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I. I NTRODUCTION

In this paper, we investigate the problem of identifying lossy
links in the interior of the Internet bypassivelyobserving the
end-to-end performance of existing traffic between a server and
its clients. This is in contrast to the previous work on network to-
mography (e.g., [1]) that has been based on active probing. The
key advantage of a passive approach is that it does not introduce
wasteful traffic which might perturb the object of inference, i.e.,
the link loss rates. Moreover, our techniques depend only on
knowing the number of lost and successful packets sent to each
client rather than the exact loss sequence required by previous
techniques such as [1]. While accuracy of link loss rate infer-
ence may consequently suffer, our techniques can still pinpoint
the trouble spots in the network (e.g., highly lossy links).

We have developed three techniques for passive network
tomography: Random Sampling, Linear Optimization, and
Bayesian Inference using Gibbs Sampling. We have evaluated
these techniques using simulations and traces gathered at a busy
Web server. In this paper, we focus on the Gibbs Sampling tech-
nique; more information on the three techniques appears in [3].

II. BAYESIAN INFERENCE USINGGIBBS SAMPLING

We model passive network tomography as a Bayesian infer-
ence problem. We first present some background information.

A. Background

Let D denote the observed data andθ denote the (unknown)
model parameters. (In the context of network tomography,D
represents the observations of packet transmission and loss, and
θ represents the ensemble of loss rates of links in the network.)
The goal of Bayesian inference is to determine theposteriordis-
tribution of θ, P (θ|D), based on the observed data,D. The in-
ference is based on knowing aprior distributionP (θ) and alike-
lihoodP (D|θ). Thejoint distributionP (D, θ) = P (D|θ)P (θ).
We can then compute the posterior distribution ofθ as follows:

P (θ|D) =
P (θ)P (D|θ)∫

θ
P (θ)P (D|θ)dθ

Any features of the posterior distribution are legitimate for
Bayesian inference: moments, quantiles, etc. All of these can
be expressed as posterior expectations of functions ofθ:

E(f(θ)|D) =
f(θ)P (θ)P (D|θ)∫
θ
P (θ)P (D|θ)dθ

In general, it is hard to computeE(f(θ)|D) directly because
of the complex integrations involved, especially whenθ is a vec-
tor (as it is in our case). An indirect approach is to useMonte
Carlo integration. The idea here is to sample underlying poste-
rior distribution and use the sample mean as an approximation
of E(f(θ)|D). One way of doing the appropriate sampling is to
construct a Markov chain whose stationary distribution exactly
equals the posterior distribution of interest (P (θ|D)). (Hence
the nameMarkov Chain Monte Carlo (MCMC)[2] is given to
this class of techniques.) When such a Markov chain is run for
a sufficiently large number of steps (termed theburn-inperiod),
it “forgets” its initial state and converges to its stationary dis-
tribution. It is then straightforward to obtain samples from this
stationary distribution.

The challenge then is to construct a Markov chain (i.e., de-
fine its transition probabilities) whose stationary distribution
matchesP (θ|D). Gibbs samplingis a widely used technique to
accomplish this. The basic idea is that at each transition of the
Markov chain, only a single variable (i.e., only one component
of the vectorθ) is varied. Rather than explain Gibbs sampling
in general, we now switch to modeling network tomography as
a Bayesian inference problem and explaining how Gibbs sam-
pling works in this context.

B. Application to Network Tomography

To model network tomography as a Bayesian inference prob-
lem, we defineD and θ as follows. The observed data,D,
is defined as the number of successful packet transmissions to
each client (sj) and the number of failed (i.e., lost) transmis-
sions (fj). (Note that it is easy to computesj by subtracting
fj from the total number of packets transmitted to the client.)
ThusD =

⋃
j(sj , fj). The unknown parameterθ is defined as

the set of links’ loss rates, i.e.,θ = lL =
⋃

i∈L li (We denote a
specific solution aslL =

⋃
i∈L li whereL is the set of all links

in the topology, andli is the loss rate of linki.) The likelihood
function can then be written as:

P (D|lL) =
∏

j∈clients

(1− pj)sj p
fj

j (1)

wherepj = 1 − ∏
i∈Tj

(1 − li) and represents the end-to-end
loss rate observed at clientCj , andTj is the set of links on the
path from the server to clientCj .

The prior distribution,P (lL), would indicate prior knowledge
about the lossiness of the links. For instance, the prior could be
defined differently for links that are known to be lossy dialup
links as compared to links that are known to be highly reliable
OC-192 pipes. However, in our study here, we only use a uni-
form prior, i.e.,P (lL) = 1, since we do not have information,
such as the type or nature of individual links, that could serve as
the basis of a prior.



The object of network tomography is the posterior distribu-
tion, P (lL|D). To this end, we use MCMC with Gibbs sam-
pling as follows. We start with an arbitrary initial assignment
of link loss rates,lL. At each step, we pick one of the links,
say i, and compute the posterior distribution of loss rate for
that link alone conditioned on the observed dataD and the loss
rates assigned to all other links (i.e.,̄{li} =

⋃
k 6=i lk). Note that

{li} ∪ ¯{li} = lL. Thus we have

P (li|D, ¯{li}) =
P (D|{li} ∪ ¯{li})P (li)∫

li
P (D|{li} ∪ ¯{li})P (li)dli

SinceP (lL) = 1 and{li} ∪ ¯{li} = lL, we have

P (li|D, ¯{li}) =
P (D|lL)∫

li
P (D|lL)dli

(2)

Using equations (1) and (2), we numerically compute the pos-
terior distributionP (li|D, ¯{li}) and draw a sample from this
distribution. This then gives us the new value,l

′
i, for the loss

rate of linki. In this way, we cycle through all the links and as-
sign each a new loss rate. We then iterate this procedure several
times. After the burn-in period (which in our experiments lasts a
few hundred iterations), we obtain samples from the desired dis-
tribution, P (lL|D). We use these samples to determine which
links are likely to be lossy.

III. PERFORMANCEEVALUATION

We evaluate the inference technique using both simulations
and real packet traces. Detailed results appear in [3].

A. Simulation Results

The main advantage of simulation is that the true link loss
rates are known, so validating the inferences of network tomog-
raphy is easy. The simulation experiments are performed on
topologies of different sizes using multiple link loss models. For
each topology, we set the maximum node out-degree,d, and the
fraction of non-lossy links,f (non-lossy links are those whose
loss rate is smaller than a threshold).

Gibbs sampling for a 1000-node 
random topology (d = 10, f = 0.5)
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Fig. 1. The performance of Gibbs sampling when the inferences are rank or-
dered based on a confidence estimate.

Figure 1 shows how Gibbs sampling performs when applied
to a 1000-node random topology where about half of the 983
links are lossy. (The number of links is somewhat smaller than
the number of nodes because a linear chain of links with no

branch points is collapsed into a single virtual link.) Gibbs
sampling is able to correctly identify 401 of the 489 lossy links
(82%) with only 47 (10.5%) false positives. Other experiments
also confirm that inference based on Gibbs sampling has a high
coverage and a low false positive rate.

The inferences in Figure 1 are rank ordered based on our
“confidence” in the inference. We quantify the confidence as
the fraction of Gibbs samples that exceed the loss rate threshold
for lossy links. We sort the links in the order of decreasing con-
fidence, and plot 3 curves: the true number of lossy links in the
set of links considered up to that point, the number of correct
inferences, and the number of false positives. We see that the
confidence rating assigned by Gibbs sampling works very well.
There are few false positives among the the inferences in which
we have the highest degree of confidence.

B. Internet Results

We also applied the Gibbs sampling technique to Internet traf-
fic traces gathered at themicrosoft.comserver site. Network path
information was obtained by runningtraceroutesto the clients
recorded in the trace.

We found that over 95% of lossy links detected through Gibbs
sampling terminate at leaves (i.e., clients). This is consistent
with the common belief that the last-mile to clients is often the
bottleneck in Internet paths.

Validating our inferences directly is challenging since we do
not know the true loss rates of Internet links. We have devel-
oped the following approach for indirect validation. The clients
in the trace are partitioned into two groups: the tomography set
and the validation set. We apply the inference technique to the
tomography set to identify lossy links. For each lossy link iden-
tified, we examine whether clients in the validation set that are
downstream of that link experience a high loss rate on average.
If they do, we deem our inference to be correct.

Clearly, this validation method cannot be applied to lossy
links that terminate at leaves. For the (small) subset of infer-
ences that could be validated using this method, we found all of
the inferences to be correct.

IV. CONCLUSION

In this paper, we have considered the problem of identifying
lossy links in the interior of the Internet based on passive obser-
vation at a server of existing end-to-end, client-server traffic. We
have develop and evaluated a technique based on Bayesian in-
ference using Gibbs sampling, which has a high coverage (over
80%) and a low false positive rate (below 5-10%).
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