take the following forms:

� ::=
ase � of falt

1

; : : : ; alt

n

g

j Upd t � Update thunk t with returned

value

j (� a

1

: : : a

n

) Apply the returned fun
tion to

a

1

: : : a

n

[eval/apply only℄

j Arg a Pending argument [push/enter

only℄

The meaning of these
ontinuations should be
ome
lear as we dis
uss the evaluation

rules. The rules themselves are fairly dense, so the following subse
tions explain

them in some detail. After that, we sket
h how the operational semanti
s is mapped

onto a real ma
hine by the Glasgow Haskell Compiler.

4.1 Rules
ommon to both models

The �rst blo
k of evaluation rules in Figure 2 are
ommon to both push/enter and

eval/apply.

The �rst rule, let, says what happens when the expression to be evaluated is a

let form. Following Laun
hbury (Laun
hbury, 1993), we simply allo
ate the right-

hand side obj in the heap, using a fresh name x

0

, extend the heap thus H [x

0

7! obj℄.

The use of a fresh name
orresponds to allo
ating an unused address in the heap.

Lastly, we substitute x

0

for x in e, the body of the let, before
ontinuing. In a real

implementation this substitution would be managed by keeping a pointer to the

new obje
t in a register, or a

essing it by o�set from the allo
ation pointer, but

we do not need to model those details here.

The next group of four rules deal with
ase expressions. Rule
ase, starts the

evaluation of a
ase expression by pushing a
ase
ontinuation on the sta
k, and

evaluating the s
rutinee, e. When evaluation is
omplete, a value v (either a literal

or a pointer to a heap value) is returned to the
ase
ontinuation by ret.

If v is (a pointer to) a
onstru
tor, rule
ase
on applies; it resumes the appro-

priate bran
h of the
ase, binding the
onstru
tor arguments to x

i

. If the returned

value does not mat
h any other
ase alternative, the default alternative is used

(rule
aseany). These two rules pre
ede
ase be
ause they overlap it, and we use

the
onvention that the �rst appli
able rule takes pre
eden
e.

The next two rules deal with thunks. If the expression to be evaluated is a

10 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

thunk, we push an update
ontinuation (or update frame), Upd t �, whi
h points

to the thunk to be updated (rule thunk). While the thunk t is being evaluated

we update the heap so that t points to a BLACKHOLE . No left-hand sides mat
h

BLACKHOLE so evaluation will \get stu
k" if we try to evaluate a thunk during its

own evaluation. This simple tri
k has been known for a long time, and is also
ru-

ially important to avoid spa
e leaks (Jones, 1992). When evaluation is
omplete,

we overwrite the thunk with the value (rule update).

The last two rules deal with saturated appli
ations of known fun
tions, either

primitive operations (primop) or user-de�ned ones (known
all). Both are very

simple and
an be
ompiled eÆ
iently, with fast parameter-passing me
hanisms.

Noti
e that the
all to f is a tail
all. No
ontinuation is pushed; instead
ontrol is

simply transferred to f 's body.

The big remaining question is how fun
tion appli
ation is handled when the

fun
tion is unknown, or is applied to too many or too few arguments. And that is

the key point at whi
h the two evaluation models di�er, of
ourse.

4.2 The push/enter model

The rules in the se
ond blo
k of Figure 2 are the ones spe
i�
 to the push/enter

model. First
onsider rule push, whi
h deals with fun
tion appli
ations. It simply

pushes the arguments onto the sta
k, as pending arguments, using the Arg
ontin-

uation, and enters the fun
tion. The next three rules deal with what \entering the

fun
tion" means:

� First, the fun
tion f might turn out to be a FUN obje
t of arity n, and there

might be n or more arguments on the sta
k. In that
ase (rule fenter), we
an

pro
eed to evaluate the body of the fun
tion, binding the a
tual arguments

to the formal parameters as usual. Any ex
ess pending arguments are left on

the sta
k, to be
onsumed by the fun
tion that e (presumably) evaluates to.

� What if there aren't enough pending arguments on the sta
k? This
ould

happen either be
ause a fun
tion-valued thunk pushed an update frame, or

be
ause a
ase expression evaluated a fun
tion (see Se
tion 3.2). In either

ase, we must
onstru
t a value to return to the \
aller" and that value is a

partial appli
ation, or PAP , as rule pap1 shows.

� What if f is a PAP and not a FUN ? In that
ase, we simply unpa
k the

PAP 's arguments onto the sta
k, and enter the fun
tion (rule penter).

The three
ases above do not exhaust the possible forms of f . It might also be a

THUNK , but we have already dealt with that
ase (rule thunk). It might be a

CON , in whi
h
ase there
annot be any pending arguments on the sta
k, and rules

update or ret apply.

4.3 The eval/apply model

The last blo
k of Figure 2 shows how the eval/apply model deals with fun
tion

appli
ation. The �rst three rules all deal with the
ase of a FUN applied to some

arguments:

Push/Enter vs. Eval/Apply for Higher-order Languages 11

Info pointer

Info table

Entry code

Payload

Object type

Layout info

Type-specific
fields

Fig. 3. A heap obje
t

� If there are exa
tly the right number of arguments, we behave exa
tly like

rule known
all, by tail-
alling the fun
tion. Rule exa
t is still ne
essary

| and indeed has a dire
t
ounterpart in the implementation | be
ause the

fun
tion might not be stati
ally known.

� If there are too many arguments, rule
allk pushes a
all
ontinuation on the

sta
k, whi
h
aptures the ex
ess arguments. This is the essen
e of eval/apply.

Given an appli
ation f x y where f takes one argument, �rst
all f x, and

then apply the resulting fun
tion to y.

� If there are too few arguments, we build a PAP (rule pap2), whi
h be
omes

the value of the expression.

These rules work by dynami
ally inspe
ting the arity of the fun
tion
losure in

the heap, whi
h works �ne for both known and unknown
alls; we
ould do better

for known
alls, but rule known
all has already dealt with the saturated known

ase, and it is probably not worth the bother of treating under- and over-saturated

known
alls spe
ially be
ause they are very un
ommon (see Se
tion 8).

Another possibility is that the fun
tion in an appli
ation is a THUNK (rule

t
all). This
ase is very like the over-applied fun
tion of rule
allk; we push a

all
ontinuation and enter the thunk. (This in turn will push an update frame via

rule thunk.)

Finally, the fun
tion in an appli
ation might be a partial appli
ation of another

fun
tion g (rule p
all). In that
ase we unpa
k the PAP and apply g to its new

arguments. Sin
e g is sure to be a FUN , this will take us ba
k to one of the
ases

in rules exa
t,
allk or pap2.

That
on
ludes the rules for fun
tion appli
ation. We need one last rule, retfun,

whi
h returns a fun
tion value (PAP or FUN) to a
all
ontinuation, in the obvious

way. This rule re-a
tivates a
all
ontinuation, exa
tly as rule ret re-a
tivates a

ase
ontinuation.

12 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

4.4 Heap obje
ts

To provide the
ontext for our subsequent dis
ussion, we now sket
h brie
y how

GHC maps the operational semanti
s onto a real ma
hine. Figure 3 shows the layout

of a heap obje
t. In GHC, the �rst word of every obje
t is
alled the obje
t's info

pointer, and points to an immutable, stati
ally-allo
ated info table (Peyton Jones,

1992). The remainder of the obje
t is
alled the payload, and may
onsist of a

mixture of pointers and non-pointers. For example, the obje
t CON (C a

1

: : : a

n

)

would be represented by an obje
t whose info pointer represented the
onstru
tor

C and whose payload is the arguments a

1

: : : a

n

.

The info table
ontains:

� Exe
utable
ode for the obje
t. For example, a FUN obje
t has
ode for the

fun
tion body.

� An obje
t-type �eld, whi
h distinguishes the various kinds of obje
ts (FUN ,

PAP , CON et
) from ea
h other.

� Layout information for garbage
olle
tion purposes, whi
h des
ribes the size

and layout of the payload. By \layout" we mean whi
h �elds
ontain pointers

and whi
h
ontain non-pointers, information that is essential for a

urate

garbage
olle
tion.

� Type-spe
i�
 information, whi
h varies depending on the obje
t type. For

example, a FUN obje
t
ontains its arity; a CON obje
t
ontains its
on-

stru
tor tag, a small integer that distinguishes the di�erent
onstru
tors of a

data type; and so on.

In the
ase of a PAP , the size of the obje
t is not �xed by its info table; instead, its

size is stored in the obje
t itself. The layout of its �elds (e.g. whi
h are pointers) is

des
ribed by the (initial segment of) an argument-des
riptor �eld in the info table

of the FUN obje
t whi
h is always the �rst �eld of a PAP . The other kinds of heap

obje
t all have a size that is stati
ally �xed by their info table.

A very
ommon operation is to jump to the entry
ode for the obje
t, so GHC

uses a slightly-optimised version of the representation in Figure 3. GHC pla
es

the info table at the addresses immediately before the entry
ode, and reverses the

order of its �elds, so that the info pointer is the entry-
ode pointer, and all the

other �elds of the info table
an be a

essed by negative o�sets from this pointer.

This is a somewhat deli
ate ha
k, be
ause it involves juxtaposing
ode and data,

but (sadly) it does improve performan
e signi�
antly (on the order of 5%). Again,

however, is not germane to this paper and we ignore it from now on.

4.5 The evaluation sta
k

In GHC, the evaluation sta
k s, in Se
tion 4, is represented by a
ontiguous blo
k

of memory

1

. The abstra
t sta
k of Se
tion 4 is a sta
k of
ontinuations, �. These

1

In fa
t, GHC supports lightweight
on
urren
y, so there are many threads. Ea
h has its own

sta
k, of limited size. The
ompiler generates expli
it sta
k-over
ow tests, and grows the sta
k

when ne
essary. None of this is relevant to the dis
ussion of this paper, so we do not dis
uss

on
urren
y or sta
k over
ow any further.

Push/Enter vs. Eval/Apply for Higher-order Languages 13

ontinuations are ea
h represented
on
retely by a sta
k frame. The sta
k frames

for the two
ontinuations
ommon to both push/enter and eval/apply are these:

� An update
ontinuation Upd x � is represented by a small sta
k frame,
on-

sisting of a return address and a pointer to the thunk to be updated, x. In

the push/enter model, an update frame must
ontain a se
ond word, whi
h

points to the next update frame down in the sta
k (see Se
tion 5). Having a

return address in the update frame means that a value
an simply return to

the topmost return address, without having to test whether the top frame is

an update
ontinuation or a
ase
ontinuation.

The return address for every update frame
an be identi
al, though; it points

to a hand-written
ode fragment, part of the runtime system, that performs

the update, pops the update frame, and returns to the next frame.

� A
ase
ontinuation
ase � of faltsg is represented by a return address,

together with the free variables of the alternatives alts, whi
h must be saved

on the sta
k a
ross the evaluation of the s
rutinee. For example,
onsider this

fun
tion:

f :: (Int,Int) -> (Bool,Int) -> Int

f x y =
ase h1 x of

(_,b) ->
ase h2 y of

w -> w+b

A
ross the
all to h1 x, we must save y on the sta
k, be
ause it is used later,

but we need not save x; then a
ross the
all to h2 y we must save b, but we

need not save y.

Unlike an update frame, the return address for ea
h
ase expression is di�er-

ent: it points to
ode for the
ase alternatives of that parti
ular
ase expres-

sion.

In both
ases, the frame
an be thought of as a sta
k-allo
ated fun
tion
losure:

the return address is the info pointer, and the rest of the frame is the payload. The

return address \knows" the layout of the rest of the frame | that is, where the

pointers, non-pointers and (in the
ase of
ase
ontinuations) dead slots are. In our

implementation, the sta
k grows downward, so the return address is at the lowest

address, and a sta
k frame looks exa
tly like Figure 3. A return address has an info

table that the garbage
olle
tor uses to navigate over the frame.

In the next se
tions we des
ribe how the other two
ontinuations are implemented:

the Arg
ontinuation for push/enter (Se
tion 5) and the (� a

1

: : : a

n

)
ontinuation

for eval/apply (Se
tion 6).

5 Implementing push/enter

The push/enter model uses the sta
k to store pending arguments, represented by

ontinuations of form Arg a. Unlike the other
ontinuations, these have no return

address. When a fun
tion with arity n is entered, it begins work by grabbing the

14 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

top n arguments from the sta
k (rule fenter), not by returning to them! This is

pre
isely the di�eren
e alluded to in the Introdu
tion: the fun
tion is in
ontrol.

How does the fun
tion know how many arguments are on the sta
k? It needs to

know this so that it
an perform rule fenter or pap1 respe
tively. In GHC the

answer is this: we dedi
ate a register

2

,
alled Su (\u" for \update"), to point to the

topmost update frame or
ase frame, rather like the frame pointer in a
onventional

ompiler. Then the fun
tion
an see if there are enough arguments by taking the

di�eren
e between the sta
k pointer and Su. (The fun
tion knows not only how

many arguments it is expe
ting, but how many words they o

upy.) This is the

so-
alled argument satisfa
tion
he
k.

Every fun
tion is
ompiled with two entry points. The fast entry point is used for

known
alls; it expe
ts its arguments in registers (plus some on the sta
k if there are

too many to �t in registers). The slow entry point expe
ts all its arguments on the

sta
k, and begins by performing the argument-satisfa
tion
he
k. If the argument-

satisfa
tion
he
k fails, the slow entry point builds a PAP and returns to the return

address pointed to by Su; if it su

eeds, the slow entry point loads the arguments

from the sta
k into registers and jumps (or falls through, in fa
t) to the fast entry

point.

5.1 Redu
ing the number of Su pushes

In
onventional
ompilers, the frame pointer is really only needed to support de-

bugging, and some
ompilers provide a
ag to omit it, thereby freeing up a register.

We
annot get rid of Su altogether, but when pushing a new frame it is often

unne
essary to save Su and make it point to the new frame. Consider:

ase x of { (a,b) -> }

We know for sure that x will evaluate to a pair, not to a fun
tion! There is no need

to make Su point to the
ase frame during evaluation of x. The only time we need

to do so is when the s
rutinee
annot stati
ally be determined to be a non-fun
tion

type. The
lassi
 example is the polymorphi
 seq fun
tion:

seq :: a -> b -> b

seq a b =
ase a of { x -> b }

In some
alls to seq, a will evaluate to a fun
tion, while in others it will not. In the

former
ase we must ensure that Su points to the
ase frame, so that rule pap1

applies.

In prin
iple, the same idea would allow us to omit Su from many update frames,

but in pra
ti
e there are several reasons that we want to walk the
hain of update

frames (see Se
tion 7) so GHC always saves Su in every update frame.

To avoid that some
ase frames have a saved Su and some do not, we instead

never save Su in a
ase frame. Instead, in the (rare) situation of a non-data-typed

ase, we push two
ontinuations, a regular
ase
ontinuation, and, on top of it, a

2

or a memory lo
ation on register-starved ar
hite
tures

Push/Enter vs. Eval/Apply for Higher-order Languages 15

Pending arguments

Regular frame, with return address

Fig. 4. Sta
k layout for push/enter

seq frame
ontaining Su. A seq frame is like an update frame with no update: it

serves only to restore Su before returning to the
ase frame underneath.

5.2 A

urate sta
k walking

The most painful aspe
t of the push/enter model is the problem of representing

Arg
ontinuations, whi
h hold pending arguments. Consider these fun
tions:

g :: Int -> Int -> Int# -> Double# -> Int

g x =

f :: Int -> Int

f x = g x x 3 4.5

Under the push/enter model, we push the pending arguments x (a pointer), 3 (a 32-

bit unboxed value), and 4.5 (a 64-bit unboxed
oat) onto the sta
k before making

the tail
all g x. The fun
tion gmight
ompute for a very long time before returning

a fun
tion that
onsumes the pending arguments. During this period, the pending

arguments simply sit on the sta
k waiting to be
onsumed.

An a

urate garbage
olle
tor must be able to identify every pointer in the sta
k.

The push/enter model leads to sta
k layout that looks like Figure 4. Update and

ase
ontinuations, whose representation was dis
ussed in Se
tion 4.5, are repre-

sented by \regular" sta
k frames,
onsisting of a return address (shown bla
k) on

top of a blo
k of data (shown white) whose exa
t layout is \known" to the return

address. The garbage
olle
tor
an use the return address to a

ess the info table for

the return address (Se
tion 4.5 again), just as it does for a heap-allo
ated
losure.

The info table des
ribes the layout of the sta
k frame, in
luding exa
tly where in

the frame the (live) pointers are stored, so that the garbage
olle
tor
an follow

them; it also gives the size of the frame, so that the garbage
olle
tor knows where

to start looking for the next frame.

These regular sta
k frames are the easy (and well-understood) part. However,

between ea
h regular sta
k frame are zero or more Arg
ontinuations, or pending

arguments (shown grey). The diÆ
ulty is that there is no des
ription of their num-

ber or layout in the sta
k data stru
ture. The fun
tion that pushed them \knows"

16 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

what they are, and the fun
tion that
onsumes them knows too | but an arbitrar-

ily long period may elapse between push and
onsumption, and during that time

the garbage
olle
tor must somehow deal with them. There are two sub-problems:

� Identifying whi
h are pointers and whi
h are non-pointers; as the example

above showed, there may be a mixture.

� Distinguishing the last pending argument from the next return address on

the sta
k, whi
h heralds a new sta
k frame.

One alternative is to have a separate sta
k for pending arguments, whi
h solves the

se
ond of these sub-problems, but not the �rst. Or, the separate sta
k
ould be for

pending non-pointer arguments only, whi
h solves the �rst sub-problem, but not

the se
ond. However, a separate sta
k
arries heavy
osts of its own, to allo
ate it,

maintain a pointer to the sta
k top, and
he
k for over
ow. We do not
onsider this

alternative further.

Another alternative is to use a
onservative garbage
olle
tor, but there are a

number of problems with this approa
h. Firstly, to plug spa
e leaks we would then

have to use extra memory writes to stub o� dead pointers, something the frame

layout maps deal with automati
ally; this turns out to be very important in pra
ti
e.

Se
ond, there are other reasons that GHC's runtime system has to walk the sta
k

a

urately: to bla
k-hole thunks under evaluation, and to raise ex
eptions. Third,

sta
ks may have to move in order to grow; a sta
k
an only be moved if it has no

internal pointers (we
an't �nd the internal pointers, be
ause this is
onservative

GC), so instead of pushing Su on the sta
k we would have to push an o�set (Su-Sp).

Failing these alternatives, the obvious approa
h is to add a tag word to ea
h

Arg
ontinuation. The tag word distinguishes pointer-
arrying from non-pointer-

arryingArg
ontinuations, spe
i�es the size of latter kind, and
an be distinguished

from the return address that heralds the next regular sta
k frame. Easy enough, but

ineÆ
ient. In the following two se
tions we des
ribe two optimisations that GHC

uses to redu
e the tagging
ost.

5.2.1 Omitting tags on pointers

Our �rst optimisation is to not to tag pointer arguments at all. This is attra
tive

be
ause pointer arguments dominate (see Se
tion 8). Furthermore it looks relatively

easy to distinguish a heap pointer from the return address that heralds the next

sta
k frame, whereas non-pointer arguments, whi
h
an hold any bit-pattern what-

soever,
annot be distinguished in general. We were wrong to think it was easy,

though: the problem of distinguishing heap pointers from return addresses is mu
h

tri
kier than it looks, as we now dis
uss.

GHC allo
ates some heap obje
ts stati
ally,
ompiling them dire
tly into the

binary. So an address on the sta
k may belong to one of three
lasses:

R: pointers to return addresses

D: pointers to dynami
 heap obje
ts

S: pointers to a stati
 obje
ts

Push/Enter vs. Eval/Apply for Higher-order Languages 17

When traversing the sta
k, we want to identify pointers in R, an apparently

simple task:

1. In a simple setup, R is a
ontiguous region starting at zero, so a simple

boundary test suÆ
es. Unfortunately, we found no platform-independent way

to identify the end of region R, so the test be
ame platform-spe
i�
.

2. The simple upper-boundary test failed in later versions of Linux, whi
h some-

times pla
ed D below R, although R was still
ontiguous, and S always

followed R. One would think that two boundary tests would suÆ
e, but we

found no way (not even a platform-spe
i�
 way) to identify the beginning of

R reliably. We �nessed this problem by �rst distinguishing D | we know

the address ranges o

upied by the dynami
ally-allo
ated heap | instead of

using a boundary test at the low end of R. That is, an address is in R if (a)

it is not in D and (b) it is a lower address than the upper boundary of R.

On a 32-bit ar
hite
ture, the address map for D
an be held as an eÆ
ient

bit-map, be
ause D is allo
ated in aligned one-megabyte
hunks, so 2

12

bits

suÆ
es to
over the whole address spa
e.

3. Even test (2) fails in the presen
e of dynami
 linking, whi
h leads to multiple,

dis
ontiguous R regions, intermingled with D and S. However, our dynami

loader
an tell us the exa
t address ranges of all the R-regions ex
ept the

�rst, stati
ally-linked one, so we re�ned the test further: an address is in R if

it is in one of the dynami
ally-loaded regions of R, or if it satis�es test (2)

above. Alas, maintaining and sear
hing the address map for R is ineÆ
ient;

we have none of the size and alignment guarantees that we have for D.

All of this is tiresomely
ompli
ated, and involves tri
ky intera
tions with the plat-

form. We explored another more portable alternative: keep an address map for D,

and put a zero word before every stati
 heap obje
t in S. Now an address is in R if

(a) it is not in D, and (b) it is not pre
eded by a zero word (return addresses are

never pre
eded by a zero word). The problem with this is that the test involves

de-referen
ing the pointer, whi
h in
reases memory traÆ
. A reviewer suggested

yet another somewhat-similar idea, that we have not tried: arrange that obje
ts in

S are 16-byte aligned, and return addresses are never are.

The problem of distinguishing pointers from return addresses also
ould be solved

in an entirely di�erent way: by saving Su in a known pla
e every regular frame, as

well as every update frame. Then the sta
k-walker
ould rely on an Su
hain linking

every regular frame, so it would always know where the next regular frame began.

However, building a
hain of all frames would impose a non-trivial run-time
ost

by in
reasing memory traÆ
. We have not quanti�ed this e�e
t in isolation, but

the results of Se
tion 8 indi
ate that removing Su from update frames
ontributes

to a worthwhile redu
tion in memory traÆ
. Adding Su to regular frames would do

exa
tly the opposite.

Our
on
lusion is this: leaving pending-argument pointers un-tagged seems at-

tra
tive, but we found no way to walk the resulting sta
k that was simple, portable,

and eÆ
ient. Our e�orts to gain eÆ
ien
y led to a swamp of
omplexity and

18 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

platform-spe
i�

ode, and one that was all the more annoying be
ause of the

apparent triviality of the goal.

5.2.2 Lazy tagging

Tagging non-pointer pending arguments
arries only a modest run-time
ost, be-

ause (in Haskell at least) it is rare to
all a fun
tion that returns a fun
tion that

onsumes non-pointer arguments. The push/enter version of GHC therefore tags

non-pointer Arg
ontinuations straightforwardly, with a tag word pushed on top of

the non-pointer argument,
ontaining the length in words of the non-pointer argu-

ment (usually 1 or 2). A tag
an always be distinguished from a pointer argument,

be
ause pointer arguments never point to very low addresses.

Even tagging non-pointers is tiresome. When
alling the fast entry point of a

fun
tion, we
an pass some arguments in registers, but when there are too many we

pass them on the sta
k. It would make sense for the sta
k layout of these over
ow

parameters to be the same as the latter part of the sta
k layout expe
ted by the

slow entry point (whi
h takes all its arguments on the sta
k). The latter has tagged

slots for non-pointers, so the former had better do so too. But we do not want

to take the instru
tions to expli
itly tag the slots when making a fast
all | fast

alls to fun
tions taking non-pointer arguments are not at all rare | so we allo
ate

spa
e for the tags but do not �ll the tags in. However, in a
all to a known fun
tion

when too many arguments are supplied, we must generate
ode to tag the \extra"

arguments but not the \known" ones.

So the invariant at the fast entry point is that there is spa
e for the tags of

the non-pointer arguments passed on the sta
k, but these slots are not ne
essarily

initialised. The fast entry point typi
ally starts with a heap-over
ow
he
k; if it

fails, it must remember to �ll in the tags, so that the top frame of the sta
k is

self-des
ribing.

The exa
t details are unimportant here. The point is that, while tagging non-

pointers in the sta
k is feasible and reasonably eÆ
ient, it imposes a signi�
ant

omplexity burden on both
ode generator and the the run-time system.

5.3 Generating C--

Some
ompilers generate native
ode dire
tly, but a very popular alternative route

is to generate
ode in C, or a portable assembly language su
h as C-- (Peyton Jones

et al., 1999), leaving to another
ompiler the tasks of instru
tion sele
tion, regis-

ter allo
ation, instru
tion s
heduling, and so on. A signi�
ant disadvantage of the

push/enter model is that it makes this attra
tive route mu
h harder, or at least

mu
h less eÆ
ient.

The problem, again, is the pending arguments. Suppose that we want to generate

C. We plainly
annot push the pending arguments onto the C sta
k, be
ause C

ontrols its own sta
k layout. There is just no way to have C sta
k frames separated

by
hunks of pending arguments.

The only way out of this is to maintain a separate sta
k for pending arguments.

Push/Enter vs. Eval/Apply for Higher-order Languages 19

In fa
t, GHC uses C as a
ode generator, and it keeps everything on the separately-

maintained sta
k: pending arguments, saved variables, return addresses, and so on.

Indeed, GHC does not use the C sta
k at all, so we only have to maintain a single

sta
k.

Unfortunately, we thereby give up mu
h of the bene�t of the portable assembly

language. If we do not use the C sta
k, we
annot use C's parameter-passing me
h-

anisms. Instead, we pass arguments either in global variables that are expli
itly

allo
ated in registers (using a g

 dire
tive) or on the expli
it sta
k. We have to

perform our own liveness analysis to �gure out what variables are live a
ross a
all,

and generate
ode to save them to to the expli
it sta
k. In short, we only use C to

ompile basi
 blo
ks, managing the entire
all/return interfa
e manually.

There are other reasons why we
ould not use C's sta
k, however. There is no

easy way to
he
k for sta
k over
ow, or to move sta
ks around (both important

in our
on
urrent Haskell system). C may save live variables a
ross a
all, but

does not generate sta
k des
riptors for the garbage
olle
tor (Se
tion 5.2). Portable

ex
eption handing is tri
ky. And so on.

C--, on the other hand, is a portable assembly language designed spe
i�
ally to

a
t as a ba
k end for high-level-language
ompilers. It provides expli
it and very

general support for tail
alls, garbage
olle
tion, ex
eption handling, and
on
ur-

ren
y, and so addresses many of C's de�
ien
ies. Yet, we have found no general or

lean way to extend C--'s design to in
orporate pending arguments. So, like C, C--

provides no way to push an arbitrary number of words on the sta
k that should

persist beyond the end of the
urrent
all.

The bottom line is this. The pending arguments required by the push/enter model

are in
ompatible with any portable assembly language known to us, ex
ept by using

that language in a way that vitiates many of its advantages. We
ount this as a

serious strike against the push/enter model.

6 Implementing eval/apply

Next, we turn our attention to the implementation details for eval/apply. The

eval/apply model uses
all
ontinuations, of form (� a

1

: : : a

n

), whi
h are repre-

sented by a sta
k frame
onsisting of a return address, together with the argu-

ments a

1

: : : a

n

. This return address is entered when a fun
tion has evaluated to

a value (FUN or PAP), and returns. This is the moment when the
ompli
ated

rules (exa
t,
allk, pap2, and so on) are needed, and that involves quite a lot of

ode. So we do not generate a fresh bat
h of
ode for ea
h
all site; instead, we pre-

generate a range of
all-
ontinuation return addresses, for 1, 2, 3, . . . N arguments.

What if we need to push a
all
ontinuation for more than N arguments? Then

we push a su

ession of
all
ontinuations, ea
h for as many arguments as possible,

given the range of pre-generated return addresses. In e�e
t, this reverts to some-

thing more like the argument-at-a-time fun
tion appli
ation pro
ess, ex
ept that

we deal with the arguments N at a time. We
an measure how often this happens,

and arrange to pre-generate enough
all
ontinuations to
over 99.9% of the
ases

(Se
tion 8). The remainder are handled by pushing multiple
all
ontinuations.

20 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

An important
ompli
ation is that we need di�erent
all
ontinuations when some

of the arguments are unboxed. Why? Be
ause: (a) the
alling
onvention for the

fun
tion that the
ontinuation will
all may depend on the types of its arguments

(e.g. a
oating-point argument might be passed in a
oating-point register); and

(b) the
all-
ontinuation return address must (like any return address) have layout

information to guide the garbage
olle
tor. So
annot get away with just N
ontinu-

ations, but (in prin
iple) we need 3

N

. The \3"
omes from the three basi

ases we

deal with: pointer, 32-bit non-pointer and 64-bit non-pointer. There might well be

more if, for example, a 32-bit
oat was passed in a di�erent register than a 32-bit

integer. Hen
e the importan
e of measurements, to identify the
ommon
ases.

6.1 Generi
 appli
ation in more detail

To be more
on
rete, we will imagine that we
ompile Haskell into C-- (Pey-

ton Jones et al., 1999). We will introdu
e any unusual features of C-- as we go

along. Here is the
ode that the
all f 3 x, where f is an unknown fun
tion, might

generate:

jump stgApplyNP(f, 3, x)

This transfers
ontrol | the \jump" indi
ates a tail
all | to a pre-generated pie
e

of run-time system
ode, stgApplyNP, where the \NP" suÆx means \one 32-bit

non-pointer, and one pointer". The �rst parameter is the address of the
losure

for f. It's just as if the original Haskell
all had been (stgApplyNP f 3 x), where

stgApplyNP is a known fun
tion, so we make a fast
all to it.

The run-time system provides a whole bun
h of stgApply fun
tions, for various

argument
ombinations. Indeed, we generate them by feeding the desired argument

ombinations to a generator program.

What do we do with an unknown
all for whi
h there is no pre-generated

stgApplyX fun
tion? Answer, we just split it into two (or more)
hunks. For exam-

ple, suppose we only had stgApplyX fun
tions for a single argument. Then our
all

f 3 x would
ompile to:

f1 = stgApplyN(f, 3);

jump stgApplyP(f1, x);

Of
ourse, the C-- implementation must arrange to save x a
ross the
all to

stgApplyN.

6.2 The run-time stgApply fun
tions

Figure 5 shows (approximately) is the
ode we generate for stgApplyNP. In this

ode we assume that TYPE(f) is a ma
ro that gets the type �eld from the info table

of heap obje
t f, ARITY(f) gets the arity from the info table of a FUN obje
t, and

so on. CODE(f) gets the fast entry point of the fun
tion, whi
h takes the fun
tion

arguments in registers (plus sta
k if ne
essary).

First, the fun
tion might be a THUNK; in that
ase, we evaluate it (by
alling

Push/Enter vs. Eval/Apply for Higher-order Languages 21

stgApplyNP(f, a, b) {

/* Apply f to arguments a and b */

swit
h TYPE(f) {

ase THUNK:

fun_
ode = CODE(f) ;

f = fun_
ode(f);

/* a,b saved a
ross this
all */

jump stgApplyNP(f, a, b)

ase FUN:

swit
h ARITY(f) {

ase 1: /* Too many args */

fun_
ode = CODE(f) ;

f = fun_
ode(f, a);

/* b saved a
ross this
all */

jump stgApplyP(f, b);

ase 2: /* Exa
tly right! */

fun_
ode = CODE(f) ;

jump fun_
ode(f, a, b);

other: /* Too few args */

...
he
k for enough heap

spa
e to allo
ate PAP...

r = ...build PAP for (f a b)...

return(r)

}

ase PAP:

swit
h PAP_ARITY(f) {

ase 1: /* Too many args */

f = applyPapN(f, a) ;

jump stgApplyP(f, b);

ase 2: /* Just right */

jump applyPapNP(f, a, b)

other: /* Too few args */

...
he
k for enough heap...

r = ...build PAP for (f a b)...

return(r)

} }

Fig. 5. The generi
 apply fun
tion StgApplyNP

its entry point, passing the thunk itself as an argument), before looping around to

stgApplyNP again.

Next,
onsider the FUN
ase, whi
h begins by swit
hing on the arity of the fun
-

tion:

�
ase 2: if it takes exa
tly two arguments, we just jump to the fun
tion's
ode,

22 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

passing the arguments a and b. We also pass a pointer to f, the fun
tion

losure itself, be
ause the free variables of the fun
tion are stored therein.

Note that if we end up taking this route, then the fun
tion arguments might

not even hit the sta
k: a and b
an be passed in registers to stgApplyNP, and

passed again in registers when performing the �nal
all. This is an improve-

ment over push/enter, where arguments to unknown fun
tion
alls are always

stored on the sta
k.

�
ase 1: if the fun
tion takes fewer arguments than the number required by

f | in this
ase there is just one su
h bran
h | we must save the ex
ess

arguments, make the
all, and then apply the resulting fun
tion to the re-

maining arguments. The
ode for an N -ary stgApply must have a
ase for

ea
h i < N . So we get a quadrati
 number of
ases, but sin
e it's all generated

me
hani
ally, and the smaller arities
over almost all
ases, this is not mu
h

of a problem in pra
ti
e.

� other: otherwise the fun
tion is applied to too few arguments, so we should

build a partial appli
ation in the heap.

The third
ase is that fmight be a partial appli
ation. The three
ases are similar to

those for a FUN, but they make use of an auxiliary family of fun
tions applyPapX et

whi
h apply a saturated PAP. This apply operation is not entirely straightforward,

be
ause PAP
ontains a stati
ally-unknown number of arguments. One solution is to

opy the argument blo
k from the PAP, followed by the argument(s) to applyPapX

to a temporary
hunk of memory, and
all a separate entry point for the fun
tion

that expe
ts its arguments in a
ontiguous
hunk of memory. The advantage of

this approa
h is that it requires no knowledge of the
alling
onvention. Another

solution (
urrently used by GHC) is to exploit knowledge of the
alling
onvention

to make a generi

all; in GHC's
ase we just
opy the arguments onto the sta
k.

6.3 Variations on the theme

There are several opportunities for optimisation. First, we
an have spe
ialised FUN

types for fun
tions of small arity (1, 2, 3, say); that way we
ould
ombine the

node-type and arity tests. Se
ond, a top level fun
tion has no (non-
onstant) free

variables, so there is no need to pass its fun
tion
losure as its �rst argument. We

would need another FUN node type to distinguish this
ase. At the time of writing,

GHC does not implement either of these optimisations.

In the FUN
ase of Figure 5 we used a ma
ro CODE(f) to extra
t the fast entry

point of a fun
tion
losure f. Sin
e this is a very
ommon operation, we use this

fast-entry
ode as the info pointer of the
losure (see Figure 3), so that we
an get

the fast-entry
ode with a single memory referen
e. There is a down-side to this

hoi
e, however: fun
tions are no longer self-evaluating. Under push/enter, we had

the
onvention that jumping to the
ode for a
losure would always evaluate the

losure or, in the
ase of a fun
tion, apply the fun
tion to the available arguments

on the sta
k and return the result. Hen
e to evaluate a
losure to head normal form

we
ould just enter the
losure's
ode with no arguments on the sta
k (Su==Sp).

Push/Enter vs. Eval/Apply for Higher-order Languages 23

If we use the fast-entry
ode of a fun
tion as its
losure's info pointer, we
annot

evaluate an arbitrary
losure to head normal form simply by entering it. Instead,

we must �rst
he
k the type of the
losure: if it is a fun
tion we
an return the

result immediately, otherwise we enter the
losure. Fortunately evaluating an ar-

bitrary
losure is rare; most of the time the
ode generator knows the type of the

losure being entered, and
an generate the right kind of eval sequen
e. The
lassi

fun
tion that does require the polymorphi
 eval
ode is seq, whi
h evaluates its

�rst argument without knowing its type.

An alternative approa
h would be to give every fun
tion
losure an info pointer

that returns immediately, and have a separate entry point in a fun
tion's info table

(a

essed by CODE(f)) for
alling the fun
tion. This would make polymorphi
 eval

ode simpler, but would would result in larger info tables and an extra indire
tion

when
alling an unknown fun
tion.

7 A qualitative
omparison

Having des
ribed the two implementations, we now summarise the main di�eren
es.

In favour of eval/apply:

� When
alling an unknown fun
tion with the right number of arguments, the

arguments
an be passed in registers rather than on the sta
k. For a register-

ri
h ar
hite
ture, this may be the strongest single reason for using eval/apply;

the push/enter approa
h pretty mu
h for
es arguments to unknown fun
tions

to be passed on the sta
k.

� Mu
h easier to map to a portable assembly language, su
h as C-- or C.

� No need to distinguish return addresses from heap pointers. This is a big win

(Se
tion 5.2.1).

� No tagging for non-pointers; this redu
es
omplexity and makes sta
k frames

and PAPs a little smaller.

� No need for the Su pointer, perhaps saving a register; and update frames

be
ome one word smaller, be
ause there is no need to save Su.

� Be
ause the arity-mat
hing burden is on the
aller, not the
allee, run-time

system support fun
tions,
allable from Haskell, be
ome more
onvenient to

write.

In favour of push/enter:

� Appears to be a natural �t with
urrying.

� Eliminates some PAP allo
ations
ompared to eval/apply.

� The payload of a PAP obje
t
an be self-des
ribing be
ause the arguments are

tagged. In
ontrast, an eval/apply PAP obje
t relies on its FUN to des
ribe the

layout of the payload; this results in some extra
ompli
ation in the garbage

olle
tor, and an extra global invariant: a PAP must
ontain a FUN, it
annot

ontain another PAP

3

.

3

This restri
tion might not apply in general, but in GHC's
ase it is for
ed by an invariant of the

24 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

Plain di�eren
es:

� Push/enter requires a slow entry point for ea
h fun
tion, in
orporating the

argument-satisfa
tion
he
k. Eval/apply does not need this, but (in some ren-

ditions) may require an entry point in whi
h the arguments are in a
ontiguous

memory blo
k.

� The Su pointer saved in ea
h update frame makes it easy to walk the
hain of

update frames. That is useful for two reasons. First, at garbage
olle
tion time

we want to bla
k-hole any thunks that are under evaluation (Jones, 1992). Se
-

ond, a useful optimisation is to
ollapse sequen
es of adja
ent update frames

into a single frame, by
hoosing one of the obje
ts to be updated and making

all the others be indire
tions to it. Under eval/apply, however, one
an still

�nd the update frames by a single sta
k walk; but it may take a little longer

be
ause the sta
k-walk must examine other frames on the sta
k in order to

hop over them. Noti
e, though, that there is nothing to stop us adding an Su

register, pointing to the topmost update frame, to the eval/apply model, if

that turned out to be faster for the reasons just des
ribed. We have not tried

this.

From this list we
on
lude two things. First, it is essentially impossible to
ome to

a rational
on
lusion about performan
e based on these di�eren
es. The only way

is to build both both models and measure the di�eren
e. Se
ond, the eval/apply

model seems to have de
isive advantages in terms of
omplexity. Yes, the stgApplyX

generator is a new
omponent, but it is well isolated, and not too large (it amounts

to some 580 lines of Haskell in
luding
omments). The big wins are that
omplex-

ity elsewhere is redu
ed, and it is easier to map the
ode to a portable assembly

language.

The bottom line is this: if eval/apply is no more expensive than push/enter, it is

de�nitely to be preferred.

8 Measurements

Our measurements are made on the Glasgow Haskell Compiler version 5.04 (ap-

proximately; it does not
orrespond exa
tly to any released version). We made

measurements a
ross the entire nofib ben
hmark suite of 88 programs (Partain,

1992), and our tables will give minimum, maximum and mean �gures a
ross the

whole suite. However, for reasons of presentation we
ouldn't in
lude detailed re-

sults for all 88 programs in the tables, so we have left out some of the programs

with less interesting results (but the aggregate results were still
al
ulated using

the whole suite). Outlying results, many of whi
h are dis
ussed in the text, are

highlighted in a grey box.

The nofib ben
hmark suite
ontains programs ranging from mi
ro-ben
hmarks

ompa
ting GC algorithm used, whi
h requires that the layout of any obje
t be determined by

its info table and other obje
ts rea
hable by at most one pointer indire
tion. In any
ase, having

to traverse a
hain of obje
ts to determine the layout of a PAP adds another linear
omponent

to the worst-
ase performan
e in the GC.

Push/Enter vs. Eval/Apply for Higher-order Languages 25

(tak, rfib) to larger programs solving \real" problems: for example,
a
heprof

is a program for automati
ally translating assembly
ode to insert instru
tions

for dynami

a
he pro�ling,
ompress is an implementation of LZW
ompression,

prolog is a Prolog interpreter, and hidden is a program for hidden-line removal in

3D rendering. We make no apology for in
luding the mi
ro-ben
hmarks: in pra
ti
e

even the larger programs often have small inner loops, and the mi
ro-ben
hmarks

are useful for illustrating the boundary
ases.

Where appropriate, we will attempt to explain any unusual or extreme results.

We investigated individual programs using the following tools:

� GHC has a lightweight pro�ling system
alled \ti
ky-ti
ky" pro�ling, whi
h

ounts the o

urren
e of
ertain events during a program run. The events

in
lude global
ounts su
h as the number of allo
ations of various kinds and

the number of updates, but also per-fun
tion
ounts of the number of
alls

and allo
ations within ea
h fun
tion. The latter are parti
ularly useful for

identifying inner loops for further investigation.

� Ca
hegrind (part of Valgrind (Seward, n.d.)), the tool we use for
ounting

instru
tions and memory referen
es,
an also give these
ounts at the gran-

ularity of a labelled
ode blo
k. We found it parti
ularly helpful to
ompare

these results between the push/enter and eval/apply versions of a program,

to qui
kly identify se
tions of
ode that were performing a di�erent number

of operations | most blo
ks remained the same or
lose between the two

models. Of
ourse instru
tion
ounts and memory referen
es are only a rough

indi
ator of real performan
e, though.

8.1 The anatomy of
alls

First of all, we present data on the dynami
 frequen
y of the di�erent
ategories of

fun
tion
all. These �gures are independent of evaluation model; they are simply

fa
ts about programs in our ben
hmark suite, as
ompiled by GHC.

Figure 6 shows the relative dynami
 frequen
y of:

� Calls to an unknown (lambda-bound or
ase-bound) fun
tion whi
h turned

out to be unevaluated (as a per
entage of the total
alls),

� Calls to unknown fun
tions with (a) too few arguments, (b) exa
tly the right

number of arguments, and (
) too many arguments (ea
h as a per
entage of

the total
alls),

� Calls to a known (let-bound) fun
tion with (a) too few arguments, (b) exa
tly

the right number of arguments, and (
) too many arguments (again, ea
h as

a per
entage of the total
alls).

The last six
olumns of the table together
over all
alls, and add up to 100%.

Note that \known" simply means that a let(re
) binding for the fun
tion is stat-

i
ally visible at the
all site; the fun
tion may be bound at top level, or may be

nested. GHC propagates arity information a
ross module boundaries, whi
h greatly

in
reases the number of known
alls. Also noti
e that every over-saturated appli
a-

tion of a known or unknown fun
tion gives rise to a subsequent
all to the unknown

26 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

Uneval Unknown (%) Known (%)

Program Lines Calls (%) < = > < = >

anna 9561 4047084 0.8 0.0 25.5 0.0 0.6 73.8 0.0

atom 188 10237920 0.0 0.0 5.2 0.0 0.0 94.8 0.0

boyer2 723 295984 0.0 0.0 0.0 0.0 0.0 100.0 0.0

boyer 1014 1387158 0.5 0.0 10.5 0.0 0.5 88.9 0.0

bspt 2141 273402 0.0 0.0 1.9 0.0 0.0 98.1 0.0

a
heprof 2151 19597901 0.3 0.0 25.2 0.0 0.2 74.5 0.0

i
helli 244 5790007 0.0 0.0 19.3 0.0 0.0 80.7 0.0

ir
sim 668 30421443 0.0 0.0 14.5 0.0 0.0 85.5 0.0

lausify 179 2186312 0.0 0.0 1.7 0.0 0.0 98.3 0.0

omp lab zift 884 8581682 0.0 0.0 20.9 0.0 0.0 79.1 0.0

ompress2 199 1721537 0.0 0.0 2.6 0.0 0.0 97.4 0.0

ompress 736 7816380 0.0 0.0 1.6 0.0 0.0 98.4 0.0

se 464 24878 1.4 0.4 7.4 0.0 0.2 91.7 0.3

exp3 8 93 8079893 0.0 0.0 0.0 0.0 0.0 100.0 0.0

expert 525 10755 0.3 0.2 19.6 0.0 0.1 80.1 0.1

fem 1286 1440406 0.0 0.0 5.4 0.0 0.0 94.6 0.0

�bheaps 296 1548796 5.1 5.8 8.3 0.0 0.0 85.3 0.6

uid 2401 392664 2.4 0.0 48.3 0.0 0.1 50.4 1.2

fulsom 1397 4333456 0.4 0.0 25.0 0.0 0.2 74.8 0.0

gamteb 701 2239319 0.0 0.0 7.1 0.0 0.1 91.2 1.6

gen�t 502 1587626 0.0 0.0 7.2 0.0 0.0 92.8 0.0

gg 812 397004 0.0 0.0 23.5 0.0 0.1 76.4 0.1

grep 356 102 4.9 4.9 27.5 0.0 3.9 62.7 1.0

hidden 521 36030177 0.1 0.0 13.8 0.0 0.0 86.1 0.1

hpg 2067 2470202 5.3 3.0 21.1 1.1 2.0 72.7 0.1

infer 594 1823681 0.1 0.0 18.8 0.0 0.1 81.1 0.0

integer 68 125287103 0.0 0.0 49.3 0.0 0.0 50.7 0.0

knights 887 233593 0.0 0.1 40.1 0.0 0.0 59.8 0.0

l
ss 60 4155607 0.0 0.0 49.0 0.0 0.0 51.0 0.0

life 53 8395883 0.0 0.0 8.2 0.0 0.0 91.8 0.0

lift 2033 21173 18.7 0.5 31.5 0.3 3.6 63.9 0.1

list
opy 527 6372584 0.0 0.0 1.8 0.0 0.0 98.2 0.0

maillist 175 629501 9.5 8.3 35.3 0.0 1.9 53.9 0.5

mandel 498 8396707 0.3 0.0 62.9 0.0 0.0 37.1 0.0

mkhprog 803 59097 0.4 0.3 2.9 0.0 0.0 96.8 0.0

nu
lei
2 3391 870440 0.0 0.0 10.1 0.0 0.0 89.9 0.0

para 1781 30122407 0.0 0.0 45.0 0.0 0.0 55.0 0.0

paraÆns 91 1254290 0.0 0.0 49.5 0.0 0.0 50.5 0.0

parser 3139 865802 0.6 0.0 37.4 0.2 0.0 62.4 0.0

parstof 1280 184871 0.2 0.0 52.9 0.0 0.0 47.1 0.0

pi
 527 168978 1.3 0.0 14.8 0.0 0.0 85.0 0.1

pretty 265 1562 3.6 3.6 9.2 0.0 0.1 87.1 0.1

prolog 641 64723 2.1 0.1 24.9 0.1 2.0 73.0 0.0

puzzle 170 7936980 0.0 0.0 31.8 0.0 0.0 68.2 0.0

reptile 1522 359506 0.2 0.1 4.6 0.0 0.0 95.2 0.1

rsa 74 369801 0.0 0.0 0.0 0.0 0.0 100.0 0.0

s

 100 629 1.1 1.0 49.1 0.0 0.2 49.8 0.0

s
hed 555 856125 0.0 0.0 0.0 0.0 0.0 100.0 0.0

s
s 585 28431366 0.5 0.0 17.3 0.0 0.0 82.5 0.2

simple 1129 14398577 0.0 0.0 49.2 0.0 0.0 50.8 0.0

sorting 162 40322 0.0 0.0 22.3 0.0 0.0 77.7 0.0

symalg 1146 80079 0.1 0.0 1.2 0.0 0.0 98.7 0.1

tak 16 2494307 0.0 0.0 0.0 0.0 0.0 100.0 0.0

treejoin 121 3604474 0.0 0.0 10.5 0.0 0.0 89.5 0.0

type
he
k 658 18043268 0.5 0.0 27.3 0.0 0.5 72.2 0.0

veritas 11124 21133 1.9 0.4 6.9 0.0 0.1 92.4 0.2

wang 357 1325827 0.0 0.0 4.8 0.0 0.0 95.2 0.0

x2n1 35 1289082 0.0 0.0 78.8 0.0 0.0 21.2 0.0

Min 0.0 0.0 0.0 0.0 0.0 21.2 0.0

Max 18.7 8.3 78.8 1.1 3.9 100.0 1.6

Average 1.0 0.4 20.3 0.0 0.2 79.0 0.1

Fig. 6. Anatomy of
alls

Push/Enter vs. Eval/Apply for Higher-order Languages 27

fun
tion returned as its result; these unknown
alls are in
luded in one of the \un-

known
alls"
olumns. For example, ea
h exe
ution of the
all id f x would
ount

as one
all to a known fun
tion (id) with too many arguments, and one
all to the

unknown fun
tion returned by id.

These numbers lead to three immediate
on
lusions. First, known
alls are
om-

mon, and often dominate, but unknown
alls
an be the majority in some programs

(e.g. x2n1, mandel). Unknown
alls must be handled eÆ
iently. Se
ond, known
alls

are almost always saturated; the eÆ
ien
y of handling under- or over-saturated

known
alls is not important, and they
an be treated like unknown
alls (
.f. Se
-

tion 4.3). Third, even unknown
alls are almost always to an evaluated fun
tion

with the
orre
t number of arguments, so it is worth optimising this
ase. For ex-

ample, we
an pass the arguments to the generi
 apply fun
tion in registers, in the

hope that it
an just pass them dire
tly to the fun
tion (our
urrent implementa-

tion does not
urrently perform this optimisation, however, as we explain in more

detail in Se
tion 8.3). Conversely, if under- or over-saturated unknown
alls are

expensive, this is unlikely to a�e
t the �nal runtime signi�
antly; and in fa
t it is

in these
ases that eval/apply
an be more expensive than push/enter.

Another thing to note from these results is the wide variety of behaviours; even

amongst the larger programs there is signi�
ant variation in the proportion of un-

known
alls made: bspt with 2141 lines makes only 1.9% unknown
alls, but fluid

with 2401 lines makes 48.3% unknown
alls. One might perhaps guess that larger

programs would exhibit \average" behaviour, but this is not reliably the
ase; exe-

ution is often dominated by a handful of inner loops.

There are few remarkable results in Table 6. An extreme out-lier is x2n1, whi
h

has the highest proportion of unknown fun
tion
alls (78.8%). The x2n1 program is

mi
ro-ben
hmark
hara
terised by lots of
oating point operations. The inner loop

ontains this fun
tion:

f :: Int -> Complex Double

f n = mkPolar 1 ((2*pi)/fromIntegral n) ^ n

The fun
tion mkPolar ends up fully inlined and redu
ed to a
onstru
tor appli
a-

tion and a
ouple of primitive
oating point operations, similarly the division and

fromIntegral are redu
ed to primitives.

The exponentiation operator, (^), unfortunately remains overloaded. It is de�ned

in the Prelude, and makes
alls to overloaded fun
tions on ea
h iteration; and by

de�nition ea
h
all to an overloaded fun
tion will be unknown at the
all site.

Overloading is a plentiful sour
e of unknown fun
tion
alls. Other optimisations

(su
h as spe
ialisation)
ould improve the quality of the
ode here, but that is an

orthogonal issue as far as this paper is
on
erned.

8.2 Argument patterns

Figure 7
lassi�es the unknown
alls of Figure 6, by their argument patterns. This

data is helpful in de
iding how many di�erent versions of stgApply to generate.

Only the unknown
alls are in
luded: we don't
are about known fun
tions be
ause

28 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

Argument pattern (% of all unknown
alls)

Program v p pv pp ppv ppp pppv pppp ppppp OTHER

anna 0.0 29.6 0.0 69.3 0.0 1.1 0.0 0.0 0.0 0.0

atom 0.0 4.8 0.0 0.6 0.0 94.6 0.0 0.0 0.0 0.0

boyer2 58.3 41.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

boyer 0.0 92.8 0.0 7.2 0.0 0.0 0.0 0.0 0.0 0.0

bspt 0.5 70.2 0.0 6.2 0.0 11.8 0.0 11.3 0.0 0.0

a
heprof 0.0 91.6 0.0 8.1 0.0 0.3 0.0 0.0 0.0 0.0

i
helli 0.0 10.4 0.0 89.6 0.0 0.0 0.0 0.0 0.0 0.0

ir
sim 0.0 70.2 0.0 8.6 0.0 21.2 0.0 0.0 0.0 0.0

lausify 0.0 0.4 0.0 99.6 0.0 0.0 0.0 0.0 0.0 0.0

omp lab zift 0.0 3.4 0.0 96.6 0.0 0.0 0.0 0.0 0.0 0.0

ompress2 1.1 98.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ompress 0.4 73.9 0.0 12.9 0.0 12.7 0.0 0.0 0.0 0.0

se 0.4 59.2 0.0 9.9 0.0 30.6 0.0 0.0 0.0 0.0

exp3 8 5.6 59.3 0.0 34.5 0.6 0.0 0.0 0.0 0.0 0.0

expert 2.5 62.6 0.1 32.4 0.4 2.0 0.0 0.0 0.0 0.0

fem 0.0 91.3 0.0 8.1 0.0 0.6 0.0 0.0 0.0 0.0

�bheaps 0.0 43.2 13.7 43.1 0.0 0.0 0.0 0.0 0.0 0.0

uid 0.0 61.9 0.0 34.2 0.0 3.9 0.0 0.0 0.0 0.0

fulsom 0.0 17.5 0.0 82.5 0.0 0.0 0.0 0.0 0.0 0.0

gamteb 0.1 96.4 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0

gen�t 0.0 1.6 0.0 98.4 0.0 0.0 0.0 0.0 0.0 0.0

gg 0.0 53.7 0.0 46.3 0.0 0.0 0.0 0.0 0.0 0.0

grep 58.6 34.5 3.4 0.0 3.4 0.0 0.0 0.0 0.0 0.0

hidden 0.2 48.7 0.0 14.3 0.0 36.8 0.0 0.0 0.0 0.0

hpg 24.1 55.2 0.0 10.4 2.7 1.4 6.2 0.0 0.0 0.0

infer 0.0 51.8 0.0 48.1 0.0 0.1 0.0 0.0 0.0 0.0

integer 0.0 50.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0

knights 0.0 4.1 0.0 95.9 0.0 0.0 0.0 0.0 0.0 0.0

l
ss 0.0 1.1 0.0 0.0 0.0 98.9 0.0 0.0 0.0 0.0

life 0.0 3.3 0.0 0.2 0.0 96.5 0.0 0.0 0.0 0.0

lift 0.1 57.9 0.0 40.4 0.0 1.6 0.0 0.0 0.0 0.0

list
opy 0.2 28.5 0.0 71.3 0.0 0.0 0.0 0.0 0.0 0.0

maillist 31.8 35.1 1.1 1.1 15.5 14.4 1.1 0.0 0.0 0.0

mandel 0.0 13.4 0.0 86.6 0.0 0.0 0.0 0.0 0.0 0.0

mkhprog 12.2 48.7 2.1 31.5 3.7 1.9 0.0 0.0 0.0 0.0

nu
lei
2 0.0 56.0 0.0 44.0 0.0 0.0 0.0 0.0 0.0 0.0

para 0.0 22.5 0.0 77.4 0.0 0.0 0.0 0.0 0.0 0.0

paraÆns 0.0 99.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

parser 0.0 11.5 0.0 88.5 0.0 0.0 0.0 0.0 0.0 0.0

parstof 0.0 94.3 0.0 5.7 0.0 0.0 0.0 0.0 0.0 0.0

pi
 8.7 75.8 0.0 15.4 0.0 0.0 0.1 0.0 0.0 0.0

pretty 3.6 2.6 0.0 93.9 0.0 0.0 0.0 0.0 0.0 0.0

prolog 0.4 78.2 0.0 21.3 0.0 0.0 0.0 0.0 0.0 0.0

puzzle 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

reptile 0.2 72.1 0.0 26.9 0.0 0.9 0.0 0.0 0.0 0.0

rsa 29.1 69.6 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

s

 2.9 12.8 0.0 84.3 0.0 0.0 0.0 0.0 0.0 0.0

s
hed 58.3 41.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

s
s 1.4 19.6 0.0 79.0 0.0 0.0 0.0 0.0 0.0 0.0

simple 0.0 20.1 0.0 79.9 0.0 0.0 0.0 0.0 0.0 0.0

sorting 0.3 66.5 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0

symalg 8.3 55.0 0.0 36.8 0.0 0.0 0.0 0.0 0.0 0.0

tak 1.9 61.8 0.0 35.7 0.6 0.0 0.0 0.0 0.0 0.0

treejoin 0.2 99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

type
he
k 0.0 89.5 0.0 10.5 0.0 0.0 0.0 0.0 0.0 0.0

veritas 1.2 47.3 0.0 50.2 0.0 1.1 0.0 0.0 0.3 0.0

wang 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0

x2n1 0.0 17.6 0.0 82.4 0.0 0.0 0.0 0.0 0.0 0.0

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Max 58.6 100.0 13.7 100.0 15.5 98.9 6.2 11.3 0.3 0.1

Average 5.2 54.4 0.3 34.4 0.3 5.2 0.1 0.1 0.0 0.0

Fig. 7. Argument patterns

Push/Enter vs. Eval/Apply for Higher-order Languages 29

we generate inline
ode for their
alls. The
olumn headings use one
hara
ter per

argument to indi
ate the pattern, with the key: p = pointer, v = void. pp, for

example, means a
all with two pointer arguments.

A \void" argument is an argument of size zero; su
h arguments are used for the

\state token" used in the implementation of the IO and ST monads. The state token

is always passed as the last argument, whi
h is why we need ppv but not pvp and

vpp, for example.

The table has
olumns for the nine most popular argument patterns, and a single

olumn (OTHER) whi
h
overs all the other patterns. The general
on
lusion is
lear:

9 argument patterns is enough to
ope with 99.99% of all situations. Unknown
alls

involving unboxed arguments (integers,
oats et
.) turn out to be very rare: they

all end up in the OTHER
olumn, whi
h at most a

ounted for 0.1% of the total

unknown
alls.

Some programs have unusual results:

� fibheaps has an unusually large number of pv
alls. A simple inspe
tion of

the program shows that it
ontains a lot of
ode in the ST monad, whi
h

a

ounts for the high use of the pv pattern.

� maillist does a lot of �le manipulation work in the IO monad. This a

ounts

for its use of the ppv pattern.

� boyer2, grep and s
hed appeared to perform a high proportion of v
alls,

but in fa
t these programs performed a very low number of unknown
alls in

total (26 for grep, and 12 for boyer2 and s
hed). It just so happened that

the small amount of IO monad
ode at the top level of the program a

ounted

for many of those unknown
alls.

Several of the programs appear to have a preferen
e for one or two of the argument

patterns. For example, wang performs almost ex
lusively pp
alls. Investigating the

program reveals why: these
alls all
ome from a lo
al
opy of the foldr fun
tion

(this ben
hmark is automati
ally generated
ode):

f_foldr::(t1 -> t2 -> t2) -> t2 -> [t1℄ -> t2;

f_foldr a_op a_r [℄=a_r;

f_foldr a_op a_r (a_a:a_x)=a_op a_a (f_foldr a_op a_r a_x);

Calls to the unknown fun
tion a_op in the body of f_foldr are pp
alls, and by

looking ba
k at Figure 6 we
an see that they were all in fa
t
alls to fun
tions of

two arguments.

The other programs whi
h have a high proportion of one parti
ular argument

pattern are similar: there is often a single unknown
all in the inner loop of the

program.

8.3 The bottom line

What really matters in the end is time and spa
e. Figure 8 shows the per
entage

hange we measured in moving from push/enter to eval/apply. The runtime �gures

are wall-
lo
k times, averaged over 5 runs, dis
ounting any programs that ran for

30 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

Eval/apply
hange (�%)

Code Heap Memory

Program size Allo
 Instrs reads writes Runtime

anna -5.1 +1.7 +2.0 +2.6 -3.3 -0.8

atom -0.8 +0.0 -7.4 -5.2 -12.0 -5.5

boyer +4.1 +0.5 -2.5 -1.3 -10.5 -

boyer2 +4.0 +0.0 -2.7 -0.1 -3.2 -

bspt -0.8 -0.0 -6.1 -3.6 -8.3 -

a
heprof -4.0 +0.4 +10.8 +10.3 +0.3 +4.1

i
helli +2.9 -0.0 -1.8 +0.4 -6.1 -2.4

ir
sim +0.3 -0.0 +0.3 +1.1 -9.5 -4.7

lausify +6.1 -0.0 -1.5 +2.0 +0.8 -

omp lab zift +3.3 -0.0 -1.3 +0.2 -9.6 -7.5

ompress +2.2 -0.0 +1.8 +3.2 +3.7 +1.8

ompress2 +3.0 -0.0 -0.7 -0.4 -0.3 -1.9

se +5.0 -0.0 -5.9 -4.3 -8.8 -

exp3 8 +1.5 +0.0 -2.5 +1.6 -9.8 -23.2

expert +1.3 -2.4 +0.6 +1.7 -6.3 -

fem -0.9 +0.0 -5.6 -3.3 -7.8 -

�bheaps +1.1 +0.9 +3.4 +4.5 -3.1 -

uid -2.8 +0.1 +5.8 +5.9 -4.9 -

fulsom -2.2 +0.1 -2.5 -2.4 -8.0 -3.7

gamteb -0.8 +0.1 -0.5 +0.8 -0.8 +2.2

gen�t +5.8 -0.0 -8.1 -6.3 -11.0 -

gg -2.6 +0.1 -0.8 +0.5 -5.1 -

grep +1.8 +0.1 -0.0 +0.0 -0.5 -

hidden -2.4 +0.0 +3.3 +4.0 -6.1 +2.1

hpg -2.8 +0.2 +4.0 +5.4 -4.6 -5.6

infer -1.6 +0.2 +2.5 +2.4 -1.0 +0.0

integer +2.0 +0.0 +3.8 +3.5 -13.7 -0.8

knights +2.7 -0.2 +7.5 +6.1 -0.5 -

l
ss +1.4 -0.0 +1.8 +0.4 -6.9 -0.4

life +6.5 +0.0 -5.0 -3.5 -9.3 -5.4

lift +2.5 -0.1 -2.2 -1.2 -8.9 -

list
opy +5.6 +0.0 -10.2 -8.1 -11.3 -2.4

maillist +3.4 +0.0 +3.8 +3.4 -3.6 -

mandel -0.6 +0.0 +4.4 +3.4 -5.2 +3.3

mkhprog +2.5 +0.0 -6.8 -4.4 -8.4 -

nu
lei
2 +0.6 -0.0 -4.3 -3.3 -7.1 -8.6

para +2.2 -0.0 +6.2 +5.6 -8.8 +6.9

paraÆns +0.7 -0.0 +1.0 +0.8 -1.9 +1.1

parser -1.1 -0.0 +1.8 +2.6 -4.3 -

parstof -0.3 +0.0 +11.6 +9.4 -3.6 -

pi
 -0.8 -0.0 +0.2 +0.7 -1.1 -

pretty +0.8 -0.0 -1.3 -0.8 -5.9 -

prolog +1.5 +2.8 +5.2 +5.4 -1.2 -

puzzle +5.3 -0.0 +1.2 +1.1 -5.9 -12.1

reptile -1.9 -0.0 -7.7 -4.9 -8.8 -

rsa +0.5 -0.0 +1.3 +1.6 +1.5 +0.0

s

 +7.7 +0.1 +1.2 +1.2 -1.0 -

s
hed +6.2 -0.0 -1.2 +0.2 -7.6 -

s
s -2.4 +0.0 +0.7 +1.4 -2.4 -3.6

simple -1.8 +0.0 +3.5 +2.5 -4.7 +1.5

sorting +3.9 -0.0 +1.8 +2.6 -5.3 -

symalg -1.9 +0.0 +0.0 +0.1 +0.2 -3.1

tak +1.9 +0.4 +9.1 +20.8 +21.4 -

treejoin +3.6 +0.0 -2.7 -1.6 -5.7 -0.9

type
he
k +4.6 +1.2 +6.8 +6.7 -4.8 +3.1

veritas -5.2 -0.7 -4.6 -3.5 -8.0 -

wang +0.8 -0.0 -1.9 -1.6 -4.7 -3.0

x2n1 -0.4 -0.0 +5.5 +3.9 -5.9 -20.5

Min -5.2 -2.4 -10.2 -8.1 -13.7 -23.2

Max +7.7 +2.8 +11.6 +20.8 +21.4 +6.9

Geometri
 Mean +1.8 +0.1 +0.0 +1.1 -4.9 -2.8

Fig. 8. Spa
e and time

Push/Enter vs. Eval/Apply for Higher-order Languages 31

less than 0.5 se
onds on our 1GHz Pentium III (around half of the suite). The

ma
hine was otherwise unloaded at the time of the test.

Somewhat to our surprise, there is only a small di�eren
e between the two models,

with eval/apply edging out push/enter by around 2-3% of runtime on average. We

dis
uss the runtime di�eren
es in more detail in the rest of this se
tion.

The table also gives di�eren
es in
ode size, heap allo
ations, instru
tions exe-

uted and memory read/write referen
es. Code size di�eren
es are due to two main

fa
tors:

� In
reased size of the runtime due to the addition of the stgApply fun
tions.

� Redu
tion of the size of individual
ompiled modules, due to the removal of

the per-fun
tion slow entry
ode.

In small programs, the in
reased size of the runtime outweighs the per-module

redu
tion, and we see a small overall in
rease in
ode size. On larger programs (e.g.

anna, veritas) the per-module redu
tion starts to win out, and we see a redu
tion

in
ode size.

Heap allo
ation is largely una�e
ted by the
hange from push/enter to eval/apply,

as
an be seen in the \Allo
"
olumn of Figure 8. The small
hange in allo
a-

tion is the di�eren
e between two fa
tors pulling in opposite dire
tions. Firstly,

eval/apply will allo
ate a PAP when returning a fun
tion applied to too few ar-

guments, whereas push/enter may get away without heap allo
ation be
ause the

fun
tion
an �nd its missing arguments on the sta
k. Hen
e eval/apply will allo
ate

more PAPs. Se
ondly, however, the PAPs in eval/apply may be slightly smaller than

those for push/enter, be
ause there is no need to tag their non-pointer
omponents

(Se
tion 4.4).

Instru
tions and memory referen
es were measured using the Ca
hegrind tool,

whi
h is a part of the Valgrind dynami
 program analysis tool-set. Ca
hegrind

has the ability to produ
e per-fun
tion instru
tion and memory referen
e
ounts,

whi
h we used to try to narrow down and explain di�eren
es in real-time perfor-

man
e. When examining programs in this way, we found that di�eren
es between

the push/enter and eval/apply versions of programs fell into the following
ate-

gories:

� Updates. Under eval/apply, update frames are one word smaller than under

push/enter (2 words instead of 3), be
ause there is no Su register to save in

the frame. Furthermore, in the x86 implementation on whi
h these results

were taken, the Su \register" was a
tually stored in a memory lo
ation due

to the la
k of real ma
hine registers. Both of these fa
tors lead to redu
ed

memory traÆ
 when Su is eliminated (Figure 8).

� Walking the
hain of update frames. The bene�t due to the redu
tion in

the size of update frames is balan
ed to some extent by the extra work that

has to be done when traversing the
hain of update frames on the sta
k, as

des
ribed in Se
tion 7.

� Unknown
all overhead. The di�eren
e in unknown
all behaviour shows

up as a high instru
tion
ount in the stgApply routines for eval/apply,
om-

pared to instru
tions spread out amongst the slow entry points of the fun
tions

32 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

being
alled in push/enter. An unknown
all in eval/apply will be slightly

more expensive be
ause the generi
 apply
ode needs to extra
t the arity of

the fun
tion from the fun
tion's info table, whereas in push/enter a fun
tion

stati
ally knows its own arity. Comparing the totals gives instru
tion
ounts

that are roughly the same, with eval/apply perhaps taking a few more instru
-

tions in unknown
all overhead. However, we expe
t there to be a performan
e

bene�t due to the extra
ode lo
ality in the eval/apply version.

� Calling
onventions. In general, when
alling a fun
tion, our
ode generator

dedi
ates one register to pass the address of the fun
tion
losure. This is

unne
essary in the
ase of a top-level fun
tion, whi
h has no free variables,

so in prin
iple it would be possible to re-use the fun
tion-pointer register as

an argument register for
alls to top-level fun
tions.

For push/enter we implemented this optimisation, so that top-level fun
tions

have a di�erent
alling
onvention than non-top-level ones. However, under

eval/apply we found that a
onsistent
alling
onvention for both top-level

and non-top-level fun
tions avoided a lot of
omplexity in the stgApply fun
-

tions. Moreover, if the
alling
onvention for all fun
tions is the same, we
an

adopt that same
alling
onvention for the stgApply fun
tions, and hen
e op-

timise the
ommon
ase where the fun
tion is evaluated and has the
orre
t

arity, and stgApply is just transferring
ontrol dire
tly to the fun
tion. In

pra
ti
al terms, this means we
an pass arguments in registers to stgApply,

and stgApply
an simply jump to the entry
ode for the fun
tion.

On the x86 ar
hite
ture, in fa
t there are no registers available for parameter

passing, although we do have a ma
hine register for passing the address of the

fun
tion
losure. This means that with eval/apply, no arguments to top-level

fun
tions are passed in registers,
ompared to one argument with push/enter.

We do not have measurements that isolate the e�e
t of this di�eren
e taken

by itself, but we believe it to have little real e�e
t on run-times. In some of

the programs we investigated we saw some small savings in push/enter due

to the argument register, and we also saw
ases where it made the
ode worse

(be
ause the register had to be immediately saved on the sta
k on entry to

the fun
tion, perhaps requiring an extra sta
k
he
k).

� Entry
onvention. In Se
tion 6.3 we dis
ussed the fa
t that we
hose to

make the info pointer of a fun
tion
losure into its fast-entry
ode, at the

ost of extra tests in polymorphi
 eval
ode. This de
ision a�e
ts the para

ben
hmark, as we dis
uss below.

We
an now o�er some explanation for some of the programs with outlying results

in Figure 8, in terms of the fa
tors outlined above:

� exp3_8 was 23.2% faster. This is largely due to the fa
t that exp3_8 spends

most of its time doing updates. In this
ase, the extra memory reads when

traversing the update frame
hain balan
e out the memory reads saved by the

smaller size of update frames, but the di�eren
e in writes is mu
h greater.

� x2n1 was 20.5% faster. These savings again appear to be mostly due to im-

provements in the update
ode: the heaviest-hit basi
 blo
k in x2n1 is the

Push/Enter vs. Eval/Apply for Higher-order Languages 33

update routine. There are lots of small
hanges in instru
tion
ounts for basi

blo
ks a
ross this program however, so this is probably not the whole story.

This program performs a lot of unknown
alls, and so we see a lot of a
tivity

in the stgApply routines in the eval/apply version,
ompared with a
tivity

spread a
ross the slow entry points for various fun
tions in the push/enter

ase, as we would expe
t. We also noti
ed some di�eren
es due to
alling

onventions.

� puzzle was 12.1% faster. Again, updates dominate the runtime, and

eval/apply
onsequently gains a bonus.

� para was 6.9% slower with eval/apply. There are some savings in the update

ode as usual, but there are some losses in the unknown
all
ode. There are

some further losses due to having to
he
k
losure types for an eval in the

runtime (see entry
onventions above). Interestingly, while investigating this

program we dis
overed one pla
e in the eval/apply version of the runtime

whi
h was
he
king the
losure type for an eval unne
essarily; �xing that

redu
ed the di�eren
e in instru
tions for this test from +6:2% to +3:2%, but

did not have any e�e
t on runtime

4

.

On a register-ri
h ar
hite
ture, a major bene�t of the eval/apply approa
h is that

it be
omes possible to use registers for argument-passing in a
all to an unknown

fun
tions, by using registers to pass arguments to the stgApply family of fun
tions.

Doing this is pretty mu
h impossible under push/enter.

We are unable to quantify this e�e
t, however, be
ause our
urrent implemen-

tation does not take advantage of this optimisation. The trouble is that on x86,

our primary implementation ar
hite
ture, there are very few registers in the �rst

pla
e, and this shortage is exa
erbated by our use of C as a target language. The

few registers that we
an use ex
lusively (by using C
ompiler extensions) already

have important roles in our exe
ution model | the sta
k pointer and heap pointer,

for example | so there are no registers left for argument passing. This restri
-

tion would not apply to a C-- implementation, be
ause C-- has
omplete
ontrol

over the
alling
onvention, and hen
e is free to use general-purpose registers for

argument passing.

In short, on a register-ri
h ar
hite
ture we believe that eval/apply would out-

perform push/enter by a signi�
antly greater margin than on x86. It would be

interesting further work to quantify this margin.

9 Related work

Two of the most popular and in
uential abstra
t ma
hines for lazy languages, the

G-ma
hine (Johnsson, 1984) and the Three Instru
tion Ma
hine (TIM) (Fairbairn

&Wray, 1987), both use push/enter. As a result, many
ompilers for lazy languages,

in
luding GHC and hb
, use push/enter.

However Fax�en's OCP
ompiler for the lazy language Plain uses eval/apply

4

We did not re-run the entire testsuite with this
hange.

34 Simon Marlow and Simon Peyton Jones Mi
rosoft Resear
h, Cambridge

(Fax�en, 1997). Rather than have generi
 stgApplyXX appli
ation pro
edures, OCP

reates spe
ialised fun
tion entry points. For ea
h fun
tion f of arity n, and for ea
h

i < n; j <= n� i, OCP makes an entry point f_ij that expe
ts to �nd i arguments

in a PAP obje
t, and j extra arguments passed in registers. That looks like an aw-

ful lot of entry points, but a global
ow analysis allows OCP to prune many entry

points that
annot be used. The possibility of su
h spe
ialisation is an additional

bene�t of eval/apply (Boquist (Boquist, 1999) des
ribes an extreme version). Eager

Haskell, an unusual implementation of Haskell based on eager evaluation, also uses

eval/apply (Maessen, 2002).

Caml, a
all-by-value language, uses push/enter for the interpreter (Leroy, 1990),

but eval/apply for the
ompiler, largely for the reasons outlined in Se
tion 7.

10 Con
lusions

Our main
on
lusion is easy to state: for a high-performan
e,
ompiled implementa-

tion of a higher order language, use eval/apply! There is not mu
h to
hoose between

the two models on performan
e grounds, and eval/apply makes it noti
eably easier

to manage the
omplexity of a
ompiler and runtime system for a higher order

language, as Se
tion 7 explained. We are
on�dent of this result for a non-stri
t

language, and we spe
ulate that the bene�t is likely to be more pronoun
ed for a

stri
t one. Our measurements were based on a sta
k-based
alling
onvention, but

we expe
t that using registers for argument passing would result in greater gains

for eval/apply, be
ause the majority of unknown
alls are to evaluated fun
tions

with the
orre
t arity.

Many of the
omplexities of push/enter are
aused by eÆ
ien
y ha
ks. For an

interpreter, where performan
e is not su
h an issue, these ha
ks are not important,

and push/enter may well be a more elegant solution.

A
knowledgements. Many thanks to Robert Ennals, Karl-Filip Fax�en, Xavier

Leroy, Jan-Willem Maessen, Greg Morrisett, Alan My
roft, Norman Ramsey, and

Keith Wansbrough for giving the paper a
areful read.

Referen
es

Appel, AW. (1992). Compiling with
ontinuations. Cambridge: Cambridge University

Press.

Boquist, Urban. 1999 (April). Code optimisation te
hniques for lazy fun
tional languages.

Ph.D. thesis, Chalmers University of Te
hnology, Sweden.

Douen
e, Rmi, & Fradet, Pas
al. (1998). A systemati
 study of fun
tional language imple-

mentations. A
m transa
tions on programming languages and systems, 20(2), 344{387.

Fairbairn, Jon, & Wray, Stuart. (1987). TIM - a simple lazy abstra
t ma
hine to exe
ute

super
ombinators. Pages 34{45 of: Kahn, G (ed), Pro
 i�p
onferen
e on fun
tional

programming languages and
omputer ar
hite
ture, portland. Springer Verlag LNCS

274.

Fax�en, Karl-Filip. 1997 (June). Analysing, transforming and
ompiling lazy fun
tional

programs. Ph.D. thesis, Department of Teleinformati
s, Royal Institute of Te
hnology.

Johnsson, Thomas. (1984). EÆ
ient
ompilation of lazy evaluation. Pro
 sigplan sympo-

sium on
ompiler
onstru
tion, montreal. ACM.

Push/Enter vs. Eval/Apply for Higher-order Languages 35

Jones, R. (1992). Tail re
ursion without spa
e leaks. Journal of fun
tional programming,

2(1), 73{80.

Laun
hbury, J. (1993). A natural semanti
s for lazy evaluation. Pages 144{154 of: 20th

ACM Symposium on Prin
iples of Programming Languages (POPL'93). ACM.

Leroy, X. 1990 (Feb.). The Zin
 experiment: an e
onomi
al implementation of the ML

language. Tr 117, inria-ro
quen
ourt. INRIA.

Maessen, Jan-Willem. 2002 (June). Hybrid eager and lazy evaluation for eÆ
ient
ompi-

lation of haskell. Ph.D. thesis, Massa
husetts Institute of Te
hnology.

Partain, WD. (1992). The nofib ben
hmark suite of Haskell programs. Pages 195{

202 of: Laun
hbury, J, & Sansom, PM (eds), Fun
tional Programming, Glasgow 1992.

Workshops in Computing. Springer Verlag.

Peyton Jones, Simon, Ramsey, Norman, & Reig, Fermin. (1999). C--: a portable assembly

language that supports garbage
olle
tion. Pages 1{28 of: Nadathur, G (ed), Interna-

tional
onferen
e on prin
iples and pra
ti
e of de
larative programming. Le
ture Notes

in Computer S
ien
e, no. 1702. Berlin: Springer.

Peyton Jones, Simon L. (1992). Implementing lazy fun
tional languages on sto
k hardware:

The spineless tagless G-ma
hine. Journal of fun
tional programming, 2(2), 127{202.

Peyton Jones, SL. (1992). Implementing lazy fun
tional languages on sto
k hardware:

The spineless tagless G-ma
hine. Journal of fun
tional programming, 2(2), 127{202.

Peyton Jones, SL, & Laun
hbury, J. (1991). Unboxed values as �rst
lass
itizens. Pages

636{666 of: Hughes, RJM (ed), ACM Conferen
e on Fun
tional Programming and Com-

puter Ar
hite
ture (FPCA'91). Le
ture Notes in Computer S
ien
e, vol. 523. Boston:

Springer Verlag.

Seward, Julian. Valgrind. http://valgrind.kde.org.

