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Abstract

The Glasgow Haskell Compiler (GHC) has quite sophisticaten
port for concurrency in its runtime system, which is writiaow-

level C code. As GHC evolves, the runtime system becomes in-

creasingly complex, error-prone, difficult to maintain aditficult
to add new concurrency features.

This paper presents an alternative approach to implement co
currency in GHC. Rather than hard-wiring all kinds of comency
features, the runtime system is a thin substrate providinly a
small set of concurrency primitives, and the remaining corecy
features are implemented in software libraries written askell.
This design improves the safety of concurrency supportsi pro-
vides more customizability of concurrency features, wigeh be
developed as Haskell library packages and deployed mdgular

Categories and Subject Descriptors D.1.1 [Programming Tech-
nique§: Applicative (Functional) Programming; D.1.Bfogram-
ming Techniquds Concurrent Programming; D.2.1(S¢ftware
Engineering: Design—Methodologies; D.3.®fogramming Lan-

guagek Language Constructs and Features—Concurrent program-
ming structures; D.4.10Qperating SystendProcess Management—

Concurrency,Scheduling,Synchronization, Threads

General Terms Design, Experimentation, Languages, Perfor-

mance, Measurement.

Keywords Haskell, Concurrency, Thread, Transactional Memory.

1. Introduction

In any programming language supporting concurrency, & ghes

of complexity is hidden inside the implementation of the @an
rency abstractions. Much of this support takes the formrofgime
systenthat supports threads, primitives for thread communicatio
(e.g. locks, condition variables, transactional memangcheduler,
and much else besides. This runtime system is usually wiitt€;

it is large, hard to debug, and cannot be altered except biathe
guage implementors.
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That might not be so bad if the task were cut-and-dried. But
it isn’'t: in these days of multicores the concurrency largecis
changing fast. For example, a particular application miggre-
fit from an application-specific thread scheduling stratexmyyone
might wish to experiment with a variety of concurrency abstr
tions; new challenges, such as multi-processor supporatar ghr-
allelism [4], place new demands on the runtime system.

An attractive alternative to a monolithic runtime systenittgn
by the language implementators is to support concurrenityg s
library written in the language itself. In this paper we explore doin
exactly this for the language Haskell and its implementaiio
the Glasgow Haskell Compiler (GHC). Although concurreasy-
a-library is hardly a new idea, we make several new contiobist

e We describe in detail the interface between tdmmcurrency
library written in Haskell, and the underlyingubstrate or
runtime system (RTS), written in C. Whilst the basic idea is
quite conventional, the devil is in the details, especiallyce
we want to support a rich collection of features, including:
foreign calls that may block, bound threads [16], asyncbusn
exceptions [15], transactional memory [12], parallel &§pd24]
and multiprocessors [11].

Concurrency primitives are notoriously slippery topic, se
provide a precise operational semantics for our implementa
tion.

e A key decision is what synchronization primitives are pdmd
by the substrate. We propose a simplified transactional memo
as this interface in Section 3.2, a choice that fits partityla
well with a lazy language.

The substrate follows common practice, offering contirorest

as a mechanism from which concurrency can be built. How-
ever our continuations, which we caltack continuationgre,

by construction, much cheaper than full continuationsttrr
more, capturing a continuation and transferring controhme
other continuation are elegantly combined in a singtétch
primitive introduced in Section 3.4.

e The whole issue of thread-local state becomes pressingin us
level threads library, because a computation must be alsisko
“what is my scheduler?”. We propose a robust interface that
supports local state in Section 3.5.

Interfacing Haskell code to foreign functions, especidlitiiose
functions may themselves block, is particularly tricky. Yeld
on earlier work to solve this problem in an elegant way.
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Figure 1. Components of the new RTS design

o We illustrate our interface by describing a scheduler emitt
entirely in Haskell in Section 5.

¢ We have implemented most features we describe, in a mature

Haskell compiler, which gives a useful reality check on our
claims.

2. Settingthescene

Our goal is to design aubstrate interfaceon top of which a

variety of concurrency libraries written in Haskell, can be built

(Figure 1). The substrate is implemented by ourselves andehe

so far as possible, it should implemanechanismleavingpolicy

to the library. In general, we strive to put as little as pbkesin the

substrate, and as much as possible in the concurrencyidibrar
Thesubstrate interfaceonsists of two parts:

1. A set of substrate primitivesn Haskell, including primitive
data typesandoperationsover these types (Section 3).

2. A set of concurrency library callbacksspecifying interfaces
that the concurrency library must implement (Section 4).

data PTM a
data PVar a
instance Monad PTM

newPVar :: a -> PTM (PVar a)

readPVar :: PVar a -> PTM a

writePVar : PVar a -=> a -> PTM QO

catchPTM  :: PTM a -> (Exception->PTM a) -> PTM a
atomicPTM : PTM a -> 10 a

data HEC

instance Eq HEC
instance Ord HEC

getHEC : PTM HEC
waitCond :: PTM (Maybe a) -> I0 a
wakeupHEC :: HEC -> I0 ()

\data SCont
newSCont
switch

data SLSKey a

newSLSKey :: a -> IO (SLSKey a)
getSLS : SLSKey a -> PTM a
setSLS :: SLSKey a => a => I0 O
raiseAsync :: Exception -> I0 ()

: I0 O -> I0 SCont
(SCont -> PTM SCont) -> I0 ()

The key choices of our design are embodied in the substrate

interface: once you know this interface, everything eldofzs. A
good way to think of the substrate interface is that it enakgtes
the virtual machine (or operating system) on which the Hiske
program runs.

We intend that a single fixed substrate should support a vari-

ety of concurrency libraries. Haskell's existing concuaey inter-
face orkI0, MVars, STM) is one possibility. Another very intrigu-
ing one is a compositional (or “virtualizable”) concurrgniater-
face [19], in which a scheduler may run a thread that itseH is
scheduler... and so on. Another example might be a schefdular
Haskell-based OS [10] or virtual machine (e.g. HALVM) thatds
to give preferential treatment to threads handling urgetetriupts.

In addition to multiple clients, we have in mind multiple ifep
mentations of the concurrency substrate. The primary imple
tation will be based on OS-threads and run atop the ordin®@y O
Another possibility is that the RTS runs directly on the heade,
or as a virtualized machine on top of a hypervisor, and manhage
access to multiple CPUs.

Although written in Haskell, the concurrency library codayn
require the author to undertake some crucial proof oblayetithat
Haskell will not check; for example, “you may use this conttion
at most once, and a checked runtime error will result if yoe s
twice”. This is still (much) better than writing it in C!

We take as our starting point the following design choices:

¢ It must be possible to write a concurrency library that sufgpo
pre-emptiveconcurrency ofvery light-weight threadsperhaps
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Figure2: The substrate primitives

onto a much smaller number of coarse-grain computational
resources provided by the substrate.

Scheduling threads — indeed the very notion of a “thread” —
is the business of the concurrency library. The substratevkn
nothing of threads, instead supporting (a flavor of) passore
tinuations. Here we simply follow the path blazed by Mitch
Wand [25].

e Since the substrate does not know about Haskell threads)-t ¢

3.

not deal withblocking of threads. Hence, any communication
mechanisms that involMalocking such a#tvars and Software
Transactional Memory (STM), are also the business of the con
currency library.

Garbage collection is the business of the substrate, aniresq
no involvement from the concurrency library.

The system should run on a shared-memory multi-processor, i
which each processor can independently run Haskell computa
tions against a shared heap.

Because we are working in a lazy language, two processors may
attempt to evaluate the same suspended computation (tatink)
the same time, and something sensible should happen.

The design must be able to accommodate a scheduler that im-
plements the current FFI design [16], including making afi ou
call that blocks (on 1/0, say) without blocking the other Kels
threads, out-calls that re-enter Haskell, and asynchmou
calls.

Substrate primitives

We are now ready to embark on the main story of the paper,
thousands of them. It would be too expensive to use a whole beginning with the substrate primitives. The type sigreduof
CPU, or a whole OS thread, for each Haskell thread. Instead, these primitives are shown in Figure 2, and the rest of thitiae

a scheduler must multiplex many Haskell fine-grain threads explains them in detail.



xz,y € Variable r,s,h € Name

SLSKeys k = (r,M)
Terms
MN =7 |z | \a->M | MN | ...

| return M | M>>=N

| throw M | catch M N | catchPTM M N

| newPVar M | readPVar r | writePVar r M
| getHEC | waitCond M | wakeupHEC h
| newSLSKey M | getSLS k | setSLSk M
| newSCont M D | switch M

|Pure|y-functiona| transitons M — N |

return N>>=M — MN (Bind)
throw N>>=M  —  throw N (Throw)
catch (return M) N —  return M (IOCatch)
catch (throw M) N — NM (IOCatchExp)

Plus the usual rules of the call-by-negetalculus, in
small-step fashion.

‘Top-level program transitons S;0 — S’;©’

M — N
S | (E[M],D,h);©0 = S |(E[N],D,h);®

(IOAdmin)

Program state P == S;0
HECsoup S == 0| (H|S)
HEC H = (Mvah) | (M7D7h)sleepi"9
| (M7 D7 h)outcall
Heap © = r— M®s— (M,D)
SLSstore D 1= r—M
Action a = Init
| InCall M | InCallRetr
| OutCallr | OutCallRet M
| Blackhole M h | Tick h
IOcontext E == [] | E>>=M | catchE M

PTM context E, []| E>>=M

Figure 3: Syntax of terms, states, contexts, and heaps

The details of concurrency primitives are notoriously difft
to describe in English, so we also give an operational sepnsant
that precisely specifies their behavior. The syntax of thetesy is
shown in Figure 3, while the semantic rules appear in Figdtes
5, 6, 7, 8 and 10. These figures may look intimidating, but wié wi
explain them as we go.

3.1 Haskell Execution Context (HEC)

The first abstraction isldaskell Execution Contert HEC. AHEC
should be thought of as a virtual CPU; the substrate may map it
a real CPU, or to an operating system thread (OS thread).heor t
sake of concreteness we usually assume the latter.

Informally, a HEC has the following behavior:

e A HEC is always in one of three statesmningon a CPU or
OS threadsleeping or making arout-call.

e A Haskell program initially begins executing on a single OS
thread running a single HEC.

* When an OS thread enters the execution of Haskell code by
making an in-call through the FFI, a fresh HEC is created é th
running state, and the Haskell code is executed on this HEC.
Note that this is thenly way to create a new HEC.

e When the Haskell code being run by the HEC returns to its
(foreign) caller, the HEC is deallocated, and its resouares
returned to the operating system.

e When a running HEC makes a foreign out-call, it is put into
the outcall state. When the out-call returns, the HEC becomes
running and the Haskell code continues to run on the same
HEC.

e A HEC can enter thesleepingstate voluntarily by executing
waitCond. A sleeping HEC can be woken up by another HEC
executingwakeupHEC. These two primitives are explained in
Section 3.3.

Figure 3 shows the syntax of program states. The program, stat
P,isa"“soup”S of HECs, and a hea@. A soup of HECs is simply
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Figure 4: Operational semantics (basic transitions)

an un-ordered collection of HEG$7, | ... | H,). Each HEC is
atriple(M, D, h) whereh is the unique identifier of the HEC, and
M is the term that it is currently evaluating. TH& component is
the stack-local state, whose description we defer to Se&ib. A
sleeping HEC has a subscrigiéeping; a HEC making a blocking
foreign out-call has a subscripotitcall’. The heap is a finite map
from names to terms, plus a (disjoint) finite map from names to
paused continuations represented by p@lss D).

A program makes a transition from one state to the next using a

program transition

$;0 = S50
whose basic rules are shown in Figure 4. (We will introduceeno
rules in subsequent Figures.)

The (I0Admin) rule says that if any HEC in the soup has a
term of formE[M], andM can make a purely-functional transition
to N, then the HEC moves to a state with teffiV] without af-
fecting any other components of the state. H&r&s anevaluation
context whose syntax is shown in Figure 3, that describes where
in the term the next reduction must take placepukely-functional
transition includes-reduction, arithmeticcase expressions and
so on, which are not shown in Figure 4. However, we do show the
purely-functional rules that involve the monadic operattsturn,
(>>=), catch, andthrow. Notice also that a HEC in theleeping
state or thevutcall state never takes(dO Admin) transition.

In implementation terms, each HEC is executed by one, and
only one, OS thread. However, a single OS thread may be respon
sible for more than one HEC, although all but one will be in the
outcall state. For example suppose that OS threadakes a for-
eign in-call to a Haskell functiofi1, creating a HEGI1 to run the
call. Thenf, running onH1 which is in turn running ort, makes
a foreign out-call. Then the state Bf becomeoutcall, andT ex-
ecutes the called C procedure. If that procedure in turn s1ake
other foreign in-call to a Haskell procedufe, a second HE(§2,
will be allocated, but it too will be executed iy The process is
reversed as the call stack unwinds.

To be even more concrete, a HEC can be represented by a data
structure that records the following information:

* The identifier of the OS thread responsible for the HEC.

e An OS condition variable, used to allow the HEC to go sleep
and be woken up later.

e Registers of the STG machine.
o The current Haskell execution stack.

e The current heap allocation area; each HEC allocates ina sep
rate area to avoid bottlenecking on the allocator.



‘Top-level program transitions S;©0 — S’;©’

M;® = return N;©’
D.h

(PAtomic)
ElatomicPTM M],D,h); 0 —

S
S | (E[N], D, h); &'

—_~

M;© = throwN;©O’
D.h

(PAtomicEzp)
S | (E[atomicPTM M],D,h); © —>
S | (E

(E[throw N],D,h); © U (©'\O)

PTM transitions M;© D:>h N;©/

M — (PAdmin)
EME6 = E, N0

M;© D:*> return M'; ©'

Ep[catchPTM M NJ;

>

(PCatch)
S} = Ep[return M']; ©’

M;© = throw M’;©’
h (PCatchExp)

=*>h Ep[N M');© U (6/\0)

D
Ep[catchPTM M NJ; ©

D
r & dom(©)
Ep[newPVar M]; © = Ep[return r]; Or — M]

(PNew)
Ep[readPVar r|; © e Epreturn O(r)];© (PRead)

Ep[writePVar r M]; © = Ep[return Q];O[r — M| (PWrite)

Figure5: Operational semantics (PTM transitions)

¢ A“remembered set” for the garbage collector. It is impottan
performance reasons that the generational garbage-twltec
write barrier is lock-free, so we have a per-HEC remembered
set. Itis benign for an object to be in multiple remembered.se

The live HECs (whether running, sleeping or making outsjall
are the roots for garbage collection.

3.2 Primitivetransactional memory (PTM)

Since a program has multiple HECs, each perhaps executilag on
different CPU, the substrate must provide a safe way for tBE$1

to communicate and synchronize with each other. The stdwvaay

to do so, and the one directly supported by most operatings\s

is to use locks and other forms of low-level synchronizatoich

as condition variables. However, while locks provide goedqr-
mance, they are notoriously difficult to use. In particungram
modules written using locks are difficult tmmposeelegantly and
correctly [12].

Even ignoring all these difficulties, however, there is &eot
Very Big Problem with using locks as the substrate’s main-syn
chronization mechanism in a lazy language like Haskell. giasl
use of a lock is this: take a lock, modify a shared data stractu
(a global ready-queue, perhaps), and release the lock.oked
used only to ensure that the shared data structure is mutated
safe way. Crucially, a HEC never holds a lock for long, beeaus
blocking another HEC on the lock completely stops a virtual.C

Here is how we might realize this pattern in Haskell:

do { takeLock 1k
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; rq <- read readyQueueVar

; rq’ <- if null rq then ...
else ...

; write readyQueueVar rq’

; releaselock 1k }

But if rq is a thunk, the evaluation dfnull rq) might take an
arbitrarily long time, so the lockik might be held for a long time.
That does not threaten correctness, but it does mean thtteall
other HECs might be held up waiting ak! One could declare that
the programmer should somehow ensure that this never happen
but it is far from easy for a programmer to be certain that dlib
code evaluates no thunks.

These observations motivated us to seek an alternativéagync
nization mechanism. One such alternativeamsactional memory
(TM), which is known to offer a more robust and modular basis
for concurrency [12]. There is a dilemma, however, becabse t
fully-featured software transactional memory supportscking,
and cannot therefore be part of the substrate!

Fortunately, all we require in terms of low-level synchization
is the ability to perform atomic transactions; the compdesabock-
ing and choice operators provided by STM can be safely othitte
Therefore, the substrate offers an interface that we mathitive
transactional memoryPTM) !, whose type signature is shown in
Figure 2. Like STM, PTM is a monad, and its computations are
fully compositional. Unlike STM, howevea PTM computation is
non-blocking so the question of blocking threads does not arise.

As Figure 2 shows, a PTM transaction may allocate, read, and
write transactional variables of typ&ar a. And that is about all,
exceptions aside! Thus, a PTM transaction amounts to fitthee
than an atomic multi-word read/modify/write operation.dpera-
tional termsatomicPTM runs a PTM computation while buffering
the reads and writes in a transaction log, and then commeétioth
all at once. If read-write conflicts are detected at the tifheomn-
mit, the transaction is re-executed immediately.

How does this resolve the Big Problem mentioned earlier? The
transaction runs without taking any locks and hence, if tapgac-
tion should happen to evaluate an expensive thunk, no otB€rsH
are blocked. At the end of the transaction, the log must bengibm
ted by the substrate, in a truly-atomic fashitit doing so does
not involve any Haskell computatiarig is as if the PTM compu-
tation generates (as slowly as it likes) a “script” (the leg)ich
is executed (rapidly and atomically) by the substrate. likisly
that a long-running transaction will become invalid befiireom-
pletes because it conflicted with another transaction. kewin
this case the transaction will be restarted, and any worle dwal-
uating thunks during the first attempt is not lost, so thedaation
will run more quickly the second and subsequent times.

3.21 Thesemanticsof PTM

Figure 5 presents the semantics of PTM. A PTM transitiondake
the form

M6 = N;©
D,h

ThetermM is, as usual, the current monadic term under evaluation.
The heap® gives the mapping fron®Var locationsr to values
M (Figure 3). The subscripD, h on the arrow says that these
transitions are carried out by the HEX; with stack-local state
D. We will discuss stack-local state in Section 3.5, dnaan be
ignored until then.

The PTM transitions in Figure 5 are quite conventional. Rule
(PAdmin) is just like (IOAdmin) in Figure 4. The three rules

1please do not confuse our PTM with “Paged-based Transattidem-
ory” by Chuang et. al., 2006.



‘Top-level program transitons S;0 — S’;©’

M;© D:*> return (Just N); ©’

h (WaitOK)
S | (E[waitCond M],D,h); 0 —
S | (E[N],D, h); ©
M;© = throwN;©’
D.h (WaitExp)
S | (E[waitCond M],D,h);® —
S | (E[throw N], D, h); ©® U (6'\©)
M;® = return Nothing;©’
D.h (WaitSleep)

S | (E[waitCond M],D,h);0 =
S | (E[waitCond M|, D, h)gceping; o’

S |(N[,7D,7hl)sleeping ‘ ([E[wakeuPHEC h/LDvh)QQ ==
S | (M',D',h') | (E[return()], D, h); © (WakeupOK)
V(M',D’,n") € S.h" # "

S | (E[wakeupHEC h'], D, h); ©® —>
S | (E[return()], D, h); ©

(WakeupNoOP)

PTM transitions M;© D:>h N;©’

Ep[getHEC]; © = Ep[return h];© (PGetHEC)

Figure 6. Operational semantics (HEC blocking)

for PVars — (PNew), (PRead), and(PWrite) — allow one to
allocate, read, and writeRVar.

The semantics of exceptions is a little more interestingpdn
ticular, (PCatchExp) explains that ifM throws and exception,
thenthe effects of\/ are undone To a first approximation that
means simply that we abandon the modifi@f reverting to©,
but with one wrinkle: anyvars allocated byl/ must be retained,
for reasons discussed by [12]. The he@f)© is that part of®’
whose domain is not i®.

The rules foratomicPTM in Figure 5 link the PTM transitions
to the top-level 10 transitions. The? Atomic) rule embodies the
key idea, thatnultiple PTM transitions are combined intosingle
program transition. In this way, no HEC can observe anote€H
half-way though a PTM operation.

3.3 HEC blocking

The waitCond operation executes a transaction in nearly the
same way aatomicPTM, except that it checks the resulting value
of the transaction. If the transaction returisst x, waitCond
simply commits the transaction and returnsOtherwise, if the
result isNothing, the HEC commits the transaction, and puts the
HEC to sleemt the same time

The wakeupHEC operation wakes up a sleeping HEC. After a
HEC is woken up, it re-executes theitCond operation which
blocked it. If the HEC is not sleepingjakeupHEC is simply
a no-op. The atomicity ofraitCond is important, otherwise a
wakeupHEC might intervene between committing the transaction
and the HEC going to sleep, and the wake-up would be missed.

As an example, suppose that the concurrency library uses a si
gle shared run-queue for Haskell threads. A HEC ugeigCond
to get work from the queue. If it finds the queue empty, it adsls i
own HEC identifier (gotten witlgetHEC) to a list of sleeping HECs
attached to the empty run-queue, and goes to sleep.

When a running HEC adds a Haskell thread into the queue, it
looks at the list of sleeping HECs and awakens one of them. Of
course, by the time the sleeping HEC actually wakes up ansi run
the queue may again be empty, but in that case the same seafenc
events takes place again: tixi tCond is re-run, and the HEC will
go to sleep again. In effect, the classic error of forgettmge-test
the condition after blocking on a condition variable is étiated
by construction.

3.4 Stack continuationsand context switching

A HEC is an abstraction of a virtual processor; in a given esyst
we expect to have a handful of HECs running, roughly one fohea
physical CPU. To model fine-grain Haskell threads, we neeaban
straction of a Haskell computation, together with a way tovala
HEC to multiplex its resources over such computations.dwotig
Wand, we use aontinuationto model a (suspended) Haskell com-
putation [25]. Unlike Wand, our continuations are not filgiss —
in particular, they can only be used once — in exchange fockvhi
they are dirt cheap to implement.

We provide one new data type and two new primitive operations
(Figure 2):

data SCont
newSCont :: I0 () -> I0 SCont
switch (SCont -> PTM SCont) -> I0 ()

An SCont, or stack continuationshould be thought of as passive
value representing an I/O-performing Haskell computatiuat is
suspended in mid-execution. The céllewSCont io) makes a
new SCont that, when scheduled, will perform the activa. The
primitive switch is the interesting part. The cgéwitch M) does

A PTM transaction allows a HEC safe access to mutable sharedthe following:

states between HECs. But what if a HEC wants to block? For
example, suppose there are four HECs running, but the Haskel

program has only one thread, so that there is nothing for thero
three HECs to do. They could busy-wait, but that would be a poo

choice if a HEC was mapped to an operating system thread in a

multi-user machine, or in a power-conscious setting. bubteve
want some way for a HEC tolock

The common requirement is that we want to block a HEC until
some conditions are met, for example, when tasks becomé avai
able. Traditionally, such code is often implemented usioigdition

o |t captures the current computation asS@ent, says. We call
s thecurrent continuation

e Then it runs the primitive transactiof\/ s). This transaction
may read and write somevars — for example, it may write
s into a ready-queue — before returning $¢ont, says’. We
call s’ theswitch target

e Lastly, switch makess’ into the computation that the current
HEC executes.

variables which themselves need to be protected using locks. Since These steps are made precise by the rules of Figure &cant

we are now using PTM instead of locks, we desigraasactional
interface,waitCond, to perform blocking based on condition test-
ing. The semantics is shown in Figure 6.

waitCond
wakeupHEC

:: PTM (Maybe a) -> I0 a
:: HEC -> I0 Q)
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is represented by a®Cont identifier (orstack identifie), s. The
heap® maps a stack identifier to a pain/, D) where M is the
term representing the suspended computation, and its stack-
local state. Again, we defer discussion of the stack-lotzkesuntil
Section 3.5. Rulé NewSCont) simply allocates a ne®Cont in
the heap, returning its identifier



S | (E[newSCont M|, D,h);® —

s fresh

s fresh Ms;©0 =

h

D
S | (E[switch M], D, h); ©

s fresh

Top-level program transitions S;© = S’;©’
S | (E[return s], D, h); O[s — (M, 0)] sfresh (NewSCont)
M s;0 D:*>h return s’; ©’ s=2s'
: SwitchSel,
S| (Ejswitcn MI,D.7);6 — 5| (EjrevurnO], D,y e witehsely)
return s’; O'[s’ — (M',D’)] s#s
(Switch)
= S| (M',D',h);®[s — (E[return()], D)]
M s;© = throw N;©’
D.h (SwitchEzxp)

S | (E[switch M],D,h);® = S | (E[throw N],D,h); © U (6'\O)

Figure 7. Operational semantics (stack continuations and conteixtisiwvg)

Allthe rules forswitch start the same way, by allocating a fresh
identifier s and running(M s) as a transaction. If the transaction
completes normally, returning/, we distinguish two cases. In rule
(SwitchSelf), we haves = s’ so there is nothing to be done.
In the more interesting case, rul§witch), we transfer control to
the new continuation’, storing in the heap the current, but now
suspended, continuation By writing ©’[s" — (M’, D’)] on the
top line of (Switch) we mean tha®’ does not includes’. The
computation proceeds without a binding fdrbecauss’ is “used
up” by theswitch. Any further attempts to switch to the sarsle
will simply get stuck. (A good implementation should inckud
run-time test for this case.)

Figure 7 also describes precisely hawitch behaves if its
argument throws an exception: teeitch is abandoned with no
effect (allocation aside).

Note that, unlike many formulations of continuations, aiack
continuation does not carry a returning value. This desighken it
easier to have a well-typeglzitch. No expressiveness is lost, be-
cause values can still be communicated using shared ttéorszc
variables (as we will show in Section 5.1).

3.4.1 Using stack continuations

With these primitives, a number of Haskell computations ban
multiplexed on one HEC in a cooperative fashion: each coaiput
tion runs for a while, captures and saves its continuatiod, \al-
untarily switches to the continuation of another compuotatMore
concretely, here is some typical code for the inner loop afteed-
uler:

switch $ \s -> do
;ax'/e s in scheduler’s data structure
s’ .<— find the next thread to schedule
llé{:urn s’
It captures the current continuatien savess into the scheduler’s

data structure, finds the continuation of the next threacktedhed-
uleds’, and control is transferred .

34.2

By design,SConts have a particularly cheap representation. In
GHC, a Haskell computation runs on a stack, which itself isl he

in a stack objectllocated in the run-time heap. Initially the stack
object is small, but it can grow by being copied into a largeraa

if it overflows. AnSCont is represented simply by a pointer to the
stack object for its stack. Wheswitch captures aisCont, it uses

Implementing stack continuations
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the pointer to the stack object; no copying is done, as isSserg
for truly first-class continuations.

We are not, of course, the first to think of the idea of iderirify
stacks with second-class continuations [6]. However, saurtch
primitive deals rather neatly with a tiresome and non-obsiprob-
lem. Consider the call

switch (\s -> stuff)

The computationstuff must run onsomestack, and it's conve-
nient and conventional for it to run on the current stack. Buy-
posestuff writess into a mutable variable (the ready queue, say)
and then, whilestuff is still running, another HEC picks ug
and tries to run it. Disaster! Two HECs are running two diietr
computations on the same stack. Fisher and Reppy recogtized
problem and solved it by putting a flag ersaying “I can’t run yet”,
and arranging that any HEC that picks sipvould busy-wait until
the flag is reset, which is done kwitch whenstuff finishes
[6]. Although this works, it's a bit of a hack, and would corigalte
our semantics. The current GHC runtime deals with this byiens
ing that there is always a lock that prevents the thread freind
rescheduled until the switch has finished, and arranginglease
the lock as the very last operation before switching - agais is
fragile, and has been a rich source of bugs in the currentemeh-
tation.

However, by integratingwitch with PTM we can completely
sidestep the issue, because the effectstafff are not published
to other HECs untilstuff commits and control transfers to the
new stack. To guarantee this, the implementation shouldndom
the transaction and change the HEC's stack in a single, atomi
operation.

The other error we must be careful of is when a stack contin-
uation is the target of more than oseitch — remember that
stack continuations are “one-shot”. To check for this ewemeed
an indirection: arsCont is represented by a pair of a pointer to
a stack and a bit to say when tB€ont is used up. Another al-
ternative would be to keep a sequence number in the stacktpbje
incremented by evergwitch, and store the number in ti§€ont
object.

3.5 Global and stack-local states
Because the concurrency library is written in an coopeeafash-
ion, the code often needs to query for information like this:

e What is my thread identifier?

e Who is my scheduler?

e Where is the ready queue?



Top-level program transitions

S;0 — S§;0/

S | (E[newSLSKey M],D,h);® —

S | (E[(return (r, M)], D, h); ©

r fresh  (NewSLS)

S | (E[setSLS (r, M) N],D,h);® = S |(E[return ()],D[r+— N|,h); O (SetSLS)
PTM transitions M;© D:>h N;©’
Ep[getSLs (r, M)]; © = Ep[return D(r)];© r € dom(D) (GetSLS1)
Ep[getsSLs (r, M)]; © D,h Ep[return M]; © r & dom(D) (GetSLS2)

Figure 8: Operational semantics (stack-local state transitions)

The code in Section 3.4.1 gives a more concrete example, in
which the scheduler’s data structure needs to be locatqutirini-
ple there is nothing to prevent one addin@tereadId parameter
to every function that needs to know the thread identified; sim-
ilarly for the other cases like the scheduler’s task queHesvever,
doing so is extremely inconvenient and non-modular. We &re a
ready, in effect, passing the state of the world to everye(ftil)
function via the monad, and we would like all other statespas
to be implicit.

35.1 Global state

Suppose the concurrency library wanted a global, readyeoé
threads, shared among all HECs. Haskell provides no sufimort
such a thing, so programmers use the well-knawsgafePerformI0
hack:

PVar ReadyQueue
unsafePerformI0 $ atomicPTM $
newPVar emptyQueue

readyQueue ::
readyQueue =

This is obviously horrible, and the whole issue of accomntioda
effectful but benign top-level computations in Haskell heeen
frequently and heatedly discussed on the Haskell mailstg For
the purposes of this paper we will simply assume Hwahedecent
solution is available, so that one can write something liks: t

readyQueue :: PVar ReadyQueue
init readyQueue <- newPVar emptyQueue

Here the init” keyword introduces a PTM transaction to be run
once, at module initialization time or at some subsequeiritpo
The effects permitted for such a transaction might be evere me
stricted than usual, perhaps involving only allocatione Binding
should of course be monomorphic to avoid unsoundness, vidich
a well-known problem witlunsafePerformIO.

3.5.2 Stack-local states

Now suppose we wanted to implementigrarchical scheduler,
in which any thread can be a scheduler for its child threatienT
there is no global ready queue; instead, each scheduleeitre¢b
maintains its own. This is just one example of a well-knowolpr
lem with multithreaded programming, namely the needffioead-
local state Other examples include: the seed for a random number
generator (sharing a global one is a concurrency bottlen¢lck
stdin andstdout handles; and so on.

One might expect that the programmer could implement thread
local states entirely in Haskell, using globally sharedadstruc-
tures, such as hash tables, indexed by some form of thread ide

’http://www.haskell.org/haskellwiki/Top_level mutable_
state
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tifier. But this approach has a few drawbacks. First, it maybe
efficient: accessing a thread-local state could be muchesltvan
performing a regular memory reference, especially if th@len
mentation used purely functional data structures. Moreoirtgmtly,
automatic garbage collection would not work for such stattes
programmer would have to free them manually when their eorre
sponding threads die, otherwise memory would be leaked.

Thus motivated, we propose to suppstack-local state§SLS)
directly in the substrate, using the following design show#rig-
ure 2:

data SLSKey a

newSLSKey :: a -> I0 (SLSKey a)
getSLS :: SLSKey a -> PTM a
setSLS : SLSKey a -> a -> I0 ()

Each item of stack-local state is identified by a ty/stdS keyFor
example, the key fostdin might be of typeSLSKey Handle.
The getSLS operation maps the key to its correspondingly-typed
value, EachsCont carries a distinct mapping of keys to values,
namedD in our semantic rules, and this mapping persists across the
suspensions and resumptions causedshytch; that is, anSCont
now has an identity.

The detailed semantics are given in Figure 8. Several panets
worth noticing:

e An SCont is represented by a pa{tM, D) of a term M to
be evaluated and d@ictionary D that maps SLS keys to values
(Figure 3).

e A running HEC(M, D, h) includes the dictionary of the run-
ning computation. Wheswitch switches to a hew computa-
tion, it loads its dictionary into the HEC (rulgSwitch) in Fig-
ure 7).

ThenewSCont primitive makes a nev8Cont whose dictionary
is empty (rule( NewSCont)).

The newSLSKey primitive takes arinitial value as its first ar-
gument, and a SLS Key is represented by a pain/) of a
unique identifien- and the the initial valué/. Typically there

will be a handful of SLS keyssftdin, the current scheduler,
the random-number seed), but many stack continuations each
with a potentially-different set of bindings for the keyshél
SLS keys would usually be globally allocated; for example:

stdinKey :: SLSKey Handle
init stdinKey <- newSLSKey stdin

If getSLS is given a key(r, M) whose identifier- is not present
in the dictionary for the current computation, it returne th
initial value M. This eliminates the necessity to initialize the



dictionary with a binding for every SLS that could possibl b
used.

Stack-local state is manipulated only by the computatiai th

An external 10 transitionS; ® == S’; @', is an |0 transition
tied to an actioru; see Figure 10. The actions include FFl in-calls,
timer events and blocking events.

owns it, and hence does not need to be transacted. Hence

getSLS is a PTM operation, because it is convenient to be
able to read it during a PTM transaction, whiletSLS is an IO
operation because we do not want the complication of having
to undosetSLS operations if the transaction aborts. Note that
setSLS operations are expected to be fairly rare.

If the programmer wants to manipulasbaredstate accessed
via the SLS mechanism, or to treat SLS state transactignally
the right thing to do is to make the SLS valuer and access

it using PTM transactions.

In implementation terms, the identifierof a SLS key(r, M)
can be just a small integer, and the dictionary can be an arfray
slots in the stack object. Some overflow mechanism is neeated f
when there are more than a handful of SLS keys in use. Although
not shown in the formal semantics, it is worth noting that the
runtime system should automatically garbage-collect edssack-
local states: a stack and its local state are deallocatdtbatame
time. An implementation is not required to reclaim unusedsSL
key values because such values are supposed to be globaibds
constants, and we don't expect there to be very many of them.

3.5.3 HEC-local states?

One might naively expect the substrate to supptitC-localstates
as well. AHEC could use local state to maintain its own schiegu
data structures, such as task queues. But, in reality, suattigres
are almost always globally shared by all HECs so that loadbean
balanced using work stealing algorithms. In such casesgkibtes
are often more suitable. Also, HEC-local states only appede
useful when writing the concurrency library. In contrasack-local
states have broader applications: end-users can use thbnead-
local states without much change.

More importantly, programming with HEC-local states can be
tricky, because such states atgnamically boundthe execution
of a sequential program can be interleaved on multiple HECs.
sequential code block can access one HEC's local state istepge
pause, be moved to a different HEC, and then access anoti&sHE
state in the next step. In contrast, a sequential code béoaknvays
bound to a stack during its execution, so the programmer aizys
assume that the SLS environment is fixed for a code block.

For these reasons, we do not currently plan to support HEC-
local states, although they could be easily added via ane#tef
primitives if desired.

4. Pre-emption, foreign calls, and asynchrony

rtsInitHandler . I0 O
inCallHandler :: I0 a -> I0 a
outCallHandler :: I0a > 10 a
timerHandler : I0 O
blackholeHandler :: I0 Bool -> I0 ()

Figure 9: The concurrency library callbacks

In addition to the substrate primitives shown in the presisec-
tion, the substrate interface also includes some callbawctions,
shown in Figure 9. These are functions supplied by the coanay
library, that are invoked by the RPS

3Note that this means the RTS is statically bound to a pasticubncur-
rency library when the program is linked. Nevertheless, mésage that it
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4.1 Pre-emption

So far, the concurrency primitives introduced allow coapiee
scheduling: a Haskell thread can only switch to anotheratthizy
voluntarily calling switch. This section introduces a mechanism
for pre-emptivescheduling. This mechanism could be generalized
to handle other asynchronous signals too.

The RTS substrate maintains a timer that ticks every 50ms by
default. When a timer event is detected, the RTS substrdie ca
a timer handler functionimerHandler exported by the concur-
rency library? (This is the first time that the RTS calls the concur-
rency library; most of the calls work the other way aroundyufe 9
summarizes all the call-backs we will discuss.)

The timer handler is triggered on every HEC that is running
Haskell computation; i.e. is natleepingor in an outcall When
the timer handler is triggered on a HEC, the state of the atirre
computation is saved on the stack, and the timer handlerthses
top of the stack to execute. The stack layout is set up in a way
as if the timer handler is being explicitly called from therrent
Haskell computation, so when the timer handler finishesutiar,
the original computation is automatically resumed.

This semantics for the timer handler makes it easy to imple-
ment pre-emption, because a stack continuation captusitkithe
timer handler also contains the current computation on tB€H
Typically the timer handler will simply switch to the nextmuable
thread, as if the thread had invoketle1d manually.

The RTS substrate must guarantee that timer handlers deel cal
only at safe points. For example, the timer handler must met-
rupt the final committing operation of a PTM transaction. blev
theless, it is safe to call the timer handler during the $dsiglding
phase of a PTM transaction. The PTM implementation should al
low the timer handler to run a new transaction, even if an @dg-
action is already running on the same HEC.

Pre-emption has a slightly tricky interaction with stacicdl
state. Because a SLS is initialized by the code running drsthek,
it is possible that the interrupt handler is called beforehsinitial-
ization finishes. In such cases the interrupt handler wilthe de-
fault initial value registered byiewSLSKey, and the programmer
must handle such cases explicitly.

4.2

In principle, any attempt to evaluate a thunk may sésaakhole
because the thunk is already being evaluated by anotherctfité].

If a blackhole is found, the best general policy is to pausectir-
rent thread until evaluation the thunk has completed (ongtrate
until there is reason to believe thatritay have completed). This
implies that thunk evaluation sometimes needs to interétt thve
scheduler. In the old RTS design, the scheduler is built tho
RTS, soitis easy to implement this policy. In our new desigpw-
ever, implementing this policy requires a delicate comroation
between the substrate (which alone can detect when a thvahd e
ates a thunk that is already under evaluation) and the lilfvelnich
alone can perform context switching and blocking of thrg¢ads

We propose to solve this problem using a special handlerfunc

tionblackholeHandler exported by the concurrency library. This

Interrupting execution at thunks

will be possible to choose a concurrency library at linkeiror earlier. This
design does not make it possible to compose concurrenayitésrfrom dif-
ferent sources at runtime, however.

4More precisely, the handler is invoked at the first garbadiection point
following the timer event.



External IO transitons ~ $; 0 == §’;©’
0;0 Ing (rtsInitHandler, ), h); 0 hfresh (Init)
S;0 InCall M S | (inCallHandler M, 0, h);© h fresh (InCall)
S|(r,D,h);© Mol gg (InCallRet)
S | (E[outcall ], D, h); © Outlglt v S | (E[outcall 7|, D, h)oytcail; © (OutCall)
S | (Efoutcall rl, D, hourca;© M5 | (E[M], D, h);© (OutCallRet)
S | (E[M], D, h); ® Tick b S | (E[timerHandler >> M)],D,h);© (TickEvent)
S | (E[M],D,h);©  Pleckiele Nh g | (E[blackholeHandler N >> M],D,h);© (Blackhole)

Figure 10: Operational semantics (external interactions)

function is called by the RTS whenever evaluation sees &btde;
the execution model is the sametasierHandler.

The raiseAsync function raises an exception in the context of
the current thread, but in a special way: any thunk evalnatio

The current runtime system design keeps track of the threads currently under way will be suspended [20] rather than sympl

suspended on thunks in a global list. The list is periodyoatiecked
by the scheduler to see if any conflicting thunk evaluatiosdwan-
pleted. To implement this polling design, theackholeHandler
takes an argument of typd0 Bool), which is a function that can
be called by the concurrency library to test whether thedtirean
be resumed. When evaluation enters a blackhole, the RT &atgbs
creates such a function closure and passttltackholeHandler.

The (I0 Bool) polling action is purely to allow the thread's
status to be polled without trying to switch to the threadislt
safe to switch to the thread at any time: if the thunk is stildler
evaluation, the thread will immediately callackholeHandler
again. So the simplest implementatiorbdkckholeHandler just
puts the current thread back on the run queue, where it witlibe
again in due course.

A caveat of this design is that handlers can re-enter: if albla
hole is entered inside thglackholeHandler, the program may
enter an infinite loop! One possible solution is that the prog
mer can use stack-local state to indicate whether the thiead
already running &lackholeHandler, andblackholeHandler
falls back to busy waiting if re-entrance occurs.

4.3 Asynchronous exceptions

We would like to implement asynchronous exceptions [15hia t
concurrency library. Asynchronous exceptions are intoadiiby
thethrowTo operation:

throwTo :: ThreadId -> Exception -> I0 ()

which raises the given exception in the context of a targedtatth
Implementing asynchronous exceptions is tricky, paréidylin

a multi-processor context: the target thread may be runimg
another processor, it may be in the run queue waiting to risoome
processor, or it may be blocked. The implementatiorlofowTo
must avoid conflicting with any other operation that is tryito
access the target thread, such as its scheduler, or a thy&agl to
wake it up.

We can divide the execution of an asynchronous exceptian int

two steps:

1. the invoking thread communicates to the target threatlaha
exception should be raised; and

2. the target thread actually raises the exception.

Fortunately, only step (2) absolutely requires specidligagbstrate
support, namely a single operation, given earlier in Figtire

raiseAsync :: Exception -> I0 ()
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terminated as they would be by a normal, synchronous exaepfi
the suspended thunk is ever forced later, evaluation caedtarted
without loss of work.

Step (1) can be implemented entirely in the concurrenctipr
One possible approach is to have the exception posted tarpet t
thread via a PVar that is part of its local state and checked du
ing a context-switch. Compared to the current implemeoiatn
GHC's RTS, this is not quite as responsive: the target threag
not receive the exception until its time-slice expires, otilut is
next scheduled. We could improve this by providing an addil
substrate primitive to interrupt a remote HEC at its nexegadint.
Such an interrupt could be delivered as a simulated timerrinpt
or as a new, distinct signal with its own handler.

Compared to the implementation ehrowTo in the current
runtime system, implementinghrowTo in Haskell on top of the
substrate is a breeze. PTM means that many complicatechpcki
issues go away, and the implementation is far more likelygo b
bug-free.

4.4 Foreign calls

Foreign calls and concurrency interact in delightfully selways
[16]. It boils down to the following requirements:

e The Haskell runtime should be able to process in-calls from
arbitrary OS threads.

e An out-call that blocks or runs for a long time should not
prevent execution of the other Haskell threads.

e An out-call should be able to re-enter Haskell by making an
in-call.

e Sometimes we wish to make out-calls in a particular OS thread
(“bound threads”).

Fortunately the substrate interface that makes all thisiptes
is rather small, and we can push most of the complexity inéo th
concurrency library.

In-call handler Whenever the foreignh code makes a FFlin-call to
a Haskell functiorhFunc, the RTS substrate allocates a fresh HEC
with a fresh stack, and starts executing Haskell code on ¢we n
HEC. But, instead of running the Haskell functibfunc directly,
it needs to hand over this function to the concurrency Iljgrand
let the concurrency librargcheduleghe execution ofhFunc!

For this purpose, the concurrency library exports a cakbac
function to accept in-calls from the substrate:

inCallHandler :: I0 a -> I0 a



When an in-call thFunc is made, the RTS substrate executes forkIO :: I0 () -> I0 ThreadlId

(inCallHandler hFunc) on a fresh HEC with a fresh stack, forkI0 action = do
using the current OS thread. WhenCallHandler returns, the sc <- newSCont action
HEC is deallocated and control is transferred back to foreigde, atomicPTM $ do
passing the return value. (put sc in scheduler’s queue)
The in-call handler is the entry point of the concurrencydity: id <- (create new thread id)
the schedulers accept jobs from the in-call handler. Indst@ne (initialize the new thread’s SLS)
Haskell program, the RTS makes an in-calltdn .main after the return $§ ThreadId id

concurrency library is initialized (Section 4.5). . S
4 i ( ) To make an context switch by voluntarily yielding controle w

Out-call handler In order to give the concurrency library control  use theswitch primitive together with a PTM transaction:
over the way an out-call is made, the substrate arrangevaofen

the callbackoutCallHandler for each safe out-call. For example, yield :: 10 O
the following out-call: yield = switch $ \c -> do
(store ¢ into scheduler’s queue)
foreign import ccall safe "stdio.h putchar" n <- (get the next thread to run)
putChar :: CInt -> I0 CInt (update scheduler’s state and/or SLS)

would be desugared into a call tmtCallHandler at compile- return n
time: To support pre-emptive scheduling, we can simply set thertim

putChar arg = outCallHandler (putCharl arg) handler to beyield:

putCharl arg = ... [the actual out-call]

timerHandler :: I0 ()
The outCallHandler function can then decide how to schedule timerHandler = yield
the execution of the actual out-cglytChari. i
The compiler implementation can choose to bypass the dut-ca _ EVery scheduler must providetdackholeHandler, too. The

handler for unsafe calls to improve performance. simplest implementation aflackholeHandler is just this:
45 Initialization handler blackholeHandler :: IO Bool -> IO ()
. o blackholeHandler _ = yield

The concurrency library can be initialized through a catlbfunc-
tion. When a Haskell program is started, the RTS will inizial A thread suspended on a thunk will just go back on the run
itself, create a fresh HEC, and run thesInitHandler callback queue, but that's OK; next time it runs it will either immetity
function. This function should create all the necessana géuc- invoke blackholeHandler if the thunk is still under evaluation,
tures in the concurrency library, initialize the schedsland make ~ or it will continue. This is a perfectly reasonable, if inefént,
them ready to accept FFI in-calls. implementation oblackholeHandler.

The code above forms the very basic skeleton of the concur-
5. Developing concurrency libraries rency library. Next, we implement the popubldvar synchroniza-

] ) ) ) tion interface. AnMvar can be implemented asP¥ar containing
The main task of the concurrency library is to implement the n its state. If thetvar is full, it has a queue of pending write requests;
tion of a Haskellthread and to provide application programming if the Mvar is empty, it has a queue of pending read requests. Each

interfaces such agorkI0, MVars and STM. Given the underlying  pending request is attached with a function closure (of BI&))
substrate interface, there are many design choices foradheuc- that can be called tanblockthe pending thread.

rency library. Here we discuss some possible designs.
The substrate design suggests that the concurrency library data MVar a = MVar (PVar (MVState a))
should be written in a cooperative fashion.S8ont represents data MVState a = Full a [(a, PTM ())]
the continuation of a Haskell thread. Threads can be craated | Empty [(PVar a, PTM ())]
ing newSCont and make context switches to each other. Thread-
local information, such as thread identifiers, can be imgeleted
straightforwardly using stack-local states.
The interesting question is how to design the schedulexeMai
the simplest scheduler can consist of a globally sharedsiaia-
ture with some common procedures, such as adding a new thread
switching to the next thread, blocking and unblocking, étow-
ever, the scheduler can be quite complicated when many concu

The following code shows how to implemebékeMVar; the
putMvar operation is the dual case. A pending read request is
implemented using a temporaByar. If the MVar is empty, the
current thread will be blocked, but a function closure isateel
to unblock the current thread later. If th&var is full and there
are additional threads waiting to write to tM#ar, one of them is
unblocked by executing its corresponding closure.

rency features are implemented. Besides the concurrefatyrées takeMVar :: MVar a -> I0 a

that already exist in the current GHC, it would also be usésul takeMVar (MVar mv) = do

make the scheduler code extensible by the end user, so newreon buf <- atomicPTM $ newPVar undefined
rency features can be readily added. Thus, the concurrdomayy switch $ \c -> do

needs a modular and extensible design. A promising desigerpa state <- readPVar mv

is the concept ofiierarchical schedulerdiscussed in Section 5.2. case state of

Full x [] -> do

5.1 A simpleconcurrency library writePVar mv $ Empty []

This section uses pseudo code to illustrate how to write plsim writePVar buf x

concurrency library. We assume that the scheduler’s datatste return c

is globally shared and initialized intsInitHandler. To create a Full x 1@((y,wakeup):ts) -> do
Haskell thread, we simply create a stack continuation abchgit writePVar mv $ Full y ts

to the scheduler: writePVar buf x
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wakeup | | ghc-6.6] fake-ptm | real-ptm ]

return c spawn-test 18 32 46

Empty ts —-> do producer-consumef| 4.3 7.0 16.2
let wakeup = (put c into scheduler’s queue) cheap-concurrency 6.5 71 12.6
writePVar mv $ Empty (ts++[(buf,wakeup)]) chameneos 6.3 48 26
n <- (get the next thread to run)
(ui’date scheduler’s state and/or SLS) Figure 11: Benchmark results (program execution time imsds)
return n

atomicPTM $ readPVar buf
We explored a few possible designs of hierarchical scheguli

In a real implementation, the above code can be optimized by in & prototyping environment that simulates the substratierfiace

using a non-transactional mutable state (such as IORef)éruf using continuation monads. As a first step, we developed radrou
variable, because its operations are guaranteed not tdatoAfko, robin scheduler as a library module. The round-robin sctezdian
we should use a double-ended queue to avoid-thie the Empty be parameterized by the size of a time slice, and multipledulers
case. can be composed in a tree-like hierarchy. We then developeyg-a

level, SMP scheduler to distribute work on multiple OS thiga

using work stealing algorithms. The common schedulingriate

is designed such that each round-robin scheduler tregtanesting

An important goal of the new RTS design is to implembigrar- scheduler abstractly, without knowing the parent’s comfigion.

chical schedulind19, 9] in concurrency libraries. The idea is that Thus, a user program can specify the scheduling hierarchy by

each thread can act as a parentiopedulerthat divides its CPU composing the instances of schedulers at the top-level.

cycles on its children threads (@chedulegsand manages the in-

terleaving of execution. If a child thread itself can alsa as a i

parenting scheduler for other threads, all the threadserstistem 6'_ Implemgntatlgn ahd performar_me

form a tree-like scheduling hierarchy. It is a substantial engineering task to modify the GHC RTSym s
It is not difficult to implement a specific system with some port the substrate interface. Currently, our prototypelémenta-

scheduling hierarchy; the challenge is to make the codetufcsc ~ tion supports most of the substrate interface, except a féwip

ulers composablea child thread, without knowing all the imple-  tives such as asynchronous exceptions and blackhole ianGler

5.2 Developing hierarchical schedulers

mentation details of its parenting scheduler, can alsosatszhed- ~ prototype implementation is not yet optimized for multipessors
uler itself and have descendants. and FFI.

A composable design of hierarchical schedulers can be bene-  Although there is still much work left to be done, our existin
ficial to applications that have their own scheduling reguients. prototype already allows us to to develop simple conculyéic
For example, to process a group of concurrent tasks witleraifft braries and obtain performance measurements. Buildirgpatiur-
priorities, a thread can act as a priority scheduler andhertasks ~ rency features on top of a software transactional memogyfate
in children threads. Hierarchical scheduling also givegttogram-  certainly adds more overheads to the system, and we hopeat is

mer more control in concurrent programming: if a thread want 00 much. On top of our substrate prototype, we developecha si
run some tasks speculatively with a timeout limit and onlgaee  ple concurrency library that supports single-processmd-robin

the result of the task that finishes first, it can act as a s¢aednd scheduling and MVar operations. We then tested its perfooma
monitor the execution of individual tasks in its childremetads. and yielded some preliminary results. o

It would also be appealing to make the scheduler cedsable For many multithreaded programs that are computatiomsite,
so some generic scheduling mechanisms, such as time shating ~ context switching and synchronization is rarely the batlek, so
ority scheduling, tentative computing and time-outs, carinfiple- the concurrency implementation has little impact on theaiper-
mented in library modules and employed by any thread. formgnce. To reveal the actual overheads, we picked a fewﬂagn

The substrate design introduced in this paper suggestsubht marking programsspawn-tesperforms a stress test on spawning
hierarchical schedulers can be developed in a cooperatshgdn, new threads usingorkIO; producer-consumeperforms a stress

in which a scheduler and its schedulees work together using atest on synchronizing two threads usitigkeMVar andputMVar;
common interface. The common interfacealsstractin the sense  cheap-concurrencyand chameneosare concurrency benchmarks
that the implementation details of the scheduler and thedidke from the Computer Language Shootout Benchmarks [23].

are kept hidden from each other: they can work together apasn The test results are shown in Figure 11. The table shows pro-
they both respect the interface. Such an interface canstasfdivo gram execution time in three different configurations:
parts: * ghc-6.6 the vanilla GHC 6.6 RTS.

o real-ptm our modified GHC RTS substrate prototype with the
concurrency library written in Haskell. The PTM implementa
tion reused most code in the GHC 6.6 STM implementation.

¢ Shared data structurassed to communicate between the sched-
uler and the schedulee. For example, a thread needs to know
“how many time slices do | have”. If the thread runs out of its

allocated time slices, it needs to yield to its scheduleit atso o fake-ptm same ageal-ptm except that the PTM implementa-
needs to know “who is my scheduler”. Such shared data can  tionis fake. APVar is implemented as afORef and there is no
be implemented using stack-local states and transactianial transaction control. This configuration only works corhgcin
ables. a single threaded RTS; the only purpose of this configuration

to reveal the overhead of PTM alone.

Protocols that specify how the scheduler and the schedulee

should cooperate using the shared data structures and the In these benchmarks, the new RTS design (colueat-ptm)
switch primitive. For example, the protocol may specify that is 2-4 times slower than the existing GHC RTS (colugit-6.6.

(i) the scheduler always assigns some time slices to thalsche By comparingreal-ptmandfake-ptm we can see that most of the
ulee before switching to it, and (ii) the schedulee mustdytel additional overheads are caused by using PTM, which is dypure
its scheduler as soon as its time slices are used up. software implementation of transactional memory.
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Although the new RTS design has a significant overhead, the Acknowledgments

overall synchronization performance still remains in rolygthe
same order of magnitude—it is still much better than using OS
threads! On the other hand, these results suggest that tfa-pe
mance of software transactional memory needs to be impraved
deliver performance comparable with that of locks.

7. Related work

The idea of usingontinuationsto write a concurrency library in
the language itself is not new [25, 22, 21]. There are twoediff
ent strategies for implementidghtweightcontinuations in a lan-
guage: first-class continuations can be made cheap for @B&db
runtime implementations [1] such as SML/NJ, and one-shitico
uations [3] are more suitable for stack-based implemeomatiOur

design uses the latter because the GHC runtime model is-stack
based. In Haskell, the CPS monad can also be used to implement

lightweight concurrency [5], but this approach cannot sappre-
emption and it is thus limited to applications where coopesa
scheduling is suitable.

Morrisett and Tolmach[17] extended continuation-based- co
currency for SML/NJ to multiprocessors, by adding primgsv
types and operations for virtual processors and synchatioiz.
The Sting language [13, 14] is a variant of Scheme that sippor
multiple parallel-programming constructs in a unified feamork,
which includes threads and virtual processors as primijipes.

Fisher and Reppy designed BOL as a compiler intermediate lan
guage to implement concurrency mechanisms [6]. They obderv
the problem we mentioned in Section 3.4.2, that a continnati
shall not be used until the current thread has yielded cbr@L
solves this problem by locking the current thread beforeliphb
ing the continuation; our design of tka&itch primitive elegantly
solves this problem by combining context switching with anme
ory transaction.

The recent Manticore project [8, 18, 7] is very similar to our
work. The Manticore language is specifically designed tcetigy
low-level runtime frameworks that support heterogenecasalp
lelism and complex scheduling policies. Manticore is based
strict, ML-like language design; our design uses the Has&at
guage itself, which is pure and lazy, and also deals withiapec
problems in Haskell such as thunk blackholing. Our HEC algstr
tion is similar to Manticore’s notion of &proc (virtual processor).
Manticore uses theompare-and-swapperation and concurrent
gueues as synchronization primitives. In contrast, oussate sup-
ports the higher-level notion d¢fansactional memoryOn the other
hand, the Manticore substrate supports load-balancingragh-
tion across vprocs, whereas we handle these entirely wittai-
brary.

Lastly, Berthold et. al. designed a run-time environment fo
implicitly parallel programs, using Concurrent Haskelldathe
existing GHC runtime system as a substrate [2].

8. Summary

This paper proposes the design of a substrate interfacefetap-
ing concurrency libraries in Haskell. This design usesdaational
memory as the synchronization primitive, and a special fofm
continuations for implementing lightweight concurren®is de-
sign simplifies the GHC runtime system; it also improves #fety
and customizability of concurrency implementation.

Up to now, we have a prototype implementation with prelimi-
nary performance results that look promising. Nevertreldse de-
sign needs to be further validated (and improved as neeldem)gh
a fullimplementation of the existing concurrency feature&HC,
and some performance tuning is definitely needed. Theradllis st
plenty of work left to be done.
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