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Abstract

H/Direct is a foreign-language interface for the purely func-
tional language Haskell. Rather than rely on host-language
type signatures, H/Direct compiles Interface Definition Lan-
guage (IDL) to Haskell stub code that marshals data across
the interface. This approach allows Haskell to call both C
and COM, and allows a Haskell component to be wrapped
in a C or COM interface. IDL is a complex language and
language mappings for IDL are usually described informally.
In contrast, we provide a relatively formal and precise defi-
nition of the mapping between Haskell and IDL.

This paper has been submitted to the International Confer-
ence on Functional Programming 1998 (ICFP’98).

1 Introduction

A foreign-language interface provides a way for programs
written in one language to call, or be called by, programs
written in another. Programming languages that do not sup-
ply a foreign-language interface die a slow, lingering death
— good languages die more slowly than bad ones, but they
all die in the end.

In this paper we describe a new foreign-language for the
functional programming language Haskell. In contrast to
earlier foreign-language interfaces for Haskell, such as Green
Card [5], we describe a design based on a standard Interface
Definition Language (IDL). We discuss the reasons for this
decision in Section 2.

Our interface provides direct access to libraries written in
C (or any other language using C’s calling convention),
and makes it possible to write Haskell procedures that can
be called from C. The same tool also makes it allows us
to call COM components directly from Haskell [9], or to
seal up Haskell programs as a COM component. (COM is
Microsoft’s component object model; it offers a language-
independent interface standard between software compo-
nents. The interfaces of these components are written in
IDL.)

H/Direct generates Haskell stub code from IDL interface
descriptions. It is carefully designed to be independent of
the particular Haskell implementation. To maintain this in-
dependence, H/Direct requires the implementation to sup-
port a primitive foreign-language interface mechanism, ex-
pressed using a (non-standard) Haskell foreign declaration;

H/Direct provides the means to leverage that primitive fa-
cility into the full glory of IDL.

Because they cater for a variety of languages, foreign-
language interfaces tend to become rich, complex, incom-
plete, and described only by example. The main contribu-
tion of this paper is to provide (part of) a formal descrip-
tion of the interface. This precision encompases not only
the programmer’s-eye view of the interface, but also its im-
plementation. The bulk of the paper is taken up with this
description.

2 Background

The basic way in which almost any foreign-language inter-
face works is this. The signature of each foreign-language
procedure is expressed in some formal notation. From this
signature, stub code is generated that marshals the param-
eters “across the border” between the two languages, calls
the procedure using the foreign language’s calling conven-
tion, and then un-marshals the results back across the bor-
der. Dealing with the different calling conventions of the two
languages is usually the easy bit. The complications come
in the parameter marshalling, which transforms data values
built by one language into a form that is comprehensible to
the other.

A major design decision is the choice of notation in which
to describe the signatures of the procedures that are to be
called across the interface. There are three main possibili-
ties:

e Use the host language (Haskell, in our case). That
is, write a Haskell type signature for the foreign func-
tion, and generate the stub code from it. Green Card
uses this approach [5], as does J/Direct [8] (Microsoft’s
foreign-language interface for Java).

e Use the foreign language (say C). In this case the stub
code must be generated from the C prototype for the
procedure. SWIG [1] uses this approach.

e Use a separate Interface Definition Language (IDL),
designed specifically for the purpose.

We discuss the first two possibilities in Section 2.1 and the
third in Section 2.2.



2.1 Using the host or foreign language

At first sight the first two options look much more conve-
nient than the third, because the caller is written in one
language and the callee in the other, so the interface is con-
veniently expressed for at least one of them. Here, for exam-
ple, is how J/Direct allows Java to make foreign-language
calls:

class ShowMsgBox {
public static void main(String args[])
{
MessageBox (0, "Hello!","Java Messagebox",0);

}

/*% @dll.import ("USER32") x/
private static native

int MessageBox( int hwndOwner, String text
, String title, int fuStyle
)
}

The dl1.import directive tells the compiler that the
Java MessageBox method will link to the native Windows
USER32.DLL. The parameter marshaling (for example of the
strings) is generated based on the Java type signature for
MessageBox.

The fatal flaw is that it is invariably impossible, in general,
to generate adequate stub code based solely on the type sig-
nature of a procedure in one language or the other. There
are three kinds of difficulties.

1. First, some practically-important languages, notably
C, have a type system that is too weak to express the
necessary distinctions. For example:

e The stub code generator must know the mode of
each parameter — in, in out, or out — because
each mode demands different marshaling code.

e Some pointers have a significant NULL value while
others do not. Some pointers point to values that
can (and sometimes should) be copied across the
border, while others refer to mutable locations
whose contents must not be copied.

e There may be important inter-relationships be-
tween the parameters. For example, one param-
eter might point to an array of values, while an-
other gives the number of elements in the array.
The marshaling code needs to know about such
dependencies.

2. On the other hand, it may not even be enough to give
the signature in a language with an expressive type
system, such as Haskell. The trouble is that the type
signature still says too little about the foreign proce-
dures type signature. For example, is the result of a
Haskell procedure returned as the result of the foreign
procedure, or via an out- parameter of that procedure?
In the case of J/Direct, when a record is passed as an
argument, Java’s type signature is not enough to spec-
ify the layout of the record because Java does not spec-
ify the layout of the fields of an object and the garbage
collector can move the object around in memory.

3. The signature of a foreign procedure may say too little
about allocation responsibilities. For example, if the
caller passes a data structure to the callee (such as a
string), can the latter assume that the structure will
still be available after the call? Does the caller or callee
allocate space to hold the results?

In an earlier paper we described Green Card, whose basic
approach was to use Haskell as the language in which to give
the type signatures for foreign procedures [5]. To deal with
the issues described above we provided ways of augmenting
the Haskell type signature to allow the programmer to “cus-
tomise” the stub code that would be generated. However,
Green Card grew larger and larger — and we realised that
what began as a modest design was turning into a full-scale
language.

2.2 Using an IDL

Of course, we are not the first to encounter these difficulties.
The standard solution is to use a separate Interface Defini-
tion Language (IDL) to describe the signatures of proce-
dures that are to be called across the border. IDLs are rich
and complicated, for precisely the reasons described above,
but they are at least somewhat standardised and come with
useful tools. We focus on the IDL used to describe COM
interfaces [10], which is closely based on DCE IDL[7]. An-
other popular IDL dialect is the one defined by OMG as part
of the CORBA specification[11], and we intend to provide
support for this using the translation from OMG to DCE
IDL defined by [13, 12].

Like COM, but unlike CORBA!, we take the view that the
IDL for a foreign procedure defines a language-independent,
binary interface to the foreign procedure — a sort of lin-
gua franca. The interface thus defined is supposed to be
complete: it covers calling convention, data format, and al-
location rules. It may be necessary to generate stub code
on both sides of the border, to marshal parameters into
the IDL-mandated format, and then on into the format de-
manded by the foreign procedure. But these two chunks
of marshaling code can be generated separately, each by a
tool specialised to its host language. By design, however,
IDL’s binary conventions are more or less identical to C’s,
so marshaling on the C side is hardly ever necessary.

Here, for example, is the IDL desribing the interface to a
function foo:

int foo( [out] long* 1

, [string, in] char* s
, [in, out] double* d
);

The parts in square brackets are called attributes In this case
they describe the mode of each parameter, but there are a
rich set of further attributes that give further (and often
essential) information about the type of the parameters. For
example, the string attribute tells that the parameter s
points to a null-terminated array of characters, rather than
pointing to a single character.

LCORBA does not define a binary interface. Rather, each ORB
vendor provides a language binding for a number of supported lan-
guages. This language binding essentially provides the marshaling
required to an ORB-specific common calling convention. If you want
to use a language that the ORB vendor does not support, you are out
of luck.
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Figure 1: The big picture

2.3 Overview

The “big picture” is given by Figure 1. The interface be-
tween Haskell and the foreign language is specified in IDL.
This IDL specification is read by H/Direct, which then pro-
duces Haskell and C? source files files containing Haskell and
C stub code.

H/Direct can generate stub code that allows Haskell to call
C, or C to call Haskell. It can also generate stub code
that allows Haskell to create and invoke COM components,
and that allows COM components to be written in Haskell.
Much of the work in all four cases concerns the marshal-
ing of data between C and Haskell, and that is what we
concentrate in this paper.

Since H/Direct generates Haskell source code, how does
it express the actual foreign-language call (or entry for
the inverse case)? We have extended Haskell with a
foreign declaration that asks the Haskell implementation
to generate code for a foreign-language call (or entry)
[2]. The foreign declaration deals with the most primi-
tive layer of marshaling, which is necessarily implementa-
tion dependent; H/Direct generates all the implementation-
independent marshaling.

To make all this concrete, suppose we have the following
IDL interface specification:

typedef struct { int x,y; } Point;

void Move( [in,out,ref] Point* p );
If asked to generate stub code to enable Haskell to call func-
tion Move, H/Direct will generate the following (Haskell)

code:

data Point = Point { x,y::Int }

marshalPoint :: Point -> I0 (Ptr Point)
marshalPoint = ...

unmarshalPoint :: Ptr Point -> I0 Point
unmarshalPoint = ...

move :: Point -> IO Point

move p =

2For the sake of definiteness we concentrate on C as the foreign
language in this paper.

do{ a <- marshalPoint p
; primMove a
; r <- unmarshalPoint a
; hdFree
; return r
}
foreign import stdcall "Move"
primMove :: Ptr Point -> I0 ()

This code illustrates the following features:

e For each IDL declaration, H/Direct generates one or
more Haskell declarations.

e From the IDL procedure declaration Move, H/Direct
generates a Haskell function move whose signature is
intended to be “what the user would expect”. In par-
ticular, the Haskell type signature is expressed using
“high-level” types; that is, Haskell equivalents of the
IDL types. For example, the signature for move uses
the Haskell record type Point. The translation for a
procedure declaration is discussed in Section 3.

e The body of the procedure marshals the parameters
into their “low-level” types, before calling the “low-
level” Haskell function primMove. The latter is defined
using a foreign declaration; the Haskell implementa-
tion generates code for the call to the C procedure
Move. Section 4 specifies the high-level and low-level
type corresponding to each IDL type.

e A “low-level” type is still a perfectly first-class Haskell
type, but it has the property that it can trivially be
marshalled across the border. There is fixed set of
primitive “low-level” types, including Int, Float, Char
and so on. Addr is a low-level type that holds a raw
machine address. The type constructor Ptr is just a
synonym for Addr:

type Ptr a = Addr
addPtr :: Ptr a -> Int -> Ptr b

The type argument to Ptr is used simply to allow
H/Direct to document its output somewhat, by giv-
ing the “high-level” type that was marshalled into that
Addr. Section 5 describes how high-level types are mar-
shalled to and from their low-level equivalents.

e From an IDL typedef declaration, H/Direct generates
a corresponding Haskell type declaration together with
some marshalling functions. In general, a marshalling
function transforms a “high-level” Haskell value (in
this case Point) into a “low-level” Haskell value (in
this case Ptr Point). These marshalling functions are
in the I0 monad because, as we shall see, they often
work often imperatively by allocating some memory
and explicitly filling it in, so as to construct a memory
layout that matches the interface specification. The
translations for typedef declarations are discussed in
Section 6.

e The function hdFree :: I0 () simply releases all the
memory allocated by the marshalling functions.

So much for our example. The difficulty is that IDL is a com-
plex language, so it is not always straightforward to guess



the Haskell type that will correspond to a particular IDL
type, nor to generate correct marshalling code. (The former
is important to the programmer, the latter only to H/Direct
itself.) Our goal in this paper is to give a systematic trans-
lation of IDL to Haskell stub code.

To simplify translation we assume that the IDL source is
brought into a standard form, that is, we factor the trans-
lation into a translation of full IDL to a core subset and
a translation from core IDL to Haskell. In particular, we
assume that: out parameters always have an explicit “*”,
the pointer default is manifested in all pointer types, and
all enumeration have value fields. (The details are unimpor-
tant.)

IDL is a large language, and space precludes giving a com-
plete translation here. We do not even give a syntax for
IDL, relying on the left-hand sides of the translation rules
to specify the syntax we treat. However, the framework we
give here is sufficient to treat the whole language, and our
implementation does so.

3 Procedure declarations

The translation function D[ ] maps an IDL declaration into
one or more Haskell declarations. We begin with IDL proce-
dure declarations. To start with, we concentrate on allowing
Haskell to call C; we discuss other variants in Section 7. Here
is the translation rule for procedure declarations:

D[t-res f([inlt_in, [outlt_out, [in,outli_inout)]
}—)
TI] ¢ Tlt-in] -> Tlt-inout]
=> 10 (T[t-out], T [t-inout], T [t-res])

N[f] = \m => \n -
do { a <- M[tuin] m

; b <= Oft-out]
; ¢ <= M[t-inout] n
; ¢ <— primN[f] a b c
3 x <= Uft-out] b
5y <= Uftoinout] <
5z <= Uftores] r
; hdFree

; return (x,y,z)

foreign import stdcall primN[f]
: B[toin] -> B[t-out] -> B[t-inout]
-> I0 B[t_res]

Despite our claim of formality, the fully formal version of
this rule has an inconvenient number of subscripts. Instead,
we illustrate by giving one parameter of each mode ([in],
[out], and [in, out]); more complex cases are handled ex-
actly analogously. The translation produces a Haskell func-
tion that takes one argument for each IDL [in] or [in,
out] parameter, and returns one result of each IDL [out] or
[in, out] parameter, plus one result for the IDL result (if
any). In general, foreign functions can perform side effects,
so the result type is in the I0 monad. We are considering
adding a (non- standard) attribute [purel, that declares the
procedure to have no side effects; in this case, the Haskell
procedure can simply return a tuple rather than an I0 type.

The generic translation for procedure declaration uses sev-
eral auxiliary translation schemes:

t: b basic type
n type names
| [{attr} +1t*x pointer type

attr : unique | ref | ptr
| string | size_is(e)

Figure 2: IDL type syntax

e The translation scheme T[t] gives the “high-level”
Haskell type corresponding to the IDL type t.

e The translation scheme N [n] does the name mangling
required to translate IDL identifiers to valid Haskell
identifiers. For instance to account for the fact that
Haskell function names must begin with a lower-case
letter.

e The translation scheme B[t¢] gives the “low-level”
Haskell type corresponding to the IDL type t.

e The translation scheme M[t] :: T[¢] -> I0 B[¢]
generates Haskell code that marshals a value of IDL
type t from its high-level type T[] to its low-level form
B[t]. This is used to marshal all the in-parameters of
the procedure ([in] and [in,out]).

e The translation scheme U[t] :: B[t] -> I0 T[t]
generates Haskell code that un-marshals a value of
IDL type t. This is used to un-marshal all the out-
parameters of the procedure, and its result (if any).
M[ ] and U] ] are mutual inverses (upto memory al-
location).

e In addition, for [out] parameters the caller is required
to allocate a location to hold the result. O[¢*] :: IO
Ptr B[t] is Haskell code that allocates enough space
to contain a value of IDL type ¢.

We will define these functions in detail in Section 4, but first
we deal with type declarations.

4 Mapping for types

Next, we turn our attention to the translations 7 ] and
B[ ] that translate IDL types to Haskell types, which are
given in Figure 3.

Translating base types, which have direct Haskell analogues,
is easy. The high-level and low-level type translations coin-
cide, except that the high-level representation of IDL’s 8-bit
characters is Haskell’s 16 bit Char type. To give more pre-
cise mapping we have extended Haskell with new base types:
Word8, Word16, and so on. Similarly, IDL type names are
translated to the (Haskell-mangled) name of the correspond-
ing Haskell type.

Matters start to get murkier when we meet pointers. Since a
pointer is always passed to an from from C as a machine ad-
dress, the low-level translation of all pointer types is simply
a raw machine address:

B[t¥] — Ptr T[t]



B[short] ~ Int32
Blunsigned short] +~— Word32
B[float] +~ Float
B[double] + Double
Blchar] ~— Word8
BJwchar] +~ Char
Bl[boolean] ~ Bool
Bvoid] ~ O
B[ Lattrlt*] +— Ptr T[t]
T[char] +~— Char
7ol — B[b]
Tln] — Nn]
Tllrefltx] — T[t]
T[[uniqueli*] — Maybe T[t]
Tllptrlt*x] — Ptr T[t]
T[[stringlchar*] +— String
T[[size_is(v)1t+¥1] +— [T[¢]]

Figure 3: Type translations

(Recall that Ptr ¢t is just an abbreviation for Addr, but the
Ptr form is somewhat more informative.)

In contrast, the high-level translation of pointers depends on
what type of pointer is concerned. IDL has no fewer than
five kinds of pointer, distinguished by their attributes! We
treat them one at a time (refer in each case to Figure 3:

e A value of IDL type [reflt* is the unique pointer,
or indirection, to a value of type t. Since pointers
are implicit in Haskell, the corresponding high-level
Haskell type is just 7t].

e The IDL type [uniquelt* is exactly the same as
[ref]t*, except that the pointer can be NULL. The
natural way to represent this possibility in Haskell is
using the Maybe type. The latter is a standard Haskell
type defined like this:

data Maybe a = Nothing | Just a

e An IDL value of type [ptr]t* is the address of a value
that might be shared, and might contain cycles. It is
far from clear how such a thing should be marshalled,
so we adopt a simple convention:

T ptrlt*] — Ptr T[t]

That is, [ptr] values are not moved across the border
at all. Instead they are represented by a value of type
Ptr 7[t], a raw machine address.

This is often useful. For a start, some libraries im-
plement an abstract data type, in which the client is
expected to manipulate only pointers to the values.
Similarly, COM interface pointers should be treated
simply as addresses. Finally, some operating system
procedures (notably those concerned with windows)
return such huge structures that a client might want
to marshal them back selectively.

e A value of type [stringlchar* is the address of
a null-terminated sequence of characters. (Contrast
[ref]lchar#*, which is the address of a single character.)
The corresponding Haskell type is, of course, String.
The [string] attribute applies to the following array
types char, byte, unsigned short, unsigned long,
structs with byte (only!) fields and, in Microsoft-
only IDL, wchar.

e Sometimes a procedure takes a parameter that is a
pointer to an array of values, where another parame-
ter of the procedure gives the size of the array. For
example:

void DrawPolygon
( [in,size_is(nPoints)] Point* points
, [in] int nPoints

)

The [size_is(nPoints)] attribute tells that the sec-
ond parameter, nPoints, gives the size of the array.
(This is quite like the [string] case, except that the
size of the array is given separately, whereas strings
have a sentinel at the end.) We translate arrays to
Haskell lists.

While each of these variants has a reasonable rationale, we
have found the plethora of IDL pointer types to be a rich
source of confusion. The translations in Figure 3 look in-
nocuous enough, but we have found them extremely helpful
in clarifying and formalising just exactly what the transla-
tion of an IDL type should be.

Even if the translation are not quite “right” (whatever that
means), we now have a language in which to discuss vari-
ants. For example, it may eventually turn out that the IDL
[ptr]l attribute is conventionally used for subtly different
purposes than the ones we suggest above. If so, the transla-
tions can readily be changed, and the changes explained to
programmers in a precise way.

5 Marshalling

In the translation of the IDL type signature for a proce-
dure (Section 3), we invoked marshalling functions M[ ]
and U[ ] for each of the types involved. Now that we have
defined the high and low-level translations of each type, the
marshalling code is relatively easy to define. In this sec-
tion we define these marshalling functions. Lack of space
precludes us from giving complete details so we will concen-
trate mostly on marshalling basic types.

Marshalling a structured value consists, as we shall see,
of two steps: allocate some memory in the parameter-
marshalling area to hold the value, and then actually mar-
shal the Haskell value into that memory. The translations
are much more elegant it we define auxiliary schemes, W[ |
and R[ ], that perform this “by-reference” marshalling.
We also need a number of functions to manipulate the
parameter-marshalling area. More precisely:

WIt] :: Ptr T[t] -> T[t] -> I0 () marshals its second
argument into the memory location(s) pointed to by
its first argument; the latter is a raw machine address.



R[t] :: Ptr T[t] -> I0 T[t] unmarshals a value of IDL
type t out of memory location(s) pointed to by its
argument. W[ ] and R] ] are mutually inverse (upto
memory allocation).

S[t] :: Int is the number of bytes occupied by an IDL
value of type ¢. The function O[ ], mentioned in Sec-
tion 3, is defined thus:

O[Lattrlt*] — hdAlloc S[t]

hdAlloc :: Int -> IO (Ptr a) allocates the specified
number of bytes in the parameter-marshalling area,
returning a pointer to the allocated area.

hdWriteb :: Ptr T[b] -> T[b] -> I0 O, where b is a
basic type, marshals a value of IDL type b into the
specified memory location(s).

hdReadd :: Ptr T[b] -> I0 T[b], where b is a basic
type, unmarshals a value of IDL type ¢.

hdFree ::
area.

I0 () frees the whole parameter-marshalling

With these definitions in mind, Figure 4 gives the mar-
shalling schemes. We omit the schemes for [size_is] be-
cause it is tiresomely complicated. Apart from that, the
translations are easy to read:

e For basic types there is no marshalling to do, except
that we must convert between the 16-bit Haskell Char
and 8-bit IDL char types.

e Marshalling a typedef’d type can be done by invoking
its marshalling function.

e Marshalling a [ref] pointer is done by allocating some
memory with hdAlloc, and then marshalling the value
into it with W[ ]. Unmarshalling is similar, except
that there is no allocation step; we just invoke R[ ].

e Dealing with [unique] pointers is similar, except that
we have to take account of the possibility of a NULL
value.

Again, it is very helpful to have a precise language in which
to discuss these translations. Though they look simple, we
can attest that it is very easy to get confused by pointers
to pointers to things, and we have far greater confidence in
our implementation as a result of writing the translations
formally.

6 Type declarations

On top of the primitive base types, IDL supports the defi-
nition of a number of constructed types. For example

typedef int tripl[3];
typedef struct TagPoint { int x,y; } Point;
typedef enum { Red=0, Blue=1, Green=2 } RGB;
typedef union _floats switch (int ftype) {
case 0: float f;
case 1: double d;
} Floats;

M[t] :: TIt] -> 10 B[]
M[char] — marshallChar
M[b] — return
M[n] — marshalln
M[[ref]t*] = \x >
do{ px <- hdAlloc S[t]
; WIt] px x}
M[[uniqueli*] —~ \x ->

M [ptr]t*] >
M|[[stringlt*] +—

case x of
Nothing -> return nullPtr
Just y -> M[[reflt*] y
return
marshallString

WIt] == Ptr T[t] -> T[t] -> 10 O
WIb] — hdWriteb
W] Lattrlt«] = \px >
do{ a <- M[Lattrlt+] x
; hdWriteAddr p a}
Uult] = BIt] -> 10 Tt]
U[char] +— unmarshallChar
Uil — return
U[n] — unmarshalln
U[ [ref] tx] — R[]
U[[uniquelt*] +— \p ->
if p == nullPtr then
return Nothing
else
do{ x <- R[t] p
; return (Just x)}
U[ [ptrlt*] — return
U[l[stringlt*] +— unmarshallString

R[t] :: Ptr T[¢] -> I0 T[¢]
R[b] — hdReadb
R[Lattrltx] = \p —>

do{ a <- hdReadAddr p
; U[Lattrlt*] a}

Figure 4: The marshalling schemes




t: tlel array type
| enum {
tagi = vi,...,tagn = vn} enumeration

| struct tag {
frity o futtn; }
| union tag:
switch (b tags ) {
case vi:t1 fi;...case Un:itn fn;} union type

record type

Figure 5: IDL constructed type syntax

which declares array, record, enumeration and union (or
sum) types, respectively. Figure 5 shows the syntax of IDL’s
constructed types.

The translation provides rules for converting between IDL
constructed types into corresponding Haskell representa-
tions. To ease the task of defining this type mapping, we
assume that each constructed type appears as part of an
IDL type declaration. In general, a type declaration has the
following form:

typedef ¢ mame;

declaring name to be a synonym for the type ¢, which is
either a base type or one of the above constructed types. A
type declaration for an IDL type ¢ gives rise to the definition
of the following Haskell declarations:

e A Haskell type declaration for the Haskell type
N[name], such that T [name] = N[name].

e marshallN[name] :: T[name] -> I0 B[t] which
implements the M| ] scheme for converting from the
Haskell representation 7[t] to the IDL type ¢.

e unmarshallN[name] :: B[¢] -> I0
T[name] which implements the dual & ] scheme for
unmarshalling.

e marshallN[name]At :: Ptr B[t] -> T[name]
-> I0 () for performing by-reference marshalling of
the constructed type.

e unmarshallN[name]At :: Ptr B[t] —>
I0 7[name] which implements the R[ ] scheme for
unmarshalling a constructed type by-reference.

e sizeof N[name] :: Int, a constant holding the size
of the external representation of the type (in 8-bit
bytes.)

The general rules for converting type declarations into
Haskell types is presented in Figure 6. Here is what they
generate when applied:

e In the case of a type declaration for a base type, this
merely defines a type synonym. For example

typedef int year;

is translated into the type synonym

type Year = Int

plus marshalling functions for Year.

e For a record type such as Point:
typedef struct TagPoint {int x,y;} Point;
generates a single constructor Haskell data type:
data Point = TagPoint { x:: Int, y::Int }

In addition to this, the D[ ] scheme generates
a collection of marshalling functions, including
marshallPoint:

marshallPoint :: Point -> I0 (Ptr Point)
marshallPoint (Point x y) =
do{ ptr <- hdAlloc sizeofPoint
; let ptrl = addPtr ptr O
; marshallintAt ptrl x
; let ptr2 = addPtr ptrl sizeofint
; marshallintAt ptr2 y
; return ptr

}

It marshals a Point by allocating enough memory to
hold the external representation of the point. The size
of the record type is computed as follows:

sizeofPoint :: Int32
sizeofPoint = structSize [sizeofint,sizeofint]

where structSize is a (platform specific) function that
computes the size of a struct given the field sizes.?

Point’s two fields are marshalled into the external rep-
resentation of Point by calling the by-reference mar-
shaller for the basic type Int, supplying a pointer that
has been appropriately offset.

e For the union type example given at the start of Sec-
tion 6, the following Haskell type is generated:

data Floats = F Float | D Double
together with actions for marshalling between the al-
gebraic type and a union (omitting the type signatures

for the by-reference marshallers):

:: Floats -> ID (Ptr Floats)
: Ptr Floats -> I0 Floats

marshallFloats
unmarshallFloats

The external representation of a union is normally a
struct containing the discriminant and enough room
to accommodate the largest member of the union. In
the case of Floats, the external representation must
be large enough to contain and int and a double.

e Enumerations have a direct Haskell equivalent as alge-
braic data types with nullary constructors. For exam-
ple, the RGB declaration:

3Similarly, a function that returns the offsets at which to marshal
each field into is also provided. Due to lack of space, marshallPoint
makes the simplifying assumption that structures contain no internal
padding.



D[typedef t name;]
> type N[name] = T[t]
marshallN [name] = marshall7[t]
marshallN[name]At = marshall7 [t]At
unmarshallN [name] = unmarshall7 [¢]
unmarshallN'[name]At = unmarshall7 [t]At
sizeof N [name] = S[t]

D[typedef t nameldim];]
— type N[name] = [ T[t] ]
marshallN [name] = marshallArray dim marshall7 [¢]At
marshallN[name]At = marshallArrayAt dim marshall7 [t]At
unmarshallN [name] = unmarshallArray dim unmarshall7 [t]At
unmarshall N [name]At = unmarshallArrayAt dim unmarshall7 [¢]At
sizeof N [name] = dim * S[t]

D[typedef struct tag{...; ¢ field; ...} name;]
}—)
data NM[name] = N[tag]{ ... ,N[field;] :: T[t], ...}
marshallN[name] rec = do
ptr <- hdAlloc S[name]
marshallN [name]At ptr rec
return ptr

marshallN[name]At ptr (N[tag]{ ... ,N[field], ...} = do
let ptr, = addPtr ptr O

let ptr, = addPtr ptr,_, S[ti—:]
WIti] ptr; field;

return ()
unmarshallN'[name] = unmarshallN [name]At

unmarshallN[name]At ptr = do
let ptr, = addPtr ptr 0

let ptr; = addPtr ptr, , S[ti—:]
Nfield:] <- R[t] ptr,;

r.e.i;urn (Ntag] ... N[fieldi] ... )
sizeof N'[name] = structSize [...,S[field;],...]

Dltypedef enum {...,alt = value,...} name;]
H

data NMname] = ... | Nalt] | ...
marshallN[name] x =

case x of {...; Nalt] -> Nvalue]; ...}
unmarshallN [name] x =

case x of {...; N[value] -> return Nalt]; ...}
unmarshallN [name]At ptr = do

v <- hdReadInt ptr

unmarshallN [name] v
sizeof N'[name] = sizeofint

Figure 6: Translating declarations




typedef enum {red=0,green=1,blue=2} RGB;
is translated into the Haskell type
data RGB = Red | Green | Blue

with concrete representation B[RGB] = Int32

The marshalling actions simply map between the
nullary constructors and Int32:

marshallRGB :: RGB -> I0 Int32
marshallRGB nm =

return (case { Red -> 0; Green -> 1; Blue ->2})

unmarshallRGB :: Int32 -> I0 RGB
unmarshallRGB v =
case v of
0 -> return Red
1 -> return Green
2 -> return Blue
-> fail (userError ...)

7 The inverse mapping

Once marshalling and un-marshalling functions are defined
for each data type, it is not hard to reverse the mapping and
build code that allows C to call Haskell. The translation for
a typedef remains unchanged, but the translation for an
IDL procedure declaration is reversed. Since the procedure
is being implemented in Haskell, its [in]-parameters are
un-marshalled, the Haskell procedure is called, its results
are marshalled, and returned to the caller. (We omit the
details, but the translation rule can be expressed just as we
did in Section 3. For example, the Move IDL declaration
of that Section would be compiled to the following Haskell
code:

foreign export stdcall "Move"
primMove :: Ptr Point -> I0 ()

primMove a =
do { p <- unmarshallPoint a
; 9@ <- move p
; marshallPointAt a q
; return ()

}

move :: Point -> IO Point
move = error "Not yet implemented"

The foreign export declaration asks the Haskell compiler
to make Move externally callable with a stdcall interface.
primMove does the marshalling, before calling move, which
should be provided by the programmer.

We are also interested in allowing Haskell programs to create
and invoke COM objects, and in allowing a Haskell program
to be sealed up inside a COM object. This too is a straight-
forward extension. There are a couple of wrinkles, however:

e COM methods conventionally return a value of type
HRESULT, which is used to signal exceptional condi-
tions. H/Direct “knows” about HRESULT and reflects
its exceptional values into exceptions in Haskell’s I0
monad.

e COM methods are invoked indirectly, through a vector
table. To support this the Haskell foreign declaration
has to be extended to allow indirect calls. For example,
the Haskell-to-COM side looks like this:

foreign import stdcall
dynamic primFoo :: Addr -> ..

The keyword dynamic replaces the static name of the

foreign function, and the address of the function is

instead passed as the first argument to primFoo. The

foreign export case is similar.

e Lastly, there are several design choices concerning
what the programmer has to write to implement a
COM object. Does she write a collection of functions
that take the object state as their first argument? Or
does she write a single function that returns a record
of all the methods of the object?

8 Status and conclusions

H/Direct is now our fourth attempt at a foreign-language in-
terface for Haskell. The first was ccall, a limited and low-
level extension roughly equivalent to foreign import [3].
The second was Green Card, which gradually turned into
a domain-specific language [5]. The third was a pre-cursor
to H/Direct, Red Card, which was specifically aimed at in-
terfacing Haskell to COM objects, [4, 6]. H/Direct embod-
ies the lessons we have learned: strive for implementation-
independence; avoid inventing new languages; the customer
is always right.

We do not claim great originality for these observations.
What is new in this paper is a much more precise de-
scription of the mapping between Haskell and IDL than
is usually given. This precision has exposed details of the
mapping that would otherwise quite likely have been mis-
implemented. Indeed, the specification of how pointers are
translated exposed a bug in our current implementation of
H/Direct. It also allows us automatically to support nested
structures and other relatively complicated types, without
great difficulty. These aspects often go un-implemented in
other foreign-language interfaces.

We are well advanced on an implementation of H/Direct.
We can parse and type-check the whole of Microsoft IDL,
and can generate stubs that allow Haskell to call C and
COM. We have not yet implemented the reverse mappping,
but we expect to do so in the next few months.
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