Deep Semantic Similarity Model for Text Processing

Presented by Xiaodong He and Jianfeng Gao
DSSM for learning the semantic meaning of texts

Learning the semantic meaning of texts is a key problem in NLP
Semantic Embedding

Word embedding: representing the meaning of a word by a vector

From discrete symbolic representation to continuously-valued vector representation

\[f(\text{cat}) = \text{one-hot word vector} \]

The index of “cat” in the vocabulary

\[f(\text{cat}) = \text{word embedding vector} \]

Common neural network based word embedding approaches

(Bengio 2001; Schwenk et al., 2006; Collobert et al., 2011; Mikolov et al. 2011, 2013, etc.)
However, a decomposable, robust representation is preferable for large scale NL tasks

New words, misspellings, and word fragments frequently occur (generalizability)

Vocabulary of real-world big data tasks could be huge (scalability)

e.g., 100M+ unique words in a modern commercial search engine log
From Word to Sub-word Unit

Decompose word to sub-word units, e.g., letter-trigram (LTG)

cat → #cat# → #-c-a, c-a-t, a-t-#

Unbounded variability (word) => bounded variability (sub-word)

E.g., only ~50K letter-trigrams in English \((37^3)\)

\[
W \rightarrow U \times V
\]

embedding vector

\(\text{dim} = 500\)

word embedding matrix:

\(500 \times 100M\)

1-hot word vector

\(\text{dim} = 100M\)

Could even go up to infinity

[Huang, He, Gao, Deng, Acero, Heck, CIKM2013]
Letter-trigram as the Sub-word Unit

Learn one vector per letter-trigram (LTG), the encoding matrix is a fixed matrix. Use the count of each LTG in the word for encoding.

Example: cat → #c-a, c-a-t, a-t# (w/ word boundary mark #)

- Address both the scalability and generalizability issues
Semantic Embedding: from Word to Phrase

The semantic intent is better defined at the phrase/sentence level rather than at the word level

- The meaning of a single word is often ambiguous
- A phrase/sentence/document contains rich contextual information that could be leveraged
DSSM for Semantic Embedding Learning

Deep structured semantic model/Deep semantic similarity model (DSSM)
The DSSM refers to a series of deep semantic models developed recently at MSR
With variations on model structures and training objectives

The DSSM is trained by an semantic similarity-driven objective
projecting semantically similar phrases to vectors close to each other
projecting semantically different phrases to vectors far apart

The DSSM uses the letter-trigram sub-word vector for the input word representation

[Huang, He, Gao, Deng, Acero, Heck, CIKM2013]
[Shen, He, Gao, Deng, Mesnil, WWW2014]
[Gao, He, Yih, Deng, ACL2014]
[Yih, He, Meek, ACL2014]
[He, Gao, Deng, ICASSP2014 Tutorial]
DSSM for Semantic Embedding Learning

Initialization:

Neural networks are initialized with random weights.

Semantic vector

- v_s
- $d=300$
- W_4
- $d=500$
- W_3
- $d=500$
- W_2
- $\text{dim} = 50K$
- W_1
- $\text{dim} = 100M$

Letter-trigram embedding matrix

- s: "racing car"

Letter-trigram encoding matrix (fixed)

Bag-of-words vector

Input word/phrase

- v_{t^+}
- $d=300$
- $d=500$
- $d=500$
- $\text{dim} = 100M$
- t^+: "formula one"

- v_{t^-}
- $d=300$
- $d=500$
- $d=500$
- $\text{dim} = 100M$
- t^-: "racing to me"

Initialization:

Neural networks are initialized with random weights.
DSSM for Semantic Embedding Learning

Training:
Compute Cosine similarity between semantic vectors

\[\frac{\partial}{\partial W} \frac{\exp(\cos(v_s, v_{t^+}))}{\sum_{t'=t^+}^{t^-} \exp(\cos(v_s, v_{t'}))} \]

Semantic vector

- \(v_s \):
 - \(d = 300 \)
 - \(W_4 \):
 - \(d = 500 \)
 - \(W_3 \):
 - \(d = 500 \)
 - \(W_2 \):
 - \(\text{dim} = 50K \)
 - \(W_1 \):
 - \(\text{dim} = 100M \)

- \(v_{t^+} \):
 - \(d = 300 \)
 - \(\text{dim} = 50K \)

- \(v_{t^-} \):
 - \(d = 300 \)
 - \(\text{dim} = 100M \)

Letter-trigram embedding matrix
- \(W_1 \):
 - \(\text{dim} = 100M \)

Letter-trigram encoding matrix (fixed)

Bag-of-words vector
- \(s: \text{"racing car"} \)

Input word/phrase
- \(t^+: \text{"formula one"} \)
- \(t^-: \text{"racing to me"} \)

Compute Cosine similarity between semantic vectors

\[\cos(v_s, v_{t^+}) \]

\[\cos(v_s, v_{t^-}) \]

Compute gradients

\[t' = \{t^+, t^-\} \]

Training:

1. Compute Cosine similarity between semantic vectors.
2. Compute gradients
3. Compute Cosine similarity between semantic vectors.

Semantic vector

Input word/phrase

DSSM for Semantic Embedding Learning
DSSM for Semantic Embedding Learning

Runtime:

Semantic vector

Letter-trigram embedding matrix
Letter-trigram encoding matrix (fixed)
Bag-of-words vector
Input word/phrase

\[\mathbf{v_s} \]

\[d=300 \]

\[W_4 \]

\[d=500 \]

\[W_3 \]

\[d=500 \]

\[W_2 \]

\[\text{dim} = 50K \]

\[W_1 \]

\[\text{dim} = 100M \]

\(s: \text{"racing car"} \)

\[\mathbf{v_{t1}} \]

\[d=300 \]

\[d=500 \]

\[d=500 \]

\[\text{dim} = 100M \]

\(t1: \text{"formula one"} \)

\[\mathbf{v_{t2}} \]

\[d=300 \]

\[d=500 \]

\[d=500 \]

\[d=500 \]

\[\text{dim} = 100M \]

\(t2: \text{"racing to me"} \)

\(similar \)

\(apart \)
Evaluation

Evaluated on an information retrieval task
Docs are ranked by the cosine similarity between semantic vectors of the query and the doc

<table>
<thead>
<tr>
<th>Model</th>
<th>Input dimension</th>
<th>NDCG@1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM25 baseline</td>
<td>--</td>
<td>30.8</td>
</tr>
<tr>
<td>Probabilistic LSA (PLSA)</td>
<td></td>
<td>29.5</td>
</tr>
<tr>
<td>Auto-Encoder (Word)</td>
<td>40K</td>
<td>31.0 (+0.2)</td>
</tr>
<tr>
<td>DSSM (Word)</td>
<td>40K</td>
<td>34.2 (+3.4)</td>
</tr>
<tr>
<td>DSSM (Random projection)</td>
<td>30K</td>
<td>35.1 (+4.3)</td>
</tr>
<tr>
<td>DSSM (Letter-trigram)</td>
<td>30K</td>
<td>36.2 (+5.4)</td>
</tr>
</tbody>
</table>

The higher the NDCG score the better, 1% NDCG difference is statistically significant.

DSSM-based embedding improves 5~7 pt NDCG over shallow models
Comparison: Auto-encoder vs. DSSM

Auto-encoder
- **Supervision:** AE: unsupervised (e.g., doc<->doc)
 DSSM: weakly supervised (e.g., query<->doc search log)
- **Training objective:** AE: reconstruction error
 DSSM: distance between embedding vectors
- **Input representation:** AE: 1-hot word vector
 DSSM: letter-trigram

DSSM
- **Supervision:**
 - AE: unsupervised (e.g., doc<->doc)
 - DSSM: weakly supervised (e.g., query<->doc search log)
- **Training objective:** AE: reconstruction error
 DSSM: distance between embedding vectors
- **Input representation:** AE: 1-hot word vector
 DSSM: letter-trigram

The DSSM can be trained using a variety of signals without costly labeling effort (e.g., user behavior log data).
DSSM for Semantic Word Clustering and Analogy

Learn word embedding by means of its neighbors (context)

Construct context \leftrightarrow word training pair for DSSM

Training Condition:
30K vocabulary size
10M words from Wikipedia
50-dimentional vector
Pure unsupervised training

$\text{dim} = 120K$

$d=300$

$d=500$

Similar

$s: \ "w(t-2) \ w(t-1) \ w(t+1) \ w(t+2)"$

$t: \ "w(t)"$

[Song et al. 2014]
Plotting 3K words in 2D
Plotting 3K words in 2D
Plotting 3K words in 2D
DSSM for Word Clustering and Analogy

Semantic clustering examples: top 3 neighbors of each word

<table>
<thead>
<tr>
<th>Word</th>
<th>Neighbor 1 (Similarity)</th>
<th>Neighbor 2 (Similarity)</th>
<th>Neighbor 3 (Similarity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>king</td>
<td>earl (0.77)</td>
<td>pope (0.77)</td>
<td>lord (0.74)</td>
</tr>
<tr>
<td>woman</td>
<td>person (0.79)</td>
<td>girl (0.77)</td>
<td>man (0.76)</td>
</tr>
<tr>
<td>france</td>
<td>spain (0.94)</td>
<td>italy (0.93)</td>
<td>belgium (0.88)</td>
</tr>
<tr>
<td>rome</td>
<td>constantinople (0.81)</td>
<td>paris (0.79)</td>
<td>moscow (0.77)</td>
</tr>
<tr>
<td>winter</td>
<td>summer (0.83)</td>
<td>autumn (0.79)</td>
<td>spring (0.74)</td>
</tr>
<tr>
<td>rain</td>
<td>rainfall (0.76)</td>
<td>storm (0.73)</td>
<td>wet (0.72)</td>
</tr>
<tr>
<td>car</td>
<td>truck (0.8)</td>
<td>driver (0.73)</td>
<td>motorcycle (0.72)</td>
</tr>
</tbody>
</table>

Semantic analogy examples

\[w_1 : w_2 = w_3 : ? \quad \Rightarrow \quad V_2 = V_3 - V_1 + V_2 \]

<table>
<thead>
<tr>
<th>Analogy</th>
<th>Top Neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer : rain = winter : ?</td>
<td>snow (0.79) rainfall (0.73) wet (0.71)</td>
</tr>
<tr>
<td>italy : rome = france : ?</td>
<td>paris (0.78) constantinople (0.74) egypt (0.73)</td>
</tr>
<tr>
<td>man : eye = car : ?</td>
<td>motor (0.64) brake (0.58) overhead (0.58)</td>
</tr>
<tr>
<td>man : woman = king : ?</td>
<td>mary (0.70) prince (0.70) queen (0.68)</td>
</tr>
<tr>
<td>read : book = listen : ?</td>
<td>sequel (0.65) tale (0.63) song (0.60)</td>
</tr>
</tbody>
</table>
Broad impact on key text processing tasks

Semantic similarity modeling is critical in many text processing tasks
Deep Semantic Similarity Model (DSSM)

Compute semantic similarity between two text strings X and Y

- Map X and Y to feature vectors in a latent semantic space via deep neural net
- Compute the cosine similarity between the feature vectors

DSSM for ranking tasks

<table>
<thead>
<tr>
<th>Tasks</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web search</td>
<td>Search query</td>
<td>Web documents</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Doc in reading</td>
<td>Interesting things in doc or other docs</td>
</tr>
<tr>
<td>Machine translation</td>
<td>Sentence in language A</td>
<td>Translations in language B</td>
</tr>
</tbody>
</table>
Learning DSSM on labeled X-Y pairs (clicked Q-D pairs)

- Map query (X) and docs (Y) into the same semantic space via deep neural net
Learning DSSM on labeled X-Y pairs (clicked Q-D pairs)

- Map query (X) and docs (Y) into the same semantic space via deep neural net
- Clicked (relevant) docs are closer to query than non-clicked (irrelevant) docs in that space
DSSM: compute X-Y similarity in semantic space

Learning: maximize the similarity between relevant queries and docs

DSSM combines three pieces of MSR research
- DNN structure follows deep auto-encoder (Hinton and Deng 2009)
- The use of search logs for translation model training (Gao, He, Nie, 2010)
- Parameter optimization uses the pairwise rank loss based on cosine similarity (Yih et al. 2011; Gao et al. 2011)

https://microsoft.sharepoint.com/teams/DSSM_Text_Processing
Results on Web Search Ranking

<table>
<thead>
<tr>
<th>#</th>
<th>Models</th>
<th>NDCG@1</th>
<th>Improv.</th>
<th>NDCG@3</th>
<th>Improv.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lexical Matching Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BM25</td>
<td>30.5</td>
<td></td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ULM [Zhai and Lafferty 2001]</td>
<td>30.4</td>
<td>-0.1</td>
<td>32.7</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>Topic Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PLSA [Hofmann 1999]</td>
<td>30.5</td>
<td>+0.0</td>
<td>33.5</td>
<td>+0.7</td>
</tr>
<tr>
<td>4</td>
<td>BLTM [Gao et al. 2011]</td>
<td>31.6</td>
<td>+1.0</td>
<td>34.4</td>
<td>+1.6</td>
</tr>
<tr>
<td></td>
<td>Clickthrough-based Translation Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>WTM [Gao et al. 2010]</td>
<td>31.5</td>
<td>+1.0</td>
<td>34.2</td>
<td>+1.4</td>
</tr>
<tr>
<td>6</td>
<td>PTM [Gao et al. 2010]</td>
<td>31.9</td>
<td>+1.4</td>
<td>34.7</td>
<td>+1.9</td>
</tr>
<tr>
<td></td>
<td>Deep Semantic Similarity Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DSSM w/o convolutional layer</td>
<td>32.0</td>
<td>+1.5</td>
<td>35.5</td>
<td>+2.7</td>
</tr>
<tr>
<td>8</td>
<td>DSSM</td>
<td>34.2</td>
<td>+3.7</td>
<td>37.4</td>
<td>+4.6</td>
</tr>
</tbody>
</table>

DSSM is the new state-of-the-art
Modeling interestingness with DSSM

- Contextual entity search
 - Given a user-highlighted text span representing an entity of interest
 - Search for supplementary document for the entity

- Automatic highlighting
 - Given a document a user is reading
 - Discover the concepts/entities/topics that interest the user and highlight the corresponding text span

- Document prefetching
 - Given a document a user is reading
 - Prefetching a document that the user will be interested in next
DSSM for contextual entity ranking

- DSSM beats manually crafted text features
- +5 AUC gain over full ranker

<table>
<thead>
<tr>
<th>Ranker</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM25 (mention)</td>
<td>60%</td>
</tr>
<tr>
<td>Ranker (2306 features)</td>
<td>72%</td>
</tr>
<tr>
<td>DSSM (1 feature)</td>
<td>72%</td>
</tr>
<tr>
<td>Ranker+ DSSM</td>
<td>77%</td>
</tr>
</tbody>
</table>

- Mention
- Context

KB Entity (reference doc)
Highlighting: Interest Models Performance
NDCG @ Rank (EVAL) using src/tar Content

- **Features**
 - DSM: DSSM
 - WCAT: semantic labels (page categories) assigned by editors
 - JTT: LDA-style topic models
 - NSF: non-semantic features
- **DSSM learned features outperform the thousands of features coming from manually assigned labels (WCAT)**
Results on Machine Translation

- Map the sentences in source/target languages into the same, language-independent semantic space
- The semantic translation model leads up to 1.3 BLEU improvement
DSSM: learning semantic similarity between X and Y

<table>
<thead>
<tr>
<th>Tasks</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web search</td>
<td>Search query</td>
<td>Web documents</td>
</tr>
<tr>
<td>Ad selection</td>
<td>Search query</td>
<td>Ad keywords</td>
</tr>
<tr>
<td>Entity ranking</td>
<td>Mention (highlighted)</td>
<td>Entities</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Doc in reading</td>
<td>Interesting things in doc or other docs</td>
</tr>
<tr>
<td>Machine translation</td>
<td>Sentence in language A</td>
<td>Translations in language B</td>
</tr>
<tr>
<td>Nature User Interface</td>
<td>Command (text/speech)</td>
<td>Action</td>
</tr>
<tr>
<td>Summarization</td>
<td>Document</td>
<td>Summary</td>
</tr>
<tr>
<td>Query rewriting</td>
<td>Query</td>
<td>Rewrite</td>
</tr>
<tr>
<td>Image retrieval</td>
<td>Text string</td>
<td>Images</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Save the planet and return your name badge before you leave (on Tuesday)