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Abstract

H/Direct is a foreign-language interface for the purely func-

tional language Haskell. Rather than rely on host-language

type signatures, H/Direct compiles Interface De�nition Lan-

guage (IDL) to Haskell stub code that marshals data across

the interface. This approach allows Haskell to call both C

and COM, and allows a Haskell component to be wrapped

in a C or COM interface. IDL is a complex language and

language mappings for IDL are usually described informally.

In contrast, we provide a relatively formal and precise de�-

nition of the mapping between Haskell and IDL.

This paper has been submitted to the International Confer-

ence on Functional Programming 1998 (ICFP'98).

1 Introduction

A foreign-language interface provides a way for programs

written in one language to call, or be called by, programs

written in another. Programming languages that do not sup-

ply a foreign-language interface die a slow, lingering death

| good languages die more slowly than bad ones, but they

all die in the end.

In this paper we describe a new foreign-language for the

functional programming language Haskell. In contrast to

earlier foreign-language interfaces for Haskell, such as Green

Card [5], we describe a design based on a standard Interface

De�nition Language (IDL). We discuss the reasons for this

decision in Section 2.

Our interface provides direct access to libraries written in

C (or any other language using C's calling convention),

and makes it possible to write Haskell procedures that can

be called from C. The same tool also makes it allows us

to call COM components directly from Haskell [9], or to

seal up Haskell programs as a COM component. (COM is

Microsoft's component object model; it o�ers a language-

independent interface standard between software compo-

nents. The interfaces of these components are written in

IDL.)

H/Direct generates Haskell stub code from IDL interface

descriptions. It is carefully designed to be independent of

the particular Haskell implementation. To maintain this in-

dependence, H/Direct requires the implementation to sup-

port a primitive foreign-language interface mechanism, ex-

pressed using a (non-standard) Haskell foreign declaration;

H/Direct provides the means to leverage that primitive fa-

cility into the full glory of IDL.

Because they cater for a variety of languages, foreign-

language interfaces tend to become rich, complex, incom-

plete, and described only by example. The main contribu-

tion of this paper is to provide (part of) a formal descrip-

tion of the interface. This precision encompases not only

the programmer's-eye view of the interface, but also its im-

plementation. The bulk of the paper is taken up with this

description.

2 Background

The basic way in which almost any foreign-language inter-

face works is this. The signature of each foreign-language

procedure is expressed in some formal notation. From this

signature, stub code is generated that marshals the param-

eters \across the border" between the two languages, calls

the procedure using the foreign language's calling conven-

tion, and then un-marshals the results back across the bor-

der. Dealing with the di�erent calling conventions of the two

languages is usually the easy bit. The complications come

in the parameter marshalling, which transforms data values

built by one language into a form that is comprehensible to

the other.

A major design decision is the choice of notation in which

to describe the signatures of the procedures that are to be

called across the interface. There are three main possibili-

ties:

� Use the host language (Haskell, in our case). That

is, write a Haskell type signature for the foreign func-

tion, and generate the stub code from it. Green Card

uses this approach [5], as does J/Direct [8] (Microsoft's

foreign-language interface for Java).

� Use the foreign language (say C). In this case the stub

code must be generated from the C prototype for the

procedure. SWIG [1] uses this approach.

� Use a separate Interface De�nition Language (IDL),

designed speci�cally for the purpose.

We discuss the �rst two possibilities in Section 2.1 and the

third in Section 2.2.



2.1 Using the host or foreign language

At �rst sight the �rst two options look much more conve-

nient than the third, because the caller is written in one

language and the callee in the other, so the interface is con-

veniently expressed for at least one of them. Here, for exam-

ple, is how J/Direct allows Java to make foreign-language

calls:

class ShowMsgBox {

public static void main(String args[])

{

MessageBox(0,"Hello!","Java Messagebox",0);

}

/** @dll.import("USER32") */

private static native

int MessageBox( int hwndOwner, String text

, String title, int fuStyle

);

}

The dll.import directive tells the compiler that the

Java MessageBox method will link to the native Windows

USER32.DLL. The parameter marshaling (for example of the

strings) is generated based on the Java type signature for

MessageBox.

The fatal 
aw is that it is invariably impossible, in general,

to generate adequate stub code based solely on the type sig-

nature of a procedure in one language or the other. There

are three kinds of di�culties.

1. First, some practically-important languages, notably

C, have a type system that is too weak to express the

necessary distinctions. For example:

� The stub code generator must know the mode of

each parameter | in, in out, or out | because

each mode demands di�erent marshaling code.

� Some pointers have a signi�cant NULL value while

others do not. Some pointers point to values that

can (and sometimes should) be copied across the

border, while others refer to mutable locations

whose contents must not be copied.

� There may be important inter-relationships be-

tween the parameters. For example, one param-

eter might point to an array of values, while an-

other gives the number of elements in the array.

The marshaling code needs to know about such

dependencies.

2. On the other hand, it may not even be enough to give

the signature in a language with an expressive type

system, such as Haskell. The trouble is that the type

signature still says too little about the foreign proce-

dures type signature. For example, is the result of a

Haskell procedure returned as the result of the foreign

procedure, or via an out- parameter of that procedure?

In the case of J/Direct, when a record is passed as an

argument, Java's type signature is not enough to spec-

ify the layout of the record because Java does not spec-

ify the layout of the �elds of an object and the garbage

collector can move the object around in memory.

3. The signature of a foreign procedure may say too little

about allocation responsibilities. For example, if the

caller passes a data structure to the callee (such as a

string), can the latter assume that the structure will

still be available after the call? Does the caller or callee

allocate space to hold the results?

In an earlier paper we described Green Card, whose basic

approach was to use Haskell as the language in which to give

the type signatures for foreign procedures [5]. To deal with

the issues described above we provided ways of augmenting

the Haskell type signature to allow the programmer to \cus-

tomise" the stub code that would be generated. However,

Green Card grew larger and larger | and we realised that

what began as a modest design was turning into a full-scale

language.

2.2 Using an IDL

Of course, we are not the �rst to encounter these di�culties.

The standard solution is to use a separate Interface De�ni-

tion Language (IDL) to describe the signatures of proce-

dures that are to be called across the border. IDLs are rich

and complicated, for precisely the reasons described above,

but they are at least somewhat standardised and come with

useful tools. We focus on the IDL used to describe COM

interfaces [10], which is closely based on DCE IDL[7]. An-

other popular IDL dialect is the one de�ned by OMG as part

of the CORBA speci�cation[11], and we intend to provide

support for this using the translation from OMG to DCE

IDL de�ned by [13, 12].

Like COM, but unlike CORBA
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, we take the view that the

IDL for a foreign procedure de�nes a language-independent,

binary interface to the foreign procedure | a sort of lin-

gua franca. The interface thus de�ned is supposed to be

complete: it covers calling convention, data format, and al-

location rules. It may be necessary to generate stub code

on both sides of the border, to marshal parameters into

the IDL-mandated format, and then on into the format de-

manded by the foreign procedure. But these two chunks

of marshaling code can be generated separately, each by a

tool specialised to its host language. By design, however,

IDL's binary conventions are more or less identical to C's,

so marshaling on the C side is hardly ever necessary.

Here, for example, is the IDL desribing the interface to a

function foo:

int foo( [out] long* l

, [string, in] char* s

, [in, out] double* d

);

The parts in square brackets are called attributes In this case

they describe the mode of each parameter, but there are a

rich set of further attributes that give further (and often

essential) information about the type of the parameters. For

example, the string attribute tells that the parameter s

points to a null-terminated array of characters, rather than

pointing to a single character.

1

CORBA does not de�ne a binary interface. Rather, each ORB

vendor provides a language binding for a number of supported lan-

guages. This language binding essentially provides the marshaling

required to an ORB-speci�c common calling convention. If you want

to use a language that the ORB vendor does not support, you are out

of luck.
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Figure 1: The big picture

2.3 Overview

The \big picture" is given by Figure 1. The interface be-

tween Haskell and the foreign language is speci�ed in IDL.

This IDL speci�cation is read by H/Direct , which then pro-

duces Haskell and C

2

source �les �les containing Haskell and

C stub code.

H/Direct can generate stub code that allows Haskell to call

C, or C to call Haskell. It can also generate stub code

that allows Haskell to create and invoke COM components,

and that allows COM components to be written in Haskell.

Much of the work in all four cases concerns the marshal-

ing of data between C and Haskell, and that is what we

concentrate in this paper.

Since H/Direct generates Haskell source code, how does

it express the actual foreign-language call (or entry for

the inverse case)? We have extended Haskell with a

foreign declaration that asks the Haskell implementation

to generate code for a foreign-language call (or entry)

[2]. The foreign declaration deals with the most primi-

tive layer of marshaling, which is necessarily implementa-

tion dependent; H/Direct generates all the implementation-

independent marshaling.

To make all this concrete, suppose we have the following

IDL interface speci�cation:

typedef struct { int x,y; } Point;

void Move( [in,out,ref] Point* p );

If asked to generate stub code to enable Haskell to call func-

tion Move, H/Direct will generate the following (Haskell)

code:

data Point = Point { x,y::Int }

marshalPoint :: Point -> IO (Ptr Point)

marshalPoint = ...

unmarshalPoint :: Ptr Point -> IO Point

unmarshalPoint = ...

move :: Point -> IO Point

move p =

2

For the sake of de�niteness we concentrate on C as the foreign

language in this paper.

do{ a <- marshalPoint p

; primMove a

; r <- unmarshalPoint a

; hdFree

; return r

}

foreign import stdcall "Move"

primMove :: Ptr Point -> IO ()

This code illustrates the following features:

� For each IDL declaration, H/Direct generates one or

more Haskell declarations.

� From the IDL procedure declaration Move, H/Direct

generates a Haskell function move whose signature is

intended to be \what the user would expect". In par-

ticular, the Haskell type signature is expressed using

\high-level" types; that is, Haskell equivalents of the

IDL types. For example, the signature for move uses

the Haskell record type Point. The translation for a

procedure declaration is discussed in Section 3.

� The body of the procedure marshals the parameters

into their \low-level" types, before calling the \low-

level" Haskell function primMove. The latter is de�ned

using a foreign declaration; the Haskell implementa-

tion generates code for the call to the C procedure

Move. Section 4 speci�es the high-level and low-level

type corresponding to each IDL type.

� A \low-level" type is still a perfectly �rst-class Haskell

type, but it has the property that it can trivially be

marshalled across the border. There is �xed set of

primitive \low-level" types, including Int, Float, Char

and so on. Addr is a low-level type that holds a raw

machine address. The type constructor Ptr is just a

synonym for Addr:

type Ptr a = Addr

addPtr :: Ptr a -> Int -> Ptr b

The type argument to Ptr is used simply to allow

H/Direct to document its output somewhat, by giv-

ing the \high-level" type that was marshalled into that

Addr. Section 5 describes how high-level types are mar-

shalled to and from their low-level equivalents.

� From an IDL typedef declaration, H/Direct generates

a corresponding Haskell type declaration together with

some marshalling functions. In general, a marshalling

function transforms a \high-level" Haskell value (in

this case Point) into a \low-level" Haskell value (in

this case Ptr Point). These marshalling functions are

in the IO monad because, as we shall see, they often

work often imperatively by allocating some memory

and explicitly �lling it in, so as to construct a memory

layout that matches the interface speci�cation. The

translations for typedef declarations are discussed in

Section 6.

� The function hdFree :: IO () simply releases all the

memory allocated by the marshalling functions.

So much for our example. The di�culty is that IDL is a com-

plex language, so it is not always straightforward to guess
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the Haskell type that will correspond to a particular IDL

type, nor to generate correct marshalling code. (The former

is important to the programmer, the latter only to H/Direct

itself.) Our goal in this paper is to give a systematic trans-

lation of IDL to Haskell stub code.

To simplify translation we assume that the IDL source is

brought into a standard form, that is, we factor the trans-

lation into a translation of full IDL to a core subset and

a translation from core IDL to Haskell. In particular, we

assume that: out parameters always have an explicit \*",

the pointer default is manifested in all pointer types, and

all enumeration have value �elds. (The details are unimpor-

tant.)

IDL is a large language, and space precludes giving a com-

plete translation here. We do not even give a syntax for

IDL, relying on the left-hand sides of the translation rules

to specify the syntax we treat. However, the framework we

give here is su�cient to treat the whole language, and our

implementation does so.

3 Procedure declarations

The translation function D[[ ]] maps an IDL declaration into

one or more Haskell declarations. We begin with IDL proce-

dure declarations. To start with, we concentrate on allowing

Haskell to call C; we discuss other variants in Section 7. Here

is the translation rule for procedure declarations:

D[[t res f ([in]t in, [out]t out, [in,out]t inout)]]

7!

T [[f ]] :: T [[t in]] -> T [[t inout ]]

-> IO (T [[t out ]],T [[t inout ]],T [[t res ]])

N [[f ]] = \m -> \n ->

do f a <- M[[t in]] m

; b <- O[[t out ]]

; c <- M[[t inout ]] n

; r <- primN [[f ]] a b c

; x <- U [[t out ]] b

; y <- U [[t inout ]] c

; z <- U [[t res ]] r

; hdFree

; return (x,y,z)

g

foreign import stdcall primN [[f ]]

:: B[[t in]] -> B[[t out ]] -> B[[t inout ]]

-> IO B[[t res ]]

Despite our claim of formality, the fully formal version of

this rule has an inconvenient number of subscripts. Instead,

we illustrate by giving one parameter of each mode ([in],

[out], and [in, out]); more complex cases are handled ex-

actly analogously. The translation produces a Haskell func-

tion that takes one argument for each IDL [in] or [in,

out] parameter, and returns one result of each IDL [out] or

[in, out] parameter, plus one result for the IDL result (if

any). In general, foreign functions can perform side e�ects,

so the result type is in the IO monad. We are considering

adding a (non- standard) attribute [pure], that declares the

procedure to have no side e�ects; in this case, the Haskell

procedure can simply return a tuple rather than an IO type.

The generic translation for procedure declaration uses sev-

eral auxiliary translation schemes:

t : b basic type

j n type names

j [fattrg+ ]t* pointer type

attr : unique j ref j ptr

j string j size is(e)

Figure 2: IDL type syntax

� The translation scheme T [[t ]] gives the \high-level"

Haskell type corresponding to the IDL type t .

� The translation scheme N [[n]] does the name mangling

required to translate IDL identi�ers to valid Haskell

identi�ers. For instance to account for the fact that

Haskell function names must begin with a lower-case

letter.

� The translation scheme B[[t ]] gives the \low-level"

Haskell type corresponding to the IDL type t .

� The translation scheme M[[t ]] :: T [[t ]] -> IO B[[t ]]

generates Haskell code that marshals a value of IDL

type t from its high-level type T [[t ]] to its low-level form

B[[t ]]. This is used to marshal all the in-parameters of

the procedure ([in] and [in,out]).

� The translation scheme U [[t ]] :: B[[t ]] -> IO T [[t ]]

generates Haskell code that un-marshals a value of

IDL type t . This is used to un-marshal all the out-

parameters of the procedure, and its result (if any).

M[[ ]] and U [[ ]] are mutual inverses (upto memory al-

location).

� In addition, for [out] parameters the caller is required

to allocate a location to hold the result. O[[t*]] :: IO

Ptr B[[t ]] is Haskell code that allocates enough space

to contain a value of IDL type t .

We will de�ne these functions in detail in Section 4, but �rst

we deal with type declarations.

4 Mapping for types

Next, we turn our attention to the translations T [[ ]] and

B[[ ]] that translate IDL types to Haskell types, which are

given in Figure 3.

Translating base types, which have direct Haskell analogues,

is easy. The high-level and low-level type translations coin-

cide, except that the high-level representation of IDL's 8-bit

characters is Haskell's 16 bit Char type. To give more pre-

cise mapping we have extended Haskell with new base types:

Word8, Word16, and so on. Similarly, IDL type names are

translated to the (Haskell-mangled) name of the correspond-

ing Haskell type.

Matters start to get murkier when we meet pointers. Since a

pointer is always passed to an from from C as a machine ad-

dress, the low-level translation of all pointer types is simply

a raw machine address:

B[[t*]] 7! Ptr T [[t ]]
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B[[short]] 7! Int32

B[[unsigned short]] 7! Word32

B[[float]] 7! Float

B[[double]] 7! Double

B[[char]] 7! Word8

B[[wchar]] 7! Char

B[[boolean]] 7! Bool

B[[void]] 7! ()

B[[[attr]t*]] 7! Ptr T [[t ]]

T [[char]] 7! Char

T [[b]] 7! B[[b]]

T [[n]] 7! N [[n]]

T [[[ref]t*]] 7! T [[t ]]

T [[[unique]t*]] 7! Maybe T [[t ]]

T [[[ptr]t*]] 7! Ptr T [[t ]]

T [[[string]char*]] 7! String

T [[[size is(v)]t*]]] 7! [T [[t ]]]

Figure 3: Type translations

(Recall that Ptr t is just an abbreviation for Addr, but the

Ptr form is somewhat more informative.)

In contrast, the high-level translation of pointers depends on

what type of pointer is concerned. IDL has no fewer than

�ve kinds of pointer, distinguished by their attributes! We

treat them one at a time (refer in each case to Figure 3:

� A value of IDL type [ref]t* is the unique pointer,

or indirection, to a value of type t . Since pointers

are implicit in Haskell, the corresponding high-level

Haskell type is just T [[t]].

� The IDL type [unique]t* is exactly the same as

[ref]t*, except that the pointer can be NULL. The

natural way to represent this possibility in Haskell is

using the Maybe type. The latter is a standard Haskell

type de�ned like this:

data Maybe a = Nothing | Just a

� An IDL value of type [ptr]t* is the address of a value

that might be shared, and might contain cycles. It is

far from clear how such a thing should be marshalled,

so we adopt a simple convention:

T [[[ptr]t*]] 7! Ptr T [[t]]

That is, [ptr] values are not moved across the border

at all. Instead they are represented by a value of type

Ptr T [[t]], a raw machine address.

This is often useful. For a start, some libraries im-

plement an abstract data type, in which the client is

expected to manipulate only pointers to the values.

Similarly, COM interface pointers should be treated

simply as addresses. Finally, some operating system

procedures (notably those concerned with windows)

return such huge structures that a client might want

to marshal them back selectively.

� A value of type [string]char* is the address of

a null-terminated sequence of characters. (Contrast

[ref]char*, which is the address of a single character.)

The corresponding Haskell type is, of course, String.

The [string] attribute applies to the following array

types char, byte, unsigned short, unsigned long,

structs with byte (only!) �elds and, in Microsoft-

only IDL, wchar.

� Sometimes a procedure takes a parameter that is a

pointer to an array of values, where another parame-

ter of the procedure gives the size of the array. For

example:

void DrawPolygon

( [in,size_is(nPoints)] Point* points

, [in] int nPoints

);

The [size is(nPoints)] attribute tells that the sec-

ond parameter, nPoints, gives the size of the array.

(This is quite like the [string] case, except that the

size of the array is given separately, whereas strings

have a sentinel at the end.) We translate arrays to

Haskell lists.

While each of these variants has a reasonable rationale, we

have found the plethora of IDL pointer types to be a rich

source of confusion. The translations in Figure 3 look in-

nocuous enough, but we have found them extremely helpful

in clarifying and formalising just exactly what the transla-

tion of an IDL type should be.

Even if the translation are not quite \right" (whatever that

means), we now have a language in which to discuss vari-

ants. For example, it may eventually turn out that the IDL

[ptr] attribute is conventionally used for subtly di�erent

purposes than the ones we suggest above. If so, the transla-

tions can readily be changed, and the changes explained to

programmers in a precise way.

5 Marshalling

In the translation of the IDL type signature for a proce-

dure (Section 3), we invoked marshalling functions M[[ ]]

and U [[ ]] for each of the types involved. Now that we have

de�ned the high and low-level translations of each type, the

marshalling code is relatively easy to de�ne. In this sec-

tion we de�ne these marshalling functions. Lack of space

precludes us from giving complete details so we will concen-

trate mostly on marshalling basic types.

Marshalling a structured value consists, as we shall see,

of two steps: allocate some memory in the parameter-

marshalling area to hold the value, and then actually mar-

shal the Haskell value into that memory. The translations

are much more elegant it we de�ne auxiliary schemes, W [[ ]]

and R[[ ]], that perform this \by-reference" marshalling.

We also need a number of functions to manipulate the

parameter-marshalling area. More precisely:

W[[t ]] :: Ptr T [[t ]] -> T [[t ]] -> IO () marshals its second

argument into the memory location(s) pointed to by

its �rst argument; the latter is a raw machine address.
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R[[t ]] :: Ptr T [[t ]] -> IO T [[t ]] unmarshals a value of IDL

type t out of memory location(s) pointed to by its

argument. W [[ ]] and R[[ ]] are mutually inverse (upto

memory allocation).

S[[t ]] :: Int is the number of bytes occupied by an IDL

value of type t . The function O[[ ]], mentioned in Sec-

tion 3, is de�ned thus:

O[[[attr]t*]] 7! hdAlloc S[[t ]]

hdAlloc :: Int -> IO (Ptr a) allocates the speci�ed

number of bytes in the parameter-marshalling area,

returning a pointer to the allocated area.

hdWriteb :: Ptr T [[b]] -> T [[b]] -> IO (), where b is a

basic type, marshals a value of IDL type b into the

speci�ed memory location(s).

hdReadb :: Ptr T [[b]] -> IO T [[b]], where b is a basic

type, unmarshals a value of IDL type t .

hdFree :: IO () frees the whole parameter-marshalling

area.

With these de�nitions in mind, Figure 4 gives the mar-

shalling schemes. We omit the schemes for [size is] be-

cause it is tiresomely complicated. Apart from that, the

translations are easy to read:

� For basic types there is no marshalling to do, except

that we must convert between the 16-bit Haskell Char

and 8-bit IDL char types.

� Marshalling a typedef'd type can be done by invoking

its marshalling function.

� Marshalling a [ref] pointer is done by allocating some

memory with hdAlloc, and then marshalling the value

into it with W[[ ]]. Unmarshalling is similar, except

that there is no allocation step; we just invoke R[[ ]].

� Dealing with [unique] pointers is similar, except that

we have to take account of the possibility of a NULL

value.

Again, it is very helpful to have a precise language in which

to discuss these translations. Though they look simple, we

can attest that it is very easy to get confused by pointers

to pointers to things, and we have far greater con�dence in

our implementation as a result of writing the translations

formally.

6 Type declarations

On top of the primitive base types, IDL supports the de�-

nition of a number of constructed types. For example

typedef int trip[3];

typedef struct TagPoint { int x,y; } Point;

typedef enum { Red=0, Blue=1, Green=2 } RGB;

typedef union _floats switch (int ftype) {

case 0: float f;

case 1: double d;

} Floats;

M[[t ]] :: T [[t ]] -> IO B[[t ]]

M[[char]] 7! marshallChar

M[[b]] 7! return

M[[n]] 7! marshalln

M[[[ref]t*]] 7! \x ->

dof px <- hdAlloc S[[t ]]

; W [[t ]] px xg

M[[[unique]t*]] 7! \x ->

case x of

Nothing -> return nullPtr

Just y -> M[[[ref]t*]] y

M[[[ptr]t*]] 7! return

M[[[string]t*]] 7! marshallString

W[[t ]] :: Ptr T [[t ]] -> T [[t ]] -> IO ()

W[[b]] 7! hdWriteb

W[[[attr]t*]] 7! \p x ->

dof a <- M[[[attr]t*]] x

; hdWriteAddr p ag

U [[t ]] :: B[[t ]] -> IO T [[t ]]

U [[char]] 7! unmarshallChar

U [[b]] 7! return

U [[n]] 7! unmarshalln

U [[[ref]t*]] 7! R[[t ]]

U [[[unique]t*]] 7! \p ->

if p == nullPtr then

return Nothing

else

dof x <- R[[t ]] p

; return (Just x)g

U [[[ptr]t*]] 7! return

U [[[string]t*]] 7! unmarshallString

R[[t ]] :: Ptr T [[t ]] -> IO T [[t ]]

R[[b]] 7! hdReadb

R[[[attr]t*]] 7! \p ->

dof a <- hdReadAddr p

; U [[[attr]t*]] ag

Figure 4: The marshalling schemes
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t : t[e] array type

j enum f

tag

1

= v

1

; : : : ; tag

n

= v

n

g enumeration

j struct tag f

f

1

: t

1

; : : : ; f

n

: t

n

; g record type

j union tag

1

switch ( b tag

2

) f

case v

1

:t

1

f

1

; : : : case v

n

:t

n

f

n

;g union type

Figure 5: IDL constructed type syntax

which declares array, record, enumeration and union (or

sum) types, respectively. Figure 5 shows the syntax of IDL's

constructed types.

The translation provides rules for converting between IDL

constructed types into corresponding Haskell representa-

tions. To ease the task of de�ning this type mapping, we

assume that each constructed type appears as part of an

IDL type declaration. In general, a type declaration has the

following form:

typedef t name;

declaring name to be a synonym for the type t , which is

either a base type or one of the above constructed types. A

type declaration for an IDL type t gives rise to the de�nition

of the following Haskell declarations:

� A Haskell type declaration for the Haskell type

N [[name]], such that T [[name]] = N [[name]].

� marshallN [[name]] :: T [[name]] -> IO B[[t ]] which

implements the M[[ ]] scheme for converting from the

Haskell representation T [[t ]] to the IDL type t .

� unmarshallN [[name]] :: B[[t ]] -> IO

T [[name]] which implements the dual U [[ ]] scheme for

unmarshalling.

� marshallN [[name]]At :: Ptr B[[t ]] -> T [[name]]

-> IO () for performing by-reference marshalling of

the constructed type.

� unmarshallN [[name]]At :: Ptr B[[t ]] ->

IO T [[name]] which implements the R[[ ]] scheme for

unmarshalling a constructed type by-reference.

� sizeofN [[name]] :: Int, a constant holding the size

of the external representation of the type (in 8-bit

bytes.)

The general rules for converting type declarations into

Haskell types is presented in Figure 6. Here is what they

generate when applied:

� In the case of a type declaration for a base type, this

merely de�nes a type synonym. For example

typedef int year;

is translated into the type synonym

type Year = Int

plus marshalling functions for Year.

� For a record type such as Point:

typedef struct TagPoint {int x,y;} Point;

generates a single constructor Haskell data type:

data Point = TagPoint { x:: Int, y::Int }

In addition to this, the D[[ ]] scheme generates

a collection of marshalling functions, including

marshallPoint:

marshallPoint :: Point -> IO (Ptr Point)

marshallPoint (Point x y) =

do{ ptr <- hdAlloc sizeofPoint

; let ptr1 = addPtr ptr 0

; marshallintAt ptr1 x

; let ptr2 = addPtr ptr1 sizeofint

; marshallintAt ptr2 y

; return ptr

}

It marshals a Point by allocating enough memory to

hold the external representation of the point. The size

of the record type is computed as follows:

sizeofPoint :: Int32

sizeofPoint = structSize [sizeofint,sizeofint]

where structSize is a (platform speci�c) function that

computes the size of a struct given the �eld sizes.

3

Point's two �elds are marshalled into the external rep-

resentation of Point by calling the by-reference mar-

shaller for the basic type Int, supplying a pointer that

has been appropriately o�set.

� For the union type example given at the start of Sec-

tion 6, the following Haskell type is generated:

data Floats = F Float | D Double

together with actions for marshalling between the al-

gebraic type and a union (omitting the type signatures

for the by-reference marshallers):

marshallFloats :: Floats -> IO (Ptr Floats)

unmarshallFloats :: Ptr Floats -> IO Floats

The external representation of a union is normally a

struct containing the discriminant and enough room

to accommodate the largest member of the union. In

the case of Floats, the external representation must

be large enough to contain and int and a double.

� Enumerations have a direct Haskell equivalent as alge-

braic data types with nullary constructors. For exam-

ple, the RGB declaration:

3

Similarly, a function that returns the o�sets at which to marshal

each �eld into is also provided. Due to lack of space, marshallPoint

makes the simplifying assumption that structures contain no internal

padding.
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D[[typedef t name;]]

7! type N [[name]] = T [[t ]]

marshallN [[name]] = marshallT [[t ]]

marshallN [[name]]At = marshallT [[t ]]At

unmarshallN [[name]] = unmarshallT [[t ]]

unmarshallN [[name]]At = unmarshallT [[t ]]At

sizeofN [[name]] = S[[t ]]

D[[typedef t name[dim];]]

7! type N [[name]] = [ T [[t ]] ]

marshallN [[name]] = marshallArray dim marshallT [[t ]]At

marshallN [[name]]At = marshallArrayAt dim marshallT [[t ]]At

unmarshallN [[name]] = unmarshallArray dim unmarshallT [[t ]]At

unmarshallN [[name]]At = unmarshallArrayAt dim unmarshallT [[t ]]At

sizeofN [[name]] = dim * S[[t ]]

D[[typedef struct tagf...; t �eld; ...g name;]]

7!

data N [[name]] = N [[tag ]]f : : : ,N [[field

i

]] :: T [[t

i

]], : : : g

marshallN [[name]] rec = do

ptr <- hdAlloc S[[name]]

marshallN [[name]]At ptr rec

return ptr

marshallN [[name]]At ptr (N [[tag ]]f : : : ,N [[field

i

]], : : :g = do

let ptr

1

= addPtr ptr 0

: : :

let ptr

i

= addPtr ptr

i�1

S[[t

i�1

]]

W [[t

i

]] ptr

i

field

i

: : :

return ()

unmarshallN [[name]] = unmarshallN [[name]]At

unmarshallN [[name]]At ptr = do

let ptr

1

= addPtr ptr 0

: : :

let ptr

i

= addPtr ptr

i�1

S[[t

i�1

]]

N [[field

i

]] <- R[[t

i

]] ptr

i

: : :

return (N [[tag ]] : : : N [[field

i

]] : : : )

sizeofN [[name]] = structSize [ : : : ;S[[field

i

]]; : : : ]

D[[typedef enum f...,alt = value,...g name;]]

7!

data N [[name]] = : : : | N [[alt ]] | : : :

marshallN [[name]] x =

case x of f : : : ; N [[alt ]] -> N [[value]]; : : : g

unmarshallN [[name]] x =

case x of f : : : ; N [[value]] -> return N [[alt ]]; : : : g

unmarshallN [[name]]At ptr = do

v <- hdReadInt ptr

unmarshallN [[name]] v

sizeofN [[name]] = sizeofint

Figure 6: Translating declarations
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typedef enum {red=0,green=1,blue=2} RGB;

is translated into the Haskell type

data RGB = Red | Green | Blue

with concrete representation B[[RGB]] = Int32

The marshalling actions simply map between the

nullary constructors and Int32:

marshallRGB :: RGB -> IO Int32

marshallRGB nm =

return (case { Red -> 0; Green -> 1; Blue ->2})

unmarshallRGB :: Int32 -> IO RGB

unmarshallRGB v =

case v of

0 -> return Red

1 -> return Green

2 -> return Blue

_ -> fail (userError ...)

7 The inverse mapping

Once marshalling and un-marshalling functions are de�ned

for each data type, it is not hard to reverse the mapping and

build code that allows C to call Haskell. The translation for

a typedef remains unchanged, but the translation for an

IDL procedure declaration is reversed. Since the procedure

is being implemented in Haskell, its [in]-parameters are

un-marshalled, the Haskell procedure is called, its results

are marshalled, and returned to the caller. (We omit the

details, but the translation rule can be expressed just as we

did in Section 3. For example, the Move IDL declaration

of that Section would be compiled to the following Haskell

code:

foreign export stdcall "Move"

primMove :: Ptr Point -> IO ()

primMove a =

do { p <- unmarshallPoint a

; q <- move p

; marshallPointAt a q

; return ()

}

move :: Point -> IO Point

move = error "Not yet implemented"

The foreign export declaration asks the Haskell compiler

to make Move externally callable with a stdcall interface.

primMove does the marshalling, before calling move, which

should be provided by the programmer.

We are also interested in allowing Haskell programs to create

and invoke COM objects, and in allowing a Haskell program

to be sealed up inside a COM object. This too is a straight-

forward extension. There are a couple of wrinkles, however:

� COM methods conventionally return a value of type

HRESULT, which is used to signal exceptional condi-

tions. H/Direct \knows" about HRESULT and re
ects

its exceptional values into exceptions in Haskell's IO

monad.

� COM methods are invoked indirectly, through a vector

table. To support this the Haskell foreign declaration

has to be extended to allow indirect calls. For example,

the Haskell-to-COM side looks like this:

foreign import stdcall

dynamic primFoo :: Addr -> ..

The keyword dynamic replaces the static name of the

foreign function, and the address of the function is

instead passed as the �rst argument to primFoo. The

foreign export case is similar.

� Lastly, there are several design choices concerning

what the programmer has to write to implement a

COM object. Does she write a collection of functions

that take the object state as their �rst argument? Or

does she write a single function that returns a record

of all the methods of the object?

8 Status and conclusions

H/Direct is now our fourth attempt at a foreign-language in-

terface for Haskell. The �rst was ccall, a limited and low-

level extension roughly equivalent to foreign import [3].

The second was Green Card, which gradually turned into

a domain-speci�c language [5]. The third was a pre-cursor

to H/Direct , Red Card, which was speci�cally aimed at in-

terfacing Haskell to COM objects, [4, 6]. H/Direct embod-

ies the lessons we have learned: strive for implementation-

independence; avoid inventing new languages; the customer

is always right.

We do not claim great originality for these observations.

What is new in this paper is a much more precise de-

scription of the mapping between Haskell and IDL than

is usually given. This precision has exposed details of the

mapping that would otherwise quite likely have been mis-

implemented. Indeed, the speci�cation of how pointers are

translated exposed a bug in our current implementation of

H/Direct . It also allows us automatically to support nested

structures and other relatively complicated types, without

great di�culty. These aspects often go un-implemented in

other foreign-language interfaces.

We are well advanced on an implementation of H/Direct .

We can parse and type-check the whole of Microsoft IDL,

and can generate stubs that allow Haskell to call C and

COM. We have not yet implemented the reverse mappping,

but we expect to do so in the next few months.
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