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Why Think?

It helps us do most things:

Hunting a sabre-toothed tiger.

Building a house.

Writing a program.
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When to Think

Hunting a sabre-toothed tiger.

Before leaving the cave.
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How to Think

“Writing is nature’s way of letting you know how
sloppy your thinking is.”

Guindon

To think, you have to write.

If you’re thinking without writing, you only think you’re thinking.
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What to Write

Hunting a sabre-toothed tiger.

Writing not invented, dangerous activity.

Building a house.

Draw blueprints.

Writing a program.
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What to Write

Hunting a sabre-toothed tiger.

Writing not invented, dangerous activity.

Building a house.

Draw blueprints.

Writing a program.

Write a blueprint specification.
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Don’t Panic!
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Specifications

Don’t Panic!

This is also a blueprint:
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A spectrum of blueprints

Very DetailedRough Sketch Ordinary
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A spectrum of specifications

Formal

Some code is complex or very subtle or critical.

Especially in concurrent/distributed systems.
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A spectrum of specifications

Formal

Some code is complex or very subtle or critical.

We should use tools to check it.
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How to Write a Spec

Writing requires thinking.

5



How to Write a Spec

Writing requires thinking.

5



How to Think About Programs

Like a Scientist

A very successful way of thinking.

Science makes mathematical models of reality.

Astronomy:

Reality: planets have mountains, oceans, tides, weather, . . .

Model: planet a point mass with position & momentum.
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Partially ordered sets of events
...

6



Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6



Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6



Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6



Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6



Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6



Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6



Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6



Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6



Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6



The Two Most Useful Models

Functions

Sequences of States

7



The Two Most Useful Models

Functions

Sequences of States

7



The Two Most Useful Models

Functions

Sequences of States

7



Functions

Model a program as a function mapping input(s) to output(s).

In math, a function is a set of ordered pairs.

Example: the square function on natural numbers

{〈0,0〉, 〈1,1〉, 〈2,4〉, 〈3,9〉, . . . }
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Model a program as a function mapping input(s) to output(s).

In math, a function is a set of ordered pairs.

Example: the square function on natural numbers

{〈0,0〉, 〈1,1〉, 〈2,4〉, 〈3,9〉, . . . }

Functions in math 6= functions in programming languages.

Math is much simpler.
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Limitations of the Function Model

Specifies what a program does, but not how.

– Quicksort and bubble sort compute the same function.

Some programs don’t just map inputs to outputs.

– Some programs run “forever”.

– Operating systems
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The Standard Behavioral Model

A program execution is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

A program is modeled by a set of behaviors:

the behaviors representing possible executions.
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An Example: Euclid’s Algorithm

Computes GCD of M and N by:

– Initialize x to M and y to N .

– Keep subtracting the smaller of x and y from the larger.

– Stop when x = y .

For M = 12 and N = 18, one behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]
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How to Describe a Set of Behaviors

Theorem

Any set B of behaviors =

all behaviors satisfying a safety property S

∩ all behaviors satisfying a liveness property L
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False iff violated at some point in behavior.
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all behaviors satisfying a safety property S

∩ all behaviors satisfying a liveness property L

Liveness Property:

Need to see complete behavior to know if it’s false.
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How to Describe a Set of Behaviors

Theorem

Any set B of behaviors =

all behaviors satisfying a safety property S

∩ all behaviors satisfying a liveness property L

Specify a set of behaviors with

– a safety property

– a liveness property

12



In practice, specifying safety is more important.

That’s where errors are most likely to occur.

To save time, I’ll ignore liveness.
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How to Specify a Safety Property

With two things:

– The set of possible initial states.

– A next-state relation,
describing all possible successor states of any state.

What language should we use?

Let’s act like scientists.

Let’s use math.

13



How to Specify a Safety Property

With two things:

– The set of possible initial states.

– A next-state relation,
describing all possible successor states of any state.

What language should we use?

Let’s act like scientists.

Let’s use math.

13



How to Specify a Safety Property

With two things:

– The set of possible initial states.

– A next-state relation,
describing all possible successor states of any state.

What language should we use?

Let’s act like scientists.

Let’s use math.

13



How to Specify a Safety Property

With two things:

– The set of possible initial states.

– A next-state relation,
describing all possible successor states of any state.

What language should we use?

Let’s act like scientists.

Let’s use math.

13



How to Specify a Safety Property

With two things:

– The set of possible initial states.

– A next-state relation,
describing all possible successor states of any state.

What language should we use?

Let’s act like scientists.

Let’s use math.

13



How to Specify a Safety Property

With two things:

– The set of possible initial states.

– A next-state relation,
describing all possible successor states of any state.

What language should we use?

Let’s act like scientists.

Let’s use math.

13



How to Specify a Safety Property

With two things:

– The set of possible initial states.

– A next-state relation,
describing all possible successor states of any state.

What language should we use?

Let’s act like scientists.

Let’s use math.

13



The Set of Initial States

Described by a formula.

For Euclid’s Algorithm: (x = M ) ∧ (y = N )

Only possible initial state: [x = M , y = N ]
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The Next-State Relation

Described by a formula.

Unprimed variables for current state,
Primed variables for next state.

For Euclid’s Algorithm: ( x > y

∧ x ′ = x − y

∧ y ′ = y )

∨ ( y > x

∧ y ′ = y − x

∧ x ′ = x )
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For Euclid’s Algorithm

Take M = 12, N = 18

Next : ( x > y

∧ x ′ = x − y

∧ y ′ = y )

∨ ( y > x

∧ y ′ = y − x

∧ x ′ = x )

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]
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Euclid’s Algorithm

For any values of x and y , there are unique
values of x ′ and y ′ that make Next true.

Euclid’s algorithm is deterministic.

To Model Nondeterminism

Allow multiple next states for a current state.

Multiple assignments of values to primed variables
that make Next true for a single assignment of values
to unprimed variables.
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This
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The Language: TLA+

becomes this

MODULE Euclid
EXTENDS Integers

CONSTANTS M , N

VARIABLES x , y

Init
∆
= (x = M ) ∧ (y = N )

Next
∆
= ( x > y

∧ x ′ = x − y
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plus declarations
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The Language: TLA+

plus some boilerplate.

MODULE Euclid
EXTENDS Integers

CONSTANTS M , N

VARIABLES x , y

Init
∆
= (x = M ) ∧ (y = N )

Next
∆
= ( x > y

∧ x ′ = x − y

∧ y ′ = y )

∨ ( y > x

∧ y ′ = y − x
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The Language: TLA+

You type

------------------ MODULE Euclid -------------------
EXTENDS Integers

CONSTANTS M, N

VARIABLES x, y

Init == (x = M) /\ (y = N)

Next == ( x > y
/\ x’ = x - y
/\ y’ = y )

\/ ( y > x
/\ y’ = y - x
/\ x’ = x )

=====================================================

19



You can model check TLA+ specs.

You can write formal correctness proofs
and check them mechanically.

But math works only for toy examples.

To model real systems, you need a real language
with types, procedures, objects, etc.

Wrong
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[W]e have used TLA+ on 10 large complex real-world systems.
In every case TLA+ has added significant value, either
preventing subtle serious bugs from reaching production, or
giving us enough understanding and confidence to make
aggressive performance optimizations without sacrificing
correctness. Executive management are now proactively
encouraging teams to write TLA+ specs for new features and
other significant design changes. In annual planning, managers
are now allocating engineering time to use TLA+.

Chris Newcombe
Amazon Engineer
November, 2013
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The XBox 360 Memory System

Writing a TLA+ spec caught a bug that would not
otherwise have been found.

That bug would have caused every XBox 360 to crash
after 4 hours of use.
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You can learn about TLA+ on the web.

Today, I’ll talk about informal specs, starting with an example.
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There is no precise definition of correct alignment.

We can’t specify mathematically what the user wants.

If we can’t specify correctness, specification is useless.
Wrong.

Not knowing what a program should do means
we have to think even harder.

Which means that a spec is even more important.
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My Spec

6 rules plus definitions (in comments).

Example:

A left-comment token is LeftComment aligned
with its covering token.
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My Spec
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Why did I write this spec?

It was a lot easier to understand and debug 6 rules
than 850 lines of code.

I did a lot of debugging of the rules, aided by debugging code
to report what rules were being used.

The few bugs in implementing the rules were easy to catch.

Had I just written code, it would have taken me much longer
and not produced formatting as good.
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Why not a formal spec?

Getting it right not that important.

It didn’t have to work on all corner cases.

There were no tools that could help me.
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What is Typical About This Spec

The spec is at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have
helped to write the spec.

No method or tool for writing better code would have
made the spec unnecessary.

It says nothing about how to write code.

You write a spec to help you think about the problem
before you think about the code. 26
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What is Not Typical About This Spec

It’s quite subtle.

95% of the code most people write requires less thought;
specs that are shorter and simpler suffice.

It’s a set of rules.

A set of rules/requirements/axioms is usually a bad spec.

It’s hard to understand the consequences of a set of rules.

27



What is Not Typical About This Spec

It’s quite subtle.

95% of the code most people write requires less thought;
specs that are shorter and simpler suffice.

It’s a set of rules.

A set of rules/requirements/axioms is usually a bad spec.

It’s hard to understand the consequences of a set of rules.

27



What is Not Typical About This Spec

It’s quite subtle.

95% of the code most people write requires less thought;
specs that are shorter and simpler suffice.

It’s a set of rules.

A set of rules/requirements/axioms is usually a bad spec.

It’s hard to understand the consequences of a set of rules.

27



What is Not Typical About This Spec

It’s quite subtle.

95% of the code most people write requires less thought;
specs that are shorter and simpler suffice.

It’s a set of rules.

A set of rules/requirements/axioms is usually a bad spec.

It’s hard to understand the consequences of a set of rules.

27



What is Not Typical About This Spec

It’s quite subtle.

95% of the code most people write requires less thought;
specs that are shorter and simpler suffice.

It’s a set of rules.

A set of rules/requirements/axioms is usually a bad spec.

It’s hard to understand the consequences of a set of rules.

27



What is Not Typical About This Spec

It’s quite subtle.

95% of the code most people write requires less thought;
specs that are shorter and simpler suffice.

It’s a set of rules.

A set of rules/requirements/axioms is usually a bad spec.

It’s hard to understand the consequences of a set of rules.
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Specifying How to Compute a Function

Specifying what the pretty-printer should do was hard.

Implementing the spec was easy.

Specifying what a sorting program should do is easy.

Figuring out how to implement it efficiently is hard
(if no one has shown you).

It requires thinking, which means writing a specification.
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An example: Quicksort

A divide-and-conquer algorithm for sorting an array
A[0], . . . , A[N − 1].

For simplicity, assume the A[i ] are numbers.
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It uses a procedure Partition(lo, hi).

It chooses pivot in lo . . . (hi − 1), permutes A[lo], . . . ,A[hi ]

to make A[lo], . . . ,A[pivot ] ≤ A[pivot + 1], . . . ,A[hi ],
and returns pivot .

For this example, we don’t care how this procedure
is implemented.
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Let’s specify Quicksort in pseudo-code.

procedure Partition(lo, hi) {

Pick pivot in lo . . . (hi − 1);

Permute A[lo], . . . ,A[hi ] to make
A[lo], . . . ,A[pivot ] ≤ A[pivot + 1], . . . ,A[hi ];

return pivot ; }

procedure QS (lo, hi) { if (lo < hi ) { p := Partition(lo, hi);
QS (lo, p);
QS (p + 1, hi); } }

main { QS (0,N − 1) ; }

But is it really Quicksort?
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main { QS (0,N − 1) ; }

Informal: no formal syntax, no declarations, . . .

Easy to understand.

But is it really Quicksort?
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It’s the way Quicksort is almost always described.

But recursion is not a fundamental part of Quicksort.

It’s just one way of implementing divide-and-conquer.

It’s probably not the best way for parallel execution.
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Problem: Write a non-recursive version of Quicksort.

Almost no one can do it in 10 minutes.

They try to “compile” the recursive version.
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Solution:

Maintain a set U of index ranges on which
Partition needs to be called.

Initially, U equals {〈0,N − 1〉}

We could write it in pseudo-code,
but it’s better to simply write Init and Next directly.
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Init : A = any array of numbers of length N

∧ U = {〈0,N − 1〉}

Before writing Next , let’s make a definition:

Partitions(B , pivot , lo, hi)
∆
=

the set of arrays obtained from B by permuting
B [lo], . . . , B [hi ] such that . . .

Next :

A relation between old values of A, U
and new values A′, U ′.
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Next :
U 6= {}

∧ Pick any 〈b, t〉 in U :
IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed
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Why can (almost) no one find this version of Quicksort?

Their minds are stuck in code.

They can’t think at a higher level.
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Next :
U 6= {}

∧ Pick any 〈b, t〉 in U :
IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

Easy to write this as a formula.
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Or sometimes
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Or sometimes even simpler.
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∧ U ′ = U with 〈b, t〉 removed and

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

And so on.
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∧ ∃ 〈b, t〉 ∈ U :

IF b 6= t

THEN ∃ p ∈ b . . (t−1) :
A′ ∈ Partitions(A, p, b, t)
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And so on.
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Next :
U 6= {}

∧ ∃ 〈b, t〉 ∈ U :

IF b 6= t

THEN ∃ p ∈ b . . (t−1) :
A′ ∈ Partitions(A, p, b, t)

∧ U ′ = (U \ {〈b, t〉}) ∪ {〈b, p〉, 〈p+1, t〉}

ELSE A′ = A

∧ U ′ = U \ {〈b, t〉}

A TLA+ formula.
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Next :
U 6= {}

∧ ∃ 〈b, t〉 ∈ U :

IF b 6= t

THEN ∃ p ∈ b . . (t−1) :
A′ ∈ Partitions(A, p, b, t)

∧ U ′ = (U \ {〈b, t〉}) ∪ {〈b, p〉, 〈p+1, t〉}

ELSE A′ = A

∧ U ′ = U \ {〈b, t〉}

If you prefer pseudo-code. . .
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PlusCal

Like a toy programming language.

Algorithm appears in a comment in a TLA+ module.

An expression can be any TLA+ expression.

Constructs for nondeterminism.

Compiled to an easy to understand TLA+ spec.

Can apply TLA+ tools.
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Programs that Run Forever

I’ve been talking about programs that compute a function.

Programs that run forever usually involve concurrency:

– Operating systems.

– Distributed systems.

Few people can get them right by just thinking (and writing).

I’m not one of them.

We need tools to check what we do.

Use TLA+/ PlusCal.
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The Other 95%

Prose

Most code is really simple.

38



The Other 95%

/***********************************************************
* CLASS ResourceFileReader *
* *
* A ResourceFileReader returns an object for reading a *
* resource file, which is a file kept in the same *
* directory as the tlatex.Token class. The constructor *
* takes a file name as argument. The object’s two public *
* methods are *
* *
* getLine() : Returns the next line of the file as a *
* string. Returns null after the last line. *
* *
* close() : Closes the file. *
***********************************************************/
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Why did I write that spec?

To be sure I knew what the code should do before writing it.

Without writing a spec, I only thought I knew what it should do.

Later, I didn’t have to read the code to know what it did.

General rule:
A spec of what the code does should say everything
that anyone needs to know to use the code.
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you’re fooling yourself.
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What code should you specify?

Any piece of code that someone else might want to
use or modify.

It could be:

An entire program or system.

A class.

A method.

A tricky piece of code in a method.
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Above the code level.

In terms of states and behaviors.

Mathematically, as rigorously / formally as necessary.

Perhaps with pseudo-code or PlusCal if specifying how.
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them, “running” them with a model checker,
and correcting your errors.

TLA+ may not be the best language for your formal
specification needs.

But it’s great for learning learning to think mathematically.
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How do you connect the spec to the code?

Comments connecting mathematical concepts and their
implementation.

Example:

Mathematical concept: graph

Implementation: array of node objects & array of link objects
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What about coding?

Nothing I have said implies anything about
how you should code.

You still have to think while you code.

What you write while coding is code.

I have nothing to say about how you should code.

Use any programming language you want.

Use any coding methodology you want:
test-driven development, agile programming, . . .
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You’ll still have to test and debug.

Writing specs is an additional step.

It may save time by catching errors early,
when they’re easier to correct.

It will improve your programming,
so you write better programs.
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Thinking is hard.

It’s easier to think your thinking.

Writing is like running.

The less you do it, the slower you are.

You have to strengthen your writing muscles.

It takes practice.

It’s easier to find an excuse not to.
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What if the spec is wrong?

Maybe you made a mistake.

Maybe the requirements change,
or an enhancement is needed.

The code will have to be changed,
maybe even before the program is finished.

This eventually happens to all useful programs.
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In an ideal world, a new spec would be written
and the code completely rewritten.

In the real world, the code is patched
and maybe the spec is updated.

If this is inevitable, why write specs?
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Reason 1

Whoever has to modify the code will be grateful for
every word or formula of spec you write.

And “whoever” may be you.

That’s why you should update the spec when
changing the code.
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Reason 2

Every time code is patched, it becomes a little uglier,
harder to understand, and harder to maintain.

If you don’t start with a spec, every piece of the code
you write is a patch.

The program starts out ugly, hard to understand,
and hard to maintain.

“No battle was ever won according to plan,
but no battle was ever won without one.”

Dwight D. Eisenhower
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Some people will tell you that writing specs is a waste of time.

In some situations it is. Sometimes there’s no need to think
about what you’re doing.

But remember: when they’re telling you not to write a spec,
they’re really telling you not to think.
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Thinking doesn’t guarantee that you won’t make mistakes.

Not thinking usually guarantees that you will.
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To find out more about TLA+, go to my home
page and click on:

The TLA Web Page
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