Closed Type Families with Overlapping Equations

Richard A. Eisenberg
University of Pennsylvania
eir@cis.upenn.edu

Dimitrios Vytiniotis
Simon Peyton Jones
Microsoft Research Cambridge
{dimitris,simonpj}@microsoft.com

Stephanie Weirich
University of Pennsylvania
sweirich@cis.upenn.edu

Abstract
Open, type-level functions are a recent innovation in Haskell that move Haskell towards the expressiveness of dependent types, while retaining the look and feel of a practical programming language. This paper shows how to increase expressiveness still further, by adding closed type functions whose equations may overlap, and may have non-linear patterns over an open type universe. Although practically useful and simple to implement, these features go beyond conventional dependent type theory in some respects, and have a subtle metatheory.

Categories and Subject Descriptors F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs—type structure; D.3.3 [Programming Languages]: Language Constructs and Features; F.4.2 [Mathematical Logic and Formal Languages]: Grammars and Other Rewriting Systems—parallel rewriting systems

General Terms Design, Languages, Theory

Keywords Type families; Type-level computation; Haskell; System FC

1. Introduction
Type families are a relatively recent extension to Haskell that allows the programmer to express type-level computation (Chakravarty et al. 2005). For example, one can say

\[
\begin{align*}
\text{type family } &\text{Elt } (a :: \star) :: \star \\
\text{type instance } &\text{Elt } \text{ByteString } = \text{Word8} \\
\text{type instance } &\text{Elt } [b] = b
\end{align*}
\]

The first line declares the type family \text{Elt} and gives its kind; the second and third are two independent declarations that give two equations for \text{Elt}. Now the types \{\text{Elt } \text{ByteString}\} and \text{Word8} are considered equivalent by the type inference engine, and likewise \{\text{Elt } [\text{Int}]\} and \text{Int}. Type families have proved to be a popular feature in Haskell, dovetailing particularly nicely with Haskell’s type classes. Type families are naturally partial and open. For example, there is no equation for \text{Elt } \text{Char} above, so \text{Elt } \text{Char} will never be equal to any other type. On the other hand, the author of a new library is free to add a new instance, such as this one:

\[
\begin{align*}
\text{type instance } &\text{Elt } (\text{Set } b) = b
\end{align*}
\]

However, not all type-level functions can be defined by open type families. An important example is the equality function, which determines whether two types can be shown equal at compile-time.

\[
\begin{align*}
\text{type family } &\text{Equal } a b :: \text{Bool} \\
\text{type instance } &\text{Equal } a a = \text{True} \quad \text{-- Instance (A)} \\
\text{type instance } &\text{Equal } a b = \text{False} \quad \text{-- Instance (B)}
\end{align*}
\]

The programmer intends these equations to be read top-to-bottom, like a term-level function definition in Haskell. However, because GHC’s current type families are open, they must be defined by independent, un-ordered \text{type instance} equations. The two equations overlap, so they are rightly rejected lest they be used to deduce unsound type equalities. For example, we could reduce the type \text{Equal } \text{Int } \text{Int} to both \text{True} and \text{False}, since both patterns match.

Yet equality is a well-defined function, and a useful one too, as we discuss in Section 2. To fix this omission we introduce \textit{closed type families} with ordered equations, thus:

\[
\begin{align*}
\text{type family } &\text{Equal } a b :: \text{Bool where} \\
&\text{Equal } a a = \text{True} \\
&\text{Equal } a b = \text{False}
\end{align*}
\]

Now all the equations for the type family are given together, and can be read top-to-bottom. However, behind this simple idea lie a number of complexities. In this paper we describe these pitfalls and their sometimes non-obvious solutions. We make the following contributions:

\begin{itemize}
\item We introduce closed type families with overlapping equations, and show how they can readily express programs that were previously inexpressible or required indirect encodings (Section 2).
\item Our system supports \textit{non-linear left-hand sides}, such as that for \text{Equal} above, where the variable \text{a} is repeated in the first equation. It also supports \textit{coincident overlap}, which allows some lightweight theorem-proving capability to be incorporated in the definitional equality of types (Section 3.4).
\item We give the subtle rules that govern type family simplification, including those that determine when a pattern \textit{cannot} be matched by a type (Section 3).
\item We describe a typed core language that includes both open and closed type families (Section 4), and prove that it is type-safe, assuming that type families terminate (Section 5). We do that by establishing a \textit{consistency} property of the type equations induced by type families.
\end{itemize}

1 Here we use \\textit{datatype promotion}, allowing data types like \text{Bool}, and lists, to be used as kinds (Yorgey et al. 2012).
• We identify the complications for consistency that arise from
non-terminating type families and we expose a subtle oversight
in GHC’s current rules for open type families in Section 6.

• We have implemented closed type families in GHC as well
as a number of case studies, such as the units package, an
extensible framework for dimensional analysis, presented in the
extended version of this paper (Eisenberg et al. 2013). Closed
type families are available now in GHC 7.8.

In short, the programmer sees a simple, intuitive language fea-
ture, but the design space (and its metatheory) is subtle. Although
type families resemble the type-level computation and “large elim-
inations” found in full-spectrum dependently-typed languages like
Coq and Agda, there are important semantic and practical differ-
ences. We discuss these in Section 8.

2. Closed type families

Haskell (in its implementation in GHC) has supported type families
for several years. They were introduced to support associated types,
a feature that Garcia et al.’s (2003) comparison between C++,
Haskell, and ML, noted as a C++’s main superiority for generic
programming.

Type families were designed to dovetail smoothly with type
classes. For example, the type function\(^2\) \text{Elt} above could be used to
specify the element type in a container class:

```haskell
class Container c where
    empty :: c
    member :: Elt c \rightarrow c \rightarrow Bool
instance Container [a] where ...
instance Container ByteString where ...
```

New instances for \text{Container} can be defined as new types are
introduced, often in different modules, and correspondingly new
equations for \text{Elt} must be added too. Hence \text{Elt} must be open
(that is, can be extended in modules that import it), and distributed
(can be scattered over many different modules). This contrasts with
term-level functions where we are required to define the function
all in one place.

The open, distributed nature of type families, typically associ-
ated with classes, requires strong restrictions on overlap to main-
tain soundness. Consider

```haskell
type family F a b :: *
type instance F Int a = Bool
type instance F a Bool = Char
```

Now consider the type \((F \text{ Int Bool})\). Using the first equation, this
type is equal to \text{Bool}, but using the second it is equal to \text{Char}. So
if we are not careful, we could pass a \text{Bool} to a function expecting
a \text{Char}, which would be embarrassing.

GHC therefore brutally insists that the left-hand sides of two
type instance equations must not overlap (unify). (At least, unless
the right-hand sides would then coincide; see Section 3.4.)

2.1 Closed families: the basic idea

As we saw in the Introduction, disallowing overlap means that use-
ful, well-defined type-level functions, such as type level equality,
cannot be expressed. Since openness is the root of the overlap prob-
lem, it can be solved by defining the equations for the type family
\text{all in one place}. We call this a closed type family and define it using
a where clause on the function’s original declaration. The equa-
tions may overlap, and are matched top-to-bottom. For example:

```haskell
\text{type family } \text{And} \ (a :: \text{Bool}) \ (b :: \text{Bool}) :: \text{Bool} \text{ where }
\text{And } \text{True } \text{True } = \text{True}
\text{And } a \ b = \text{False}
```

Since the domain of \text{And} is closed and finite, it is natural to write
all its equations in one place. Doing so directly expresses the fact
that no further equations are expected.

Although we have used overlap in this example, one can always
write functions over finite domains without overlap:

```haskell
\text{type family } \text{And’} \ (a :: \text{Bool}) \ (b :: \text{Bool}) :: \text{Bool} \text{ where }
\text{And’ } \text{True } \text{True } = \text{True}
\text{And’ } \text{False } \text{True } = \text{False}
\text{And’ } \text{True } \text{False } = \text{False}
\text{And’ } \text{False } \text{False } = \text{False}
```

Nevertheless, overlap is convenient for the programmer, mirrors
what happens at the term level, avoids a polynomial blowup in
program size, and is more efficient (for the type checker) to execute.
Furthermore, when defined over an open kind, such as \(*\), closed
type families allow a programmer to express relationships (such as
inequality of types—see Section 2.4) that are otherwise out of
reach.

2.2 Non-linear patterns

Let us return to our equality function, which can now be defined thus:

```haskell
\text{type family } \text{Equal} \ (a :: \kappa) \ (b :: \kappa) :: \text{Bool} \text{ where }
\text{Equal } a a = \text{True}
\text{Equal } a b = \text{False}
```

This declaration introduces the type function \text{Equal}, gives its kind
and, in the where clause, specifies all its equations. The first equa-
tion has a non-linear pattern, in which \(a\) is repeated, and it overlaps
with the second equation. If the domain were finite we could avoid
both features by writing out all the equations exhaustively, but new
types can be introduced at any time, so we cannot do that here.

The issue becomes even clearer when we use kind polymorphism
(Yorgey et al. 2012), thus:

```haskell
\text{type family } \text{Equal} \ (a :: \kappa) \ (b :: \kappa) :: \text{Bool} \text{ where }
\text{Equal } a a = \text{True}
\text{Equal } a b = \text{False}
```

```haskell
\text{type family } \text{Equal} \ (a :: \kappa) \ (b :: \kappa) :: \text{Bool} \text{ where }
\text{Equal } a a = \text{True}
\text{Equal } a b = \text{False}
```

This declaration introduces the type function \text{Equal}, gives its kind
and, in the where clause, specifies all its equations. The first equa-
tion has a non-linear pattern, in which \(a\) is repeated, and it overlaps
with the second equation. If the domain were finite we could avoid
both features by writing out all the equations exhaustively, but new
types can be introduced at any time, so we cannot do that here.

The issue becomes even clearer when we use kind polymorphism
(Yorgey et al. 2012), thus:

```haskell
\text{type family } \text{Equal} \ (a :: \kappa) \ (b :: \kappa) :: \text{Bool} \text{ where }
\text{Equal } a a = \text{True}
\text{Equal } a b = \text{False}
```

For example, \((\text{Equal } \text{Maybe } \text{List})\) should evaluate to \text{False}. It may
seem unusual to define a function to compute equality even over
types of \text{function kind} \((\kappa \rightarrow \kappa)\). After all, there is no construct that
can compare functions at the term level.

At the type level, however, the type checker decides equality
at function kinds all the time! In the world of Haskell types there
exist no anonymous type-level functions, nor can type families
appear partially applied, so this equality test—which checks for
definitional equality, in type theory jargon—is straightforward. All
\text{Equal} does is reify the (non-extensional) equality test of the type
checker.

In fact, Haskell programmers are used to this kind of equality
matching on types; for example, even in Haskell 98 one can write

```haskell
\text{instance } \text{Num } a \Rightarrow \text{Num } (T \ a) \text{ where ...}
```

Because the type inference engine already supports decidable
equality, it is very straightforward to implement non-linear pat-
terns for type functions as well as type classes. Non-linear patterns
are convenient for the programmer, expected by Haskell users, and
add useful expressiveness. They do make the metatheory much
harder, as we shall see, but that is a problem that has to be solved
only once.

\(^2\)We use “type family” and “type function” interchangeably.
2.3 Type structure matching

In our experience, most cases where closed type families with overlapping equations are useful involve a variation on type equality. However, sometimes we would like to determine whether a type matches a specific top-level structure.

For example, we might want to look at a function type of the form \texttt{Int \to (Char \to Char)} \to \texttt{Int \to Bool} and determine that this is a function of three arguments.

\begin{verbatim}
data Nat = Zero | Succ Nat type family CountArgs (f :: *) :: Nat where CountArgs (a \to b) = Succ (CountArgs b) CountArgs result = Zero
\end{verbatim}

Because the equations are tried in order, any function type will trigger the first equation and any ground non-function type (that is, a type that is not a type variable or an arrow type) will trigger the second. Thus, the type family effectively counts the number of parameters a function requires.

When might this be useful? We have used this type family to write a variable-arity \texttt{zipWith} function that infers the correct arity, assuming that the result type is not a function type. Other approaches that we are aware of (Fridlender and Indrika 2000; McBride 2002; Weirich and Casinghino 2010) require some encoding of the desired arity to be passed explicitly. A full presentation of the variable-arity \texttt{zipWith} is presented in the extended version of this paper. To achieve the same functionality in a typical dependently typed language like Agda or Coq, we must pattern-match over some inductive universe of codes that can be interpreted into types.

2.4 Observing inequality

Type families such as \texttt{Equal} allow programmers to observe when types do not match. In other words, \texttt{Equal Int Bool} automatically reduces to \texttt{False}, via the second equation. With open type families, we could only add a \textit{finite number of reductions} of un-equal types to \texttt{False}.

However, the ability to observe inequality is extremely useful for expressing failure in compile-time search algorithms. This search could be a simple linear search, such as finding an element in a list. Such searches underlie the HList library and its encoding of heterogeneous lists and extensible records (Kiselyov et al. 2004). It also supports Swierstra’s solution to the expression problem via extensible datatypes (Swierstra 2008). Both of these proposals use the extension \texttt{-XOverlappingInstances} to implement a compile-time equality function.\footnote{This extension allows class instances, but not type family instances, to overlap. If the type inference engine chooses the wrong class instance, a program may have incoherent behavior, but it is believed that type safety is not compromised. See Morris and Jones (2010) for relevant discussion.}

Type families can directly encode more sophisticated search algorithms than linear list searching, including those requiring backtracking, simply by writing a functional program. For example, the following closed type family determines whether a given element is present in a tree.

\begin{verbatim}
data Tree a = Leaf a | Branch (Tree a) (Tree a) type family TMember (e :: κ) (set :: Tree κ) :: Bool where TMember e (Leaf x) = Equal e x TMember e (Branch left right) = Or (TMember e left) (TMember e right)
\end{verbatim}

Implementing this search using overlapping type classes, which do not support backtracking, requires an intricate encoding with explicit stack manipulation.

2.5 Summary

Type-level computation is a powerful idea: it allows a programmer to express application-specific compile-time reasoning in the type system. Closed type families fill in a missing piece in the design space, making type families more expressive, convenient, and more uniform with term-level functional programming.

3. Simplifying closed family applications

We have shown in the previous sections how type family reduction can be used to equate types. For example, a function requiring an argument of type \texttt{T True} can take an argument of type \texttt{T (And True True)}, because the latter reduces to the former.

Because the definition of type equality is determined by type family reduction, the static semantics must precisely define what reductions are allowed to occur. That definition turns out to be quite subtle, so this section develops an increasingly refined notion of type family reduction, motivated by a series of examples. The presentation gives a number of definitions, using the vocabulary of Figure 1, but we eschew full formality until Section 4. We use the term “target” to designate the type-function application that we are trying to simplify. We say that a type \τ₁ “simplifies” or “reduces” to another type \τ₂ if we can rewrite the \τ₁ to \τ₂ using a (potentially empty) sequence of left-to-right applications of type family equations. We also use the notation \τ₁ ∼\texttt{=}\texttt{=} \τ₂ to denote exactly one application of a type family equation and \τ₁ ∼\texttt{=}\texttt{=} \texttt{=} \tau₂ to denote an arbitrary number of reductions. Type equality is defined to be roughly the reflexive, symmetric, transitive, congruent closure of type reduction; details are in Section 4.3.

We frequently refer to the example in the introduction, repeated below, with the variables renamed to aid in understanding:

\begin{verbatim}
type family Equal (a :: κ) (b :: κ) :: Bool where Equal a a = True -- Eqn (A) Equal b c = False -- Eqn (B)
\end{verbatim}

3.1 No functions on the LHS

If we wish to simplify \texttt{Equal Int Int}, equation (A) of the definition matches, so we can safely “fire” the equation (A) to simplify the application to \texttt{True}.

Even here we must take a little care. What happens if try this?

\begin{verbatim}
type family F (a :: Bool) where F False = False F True = True F (Equal x y) = True
\end{verbatim}

Then \texttt{F (Equal Int Int)} superficially appears to match only the third equation. But of course, if we simplify the argument of \texttt{F} in the target, it would become \texttt{F False}, which matches the first equation.

The solution here is quite standard: in type family definitions (both open and closed) we do not allow functions in the argument types on the LHS. In terms of Figure 1, the LHS of a function axiom must be a \texttt{pattern} \texttt{ρ}. This is directly analogous to allowing only constructor patterns in term-level function definitions, and is already required for Haskell’s existing open type families.
We then propose the following first attempt at a reduction strategy:

Candidate Rule 1 (Closed type family simplification). An equation for a closed type family \(F \) can be used to simplify a target \((F \tau)\) if (a) the target matches the LHS of the equation, and (b) no LHS of an earlier equation for \(F \) matches the target.

The formal definition of matching follows:

Definition 1 (Matching). A pattern \(\rho \) matches a type \(\tau \), written \(\text{match}(\rho, \tau) \), when there is a well-kinded substitution \(\Omega \) such that \(\Omega(\rho) = \tau \). The domain of \(\Omega \) must be a subset of the set of free variables of the pattern \(\rho \).

3.2 Avoiding premature matches with apartness

Suppose we want to simplify \(\text{Equal } \text{Bool} \, \text{d} \). Equation (A) above fails to match, but (B) matches with a substitution \(\Omega = [b \mapsto \text{Bool}, c \mapsto \text{d}] \). But it would be a mistake to simplify \(\text{Equal } \text{Bool} \, \text{d} \) to \(\text{False} \). Consider the following code:

```haskell
type family FunIf (b :: Bool) :: * where
  FunIf True = Int -> Int
  FunIf False = ()

bad :: d -> FunIf (Equal Bool d)
bad _ = ()
segFault :: Int
segFault = bad True
```

If we do simplify the type \(\text{Equal } \text{Bool} \, \text{d} \) to \(\text{False} \) then we can show that \(\text{bad} \) is well typed, since \(\text{FunIf } \text{False} \) is \(() \). But then \(\text{segFault} \) calls \(\text{bad} \) with \(\text{d} \) instantiated to \(\text{Bool} \). So \(\text{segFault} \) expects \(\text{bad } \text{True} \) to return a result of type \(\text{FunIf } (\text{Equal } \text{Bool} \, \text{d}) \), which reduces to \(\text{Int} \rightarrow \text{Int} \), so the call in \(\text{segFault} \) type-checks too. Result: we apply \(() \) as a function to \(5 \), and crash.

The error, of course, is that we wrongly simplified the type \((\text{Equal } \text{Bool} \, \text{d}) \) to \(\text{False} \); wrongly because the choice of which equation to match depends on how \(\text{d} \) is instantiated. While the target \((\text{Equal } \text{Bool} \, \text{d}) \) does not match the earlier equation, there is a substitution for \(\text{d} \) that causes it to match the earlier equation. Our Candidate Rule 1 is insufficient to ensure type soundness. We need a stronger notion of **apartness** between a (target) type and a pattern, which we write as \(\text{apart}(\rho, \tau) \) in what follows.

Candidate Rule 2 (Closed type family simplification). An equation for a closed type family \(F \) can be used to simplify a target \((F \tau)\) if (a) the target matches the LHS of the equation, and (b) every LHS \(\bar{\rho} \) of an earlier equation for \(F \) is apart from the target; that is, \(\text{apart}(\bar{\rho}, \tau) \).

As a notational convention, \(\text{apart}(\bar{\rho}, \tau) \) considers the lists \(\bar{\rho} \) and \(\tau \) as tuples of types; the apartness check does not go element-by-element. We similarly treat uses of match and unify (defined shortly) when applied to lists.

To rule out our counterexample to type soundness, apartness must at the very least satisfy the following definition:

Property 2 (Apartment through substitution). If \(\text{apart}(\rho, \tau) \) then there exists no \(\Omega \) such that \(\text{match}(\rho, \Omega(\tau)) \).

An appealing implementation of \(\text{apart}(\rho, \tau) \) that satisfies Property 2 is to check that the target \(\tau \) and the pattern \(\rho \) are **not unifiable**, under the following definition:

Definition 3 (Unification). A type \(\tau_1 \) unifies with a type \(\tau_2 \) when there is a well-kinded substitution \(\Omega \) such that \(\Omega(\tau_1) = \Omega(\tau_2) \). We write \(\text{unify}(\tau_1, \tau_2) = \Omega \) for the most general such unifier if it exists.\(^4\)

However this test is not sufficient for type soundness. Consider the type \(\text{Equal } \text{Int} \, (G \, \text{Bool}) \), where \(G \) is a type family. This type does not match equation (A), nor does it unify with (A), but it does match (B). So according to our rule, we can use (B) to simplify \(\text{Equal } (G \, \text{Bool}) \) to \(\text{False} \). But, if \(G \) were a type function with equation

\[
\text{type instance } G \, \text{Bool} = \text{Int}
\]

then we could use this equation to rewrite the type to \(\text{Equal } \text{Int} \), which patently does match (A) and simplifies to \(\text{True} \).

In our check of previous equations of a closed family, we wish to ensure that no previous equation can ever apply to a given application. Simply checking for unification of a previous pattern and the target is not enough. To rule out this counterexample we need yet another property from the \(\text{apart}(\rho, \tau) \) check, which ensures that the target cannot match a pattern of an earlier equation through arbitrary reduction too.

Property 4 (Apartment through reduction). If \(\text{apart}(\rho, \tau) \), then for any \(\tau' \) such that \(\tau \rightarrow^* \tau' \), \(\neg \text{match}(\rho, \tau') \).

3.3 A definition of apartness

We have so far sketched necessary properties that the apartness check must satisfy—otherwise, our type system surely is not sound. We have also described why a simple unification-based test does not meet these conditions, but we have not yet given a concrete definition of this check.

Note that we cannot use Property 4 to define \(\text{apart}(\rho, \tau) \) because it would not be well founded. We need \(\text{apart}(\rho, \tau) \) to define how type families should reduce, but Property 4 itself refers to type family reduction. Furthermore, even if this were acceptable, it seems hard to implement. We have to ensure that, for any substitution, no reducts of a target can possibly match a pattern; there can be exponentially many reducts in the size of the type and the substitution.

Hence we seek a conservative but cheap test. Let us consider again why unification is not sufficient. In the example from the previous section, we showed that type \(\text{Equal } (G \, \text{Bool}) \) does not match equation (A), nor does it unify with (A). However, \(\text{Equal } (G \, \text{Bool}) \) can simplify to \(\text{Equal } \text{Int} \) and now equation (A) does match the reduct.

To take the behavior of type families into account, we first **flatten** any type family applications in the arguments of the target (i.e., the types \(\tau \) in a target \((F \tau)\) to fresh variables. Only then do we check that the new target is not unifiable with the pattern. This captures the notion that a type family can potentially reduce to any type—anything more refined would require advance knowledge of all type families, impossible in a modular system. In our example, we must check \(\text{apart}(a, a), (\text{Int }, G \, \text{Bool}) \) when trying to use the second equation of \(\text{Equal} \) to simplify \(\text{Equal } (G \, \text{Bool}) \). We first flatten \((\text{Int }, G \, \text{Bool}) \) into \((\text{Int }, x) \) (for some fresh variable \(x \)). Then we check whether \((a, a) \) cannot be unified with \((\text{Int }, x) \). We quickly discover that these types can be unified. Thus, \((a, a) \) and \((\text{Int }, G \, \text{Bool}) \) are **not apart** and simplifying \(\text{Equal } (G \, \text{Bool}) \) to \(\text{False} \) is prohibited.

What if two type family applications in the target type are syntactically identical? Consider the type family \(F \) below:

\(^4\)For instance, the implementation of unify can be the standard first-order unification algorithm of Robinson.
We can easily formalize this intuition. Let us say that two equations are compatible when any type that matches both left-hand sides would be rewritten by both equations to the same result, eliminating non-convergent critical pairs in the induced rewriting system:

Definition 7 (Compatibility). Two type-family equations \(p \) and \(q \) are compatible iff \(\Omega_1(lhs_p) = \Omega_2(lhs_q) \) implies \(\Omega_1(rhs_p) = \Omega_2(rhs_q) \).

For example, (1) and (2) are compatible because a type, such as \(\text{And \ True \ True} \), would be rewritten by both to the same type, namely \(\text{True} \). It is easy to test for compatibility:

Definition 8 (Compatibility implementation). The test for compatibility, written \(\text{compat}(p,q) \), checks that \(\text{unify}(lhs_p,lhs_q) = \Omega \) implies \(\Omega(rhs_p) = \Omega(rhs_q) \). If \(\text{unify}(lhs_p,lhs_q) \) fails, \(\text{compat}(p,q) \) holds vacuously.

The proof that \(\text{compat}(p,q) \) implies that \(p \) and \(q \) are compatible appears in the extended version of this paper and is straightforward. We can now state our final simplification rule for closed type families:

Rule 9 (Closed type family simplification). An equation \(q \) of a closed type family can be used to simplify a target application \(F \ ? \) if the following conditions hold:

1. The target \(\tau \) matches the type pattern \(lhs_q \).
2. For each earlier equation \(p \), either \(\text{compat}(p,q) \) or \(\text{apart}(lhs_p,\tau) \).

For example, we can fire equation (2) on a target that is not apart from (1), because (1) and (2) are compatible. We show that Rule 9 is sufficient for establishing type soundness in Section 5.

Through this use of compatibility, we allow for a limited form of theorem proving within a closed type family definition. The fact that equation (2) is compatible with (1) essentially means that the rewrite rule for (2) is admissible given that for (1). By being able to write such equations in the closed type family definition, we can expand Haskell’s definitional equality to relate more types.

3.5 Optimized matching

In our original Candidate Rule 2 above, when simplifying a target \(F \ ? \) with an equation \(q \), we are obliged to check \(\text{apart}(lhs_p,\tau) \) for every earlier equation \(p \). But much of this checking is wasted duplication. For example, consider:

type family F a where

\[
F \text{ Int} = \text{Char} \quad -- (1) \\
F \text{ Bool} = \text{Bool} \quad -- (2) \\
F \ a = \text{Int} \quad -- (3)
\]

If a target matches (2) there is really no point in checking its apartness from (1), because anything that matches (2) will be apart from (1). We need only check that the target is apart from any preceding equations that could possibly match the same target.

Happily, this intuition is already embodied in our new simplification Rule 9. This rule checks \(\text{compat}(p,q) \lor \text{apart}(lhs_p,\tau) \) for each preceding equation \(p \). But we can \text{precompute} \(\text{compat}(p,q) \) (since it is independent of the target), and in the simplification rule we need check apartness only for the pre-computed list of earlier incompatible equations. In our example, equations (1) and (2) are vacuously compatible, since their left-hand sides do not unify, and hence no type can match both. Thus, there is no need to check for apartness from (1) of a target matching (2).

3.6 Compatibility for open families

As discussed in the introduction, type instance declarations for open type families must not overlap. With our definition of com-
patibility, however, we can treat open and closed families more uniformly by insisting that any two instances of the same open type family are compatible:

Definition 10 (Open type family overlap check). *Every pair of equations* p and q for an open type family F *must satisfy* $\text{compat}(p, q)$.

Notice that this definition also allows for coincident right-hand sides (as in the case for closed type families, Section 3.4). For example, these declarations are legal:

- **type family** $Coincide \ a \ b$
- **type instance** $Coincide \ Int \ b \ = \ Int$
- **type instance** $Coincide \ a \ Bool \ = \ a$

These equations overlap, but in the region of overlap they always produce the same result, and so they should be allowed. (GHG already allowed this prior to our extensions.)

3.7 Type inference for closed type families

Given the difficulty of type inference for open type families (Chakravarty et al. 2005; Schrijvers et al. 2008), how do we deal with closed ones? Thankfully, this turns out to be remarkably easy: we simply use Rule 9 to simplify closed families in exactly the same way as open ones? Thankfully, this turns out to be remarkably easy: we simply use Rule 9 to simplify closed families in exactly the same way as open ones. The implementation in GHC is accordingly quite straightforward.

Despite the ease of implementation, there are perhaps complex new possibilities opened by the use of closed families—these are explored in Section 7.6.

4. System µFC: formalizing the problem

Thus far we have argued informally. In this section we formalize our design and show that it satisfies the usual desirable properties of type preservation and progress, assuming termination of type family reduction. It is too hard to formulate these proofs for all of Haskell, so instead we formalize µFC, a small, explicitly-typed lambda calculus. This is more than a theoretical exercise: GHC really does elaborate all of Haskell into System FC (Sulzmann et al. 2007a; Weirich et al. 2013), of which µFC is a large subset that omits some details of FC—such as kind polymorphism (Yorgey et al. 2012)—that are irrelevant here.

4.1 System µFC

System µFC is an extension of System F, including kinds and explicit equality coercions. Its syntax is presented in Figure 2. This syntax is very similar to recent treatments of System FC (Weirich et al. 2013). We omit from the presentation the choice of ground types and their constructors and destructors, as they are irrelevant for our purposes.

There are a few points to note about type families, all visible in Figure 2. A type family has a particular arity, and always appears saturated in types. That explains the first-order notation $F(\tau) : \kappa$ in ground contexts Σ, and $F(\tau)$ in types.

A closed type family appears in µFC as a kind signature $F(\Sigma) : \kappa'$, and a single axiom $C : \Psi$, both in the top-level ground context Σ. The "type" Ψ of the axiom is a list of equations, each of form $[\alpha : \kappa], F(\tau) \sim \sigma$, just as we have seen before except that the quantification is explicit. For example, the axiom for $Equal$ (restricted for simplicity to kind \star) looks like this:

$$\text{axiomEq} : \begin{cases} \text{Equal} \ \alpha \ \alpha \ \sim \ \text{True} ; \\
\text{Equal} \ \alpha \ \beta \ ; \ \sim \ \text{False} \end{cases}$$

Although our notation for lists does not make it apparent, we restrict the form of the equations to require that F refers to only one type family—that is, there are no independent F_i. We use subscripts on metavariables to denote which equation they refer to, and we refer to the types π_m as the *type patterns* of the mth equation.

We assume that the variables τ bound in each equation are distinct from the variables bound in other equations.

An open type family appears as a kind signature and zero or more separate axioms, each with one equation.

4.2 Static semantics

Typing in µFC is given by the judgments in Figure 3. Most of the rules are uninteresting and are thus presented in the extended version of this paper. The typing rules for expressions are entirely straightforward. The only noteworthy rule is the one for casting, which gives the raison d’être for coercions:

$$\Gamma \vdash_e \gamma : \tau_1 \sim \tau_2 \quad \Gamma \vdash_e e : \tau_1 \quad \text{TMCast}$$

Here, we see that a cast by a coercion changes the type of an expression. This is what we mean by saying that a coercion witnesses...
the equality of two types—if there is a coercion between \(\tau_1 \) and \(\tau_2 \), then any expression of type \(\tau_1 \) can be cast into one of type \(\tau_2 \).

The rules for deriving the kind of a type are straightforward and are omitted from this presentation.

4.3 Coercions and axiom application

Coercions are less familiar, so we present the coercion typing rules in full, in Figure 4. The first four rules say that equality is congruent—that is, types can be considered equal when they are formed of components that are considered equal. The following three rules assert that coercibility is a proper equivalence relation. The CO_LEFT and \(\text{CO_RIGHT} \) rules assert that we can decompose complex equalities to simpler ones. These formation rules are incomplete with respect to some unspecified notion of semantic equality—that is, we can imagine writing down two types that we “know” are equal, but for which no coercion is derivable. For example, there is no way to use induction over a data structure to prove equality. However, recall that these coercions must all be inferred from a source program, and it is unclear how we would reliably infer inductive coercions.

The last rule of coercion formation, \(\text{CO_AXiom} \), is the one that we are most interested in. The coercion \(C[i] \tau \) witnesses the equality obtained by instantiating the \(i \)'th equation of axiom \(C \) with the types \(\tau \). For example,

\[
\text{axiomEq}[0] : \text{Int} = \text{Equal} \text{Int} \text{Int} \sim \text{True}
\]

This says that if we pick the first equation of \(\text{axiomEq} \) (we index from 0), and instantiate it at \(\text{Int} \), we have a witness for \(\text{Equal} \text{Int} \text{Int} \sim \text{True} \).

Notice that the coercion \(C[i] \tau \) specifies exactly which equation is picked (the \(i \)'th one); \(\mu\text{FC} \) is a fully-explicit language. However, the typing rules for \(\mu\text{FC} \) must reject unson coercions like

\[
\text{axiomEq}[1] : \text{Int} = \text{Equal} \text{Int} \text{Int} \sim \text{False}
\]

and that is expressed by rule \(\text{CO_AXiom} \). The premises of the rule check to ensure that \(\Sigma; \Delta \) is a valid context and that all the types \(\tau \) are of appropriate kinds to be applied in the \(i \)'th equation. The last premise implements Rule 9 (Section 3.4), by checking \(\text{no_conflict} \) for each preceding equation \(j \). The \(\text{no_conflict} \) judgment simply checks that either (\(\text{NC_COMPATIBLE} \)) the \(i \)'th and \(j \)'th equation for \(C \) are compatible, or (\(\text{NC_APART} \)) that the target is apart from the LHS of the \(j \)'th equation, just as in Rule 9.

In \(\text{NC_COMPATIBLE} \), note that the compat judgment does not take the types \(\tau \): compatibility is a property of equations, and is independent of the specific arguments at an application site. The two rules for compat are exactly equivalent to Definition 8.

These judgments refer to algorithms apart and unify. We assume a correct implementation of unify and propose sufficient properties of apart in Section 5.1. We then show that our chosen algorithm for apart (Definition 6) satisfies these properties.

As a final note, the rules do not check the closed type family axioms for exhaustiveness. A type-family application that matches no axiom simply does not reduce. Adding an exhaustiveness check based on the kind of the arguments of the type family might be a useful, but orthogonal, feature.

5. Metatheory

A summary of the structure of the type safety proof, highlighting the parts that are considered in this paper, is in Figure 5. Our main goals are to prove (i) the substitution lemma of types into coercions (Section 5.2), and (ii) a consistency property that ensures we never equate two types such as \(\text{Int} \) and \(\text{Bool} \) (Section 5.3). The substitution and consistency lemmas lead to the preservation and progress theorems respectively, which together ensure type safety.

We omit the operational semantics of \(\mu\text{FC} \) as well as the other

\[
\begin{array}{rcl}
\Gamma \vdash_0 \gamma_1 : \phi & \text{Coercion typing} \\
\Gamma \vdash_0 \gamma_1 : \tau_1 \sim \tau_2 & \text{CO_ARROW} \\
\Gamma \vdash_0 \gamma_1 : \tau_1 \rightarrow \tau_2 \sim \ast & \text{CO_FORALL} \\
\Gamma, \alpha : \kappa \vdash_0 \gamma : \tau_1 \sim \tau_2 & \text{CO_APP} \\
\Gamma \vdash_0 \gamma : \tau_1 \sim \tau_2 & \text{CO_TYFAM} \\
\Gamma \vdash_0 \gamma : \kappa.\tau \sim \kappa & \text{CO_REFL} \\
\Gamma \vdash_0 \gamma : \tau_1 \sim \tau_2 & \text{CO_SYM} \\
\Gamma \vdash_0 \gamma_1 : \tau_1 \sim \tau_2 & \text{CO_TRANS} \\
\Gamma \vdash_0 \gamma_1 \triangleright \gamma_2 : \tau_1 \sim \tau_3 & \text{CO_LEFT} \\
\Gamma \vdash_0 \gamma : \tau_1 \sim \tau_2 & \text{CO_RIGHT} \\
\end{array}
\]

\[
\begin{array}{rcl}
\Sigma ; \Delta \vdash_0 C[i] \tau : F(\rho[\tau/\alpha_i]) \sim \upsilon_i[\tau/\alpha_i] & \text{CO_AXiom} \\
\end{array}
\]

\[
\begin{array}{rcl}
\Psi = [\tau \rho] : F(\rho) \sim \upsilon & \text{NC_APART} \\
\text{compat}(\Psi[i], \Psi[j]) \sim \upsilon_i[\tau/\alpha_i] & \text{NC_COMPATIBLE} \\
\end{array}
\]

\[
\begin{array}{rcl}
\text{compat}(\Phi_1, \Phi_2) & \text{Equation compatibility} \\
\Phi_1 = [\alpha_1 \kappa_1] : F(\rho[1]) \sim \upsilon_1 & \text{COMPAT_COINCIDENT} \\
\Phi_2 = [\alpha_2 \kappa_2] : F(\rho[2]) \sim \upsilon_2 & \text{COMPAT_DISTINCT} \\
\text{cond}(\Phi_1, \Phi_2) & \text{compat}(\Phi_1, \Phi_2) \\
\end{array}
\]

\[
\begin{array}{rcl}
\text{compat}(\Phi_1, \Phi_2) & \text{Equation compatibility} \\
\Phi_1 = [\alpha_1 \kappa_1] : F(\rho[1]) \sim \upsilon_1 & \text{COMPAT_COINCIDENT} \\
\Phi_2 = [\alpha_2 \kappa_2] : F(\rho[2]) \sim \upsilon_2 & \text{COMPAT_DISTINCT} \\
\end{array}
\]

Figure 4. Coercion formation rules
lemmas in the main proofs of preservation and progress, because these are all direct adaptations from previous work (Weirich et al. 2011; Sulzmann et al. 2007a).

We stress that, as Figure 5 indicates, we have proved type safety only for terminating type families. What exactly does that mean? We formally define the rewrite relation, now written \(\Sigma \vdash \cdot \rightsquigarrow \cdot \) to explicitly mention the set of axioms, with the following rule:

\[
\begin{align*}
\text{C} : \Psi \in \Sigma \quad \Psi = [\sigma[\tau] \cdot F(\rho)] \rightsquigarrow v \\
\forall j < i, \text{no_conflict}(\Psi, i, \psi, j) \\
\Sigma \vdash C(\tau) \rightsquigarrow C(\tau^i) \quad \text{RED}
\end{align*}
\]

In the conclusion of this rule, \(C[i] \) denotes a type context with exactly one hole. Its use in the rule means that a type family can simplify anywhere within a type. Note that the no_conflict premise of this rule is identical to that of the Co_Axiom rule. By “terminating type families” we mean that the \(\Sigma \vdash \cdot \rightsquigarrow \cdot \) relation cannot have infinite chains. We discuss non-terminating type mention in Section 6.

As a notational convention, we extend the relation to lists of types by using \(\Sigma \vdash \Pi \rightsquigarrow \Pi^i \) to mean that exactly one of the types in \(\Pi \) steps to the corresponding type in \(\Pi^i \); in all other positions \(\Pi^i \) and \(\Pi \) are identical.

5.1 Preliminaries: properties of unification and apartness

In order to prove properties about no_conflict, we must assume the correctness of the unification algorithm:

Property 11 (unify correct). If there exists a substitution \(\Omega \) such that \(\Omega(\bar{\sigma}) = \Omega(\bar{\tau}) \), then unify(\(\Omega(\bar{\sigma}) \), \(\Omega(\bar{\tau}) \)) succeeds. If unify(\(\Omega(\bar{\sigma}) \), \(\Omega(\bar{\tau}) \)) = \(\Omega \) then \(\Omega \) is a most general unifier of \(\bar{\sigma} \) and \(\bar{\tau} \).

In Section 3.2, we gave some necessary properties of apart, namely Properties 2 and 4. To prove type soundness we need sufficient properties, such as the following three. Any implementation of apart that has these three properties would lead to type safety. We prove (in the extended version of this paper) that the given algorithm for apart (Definition 6) satisfies these properties. Due to flattening in the definition of apart, this proof is non-trivial. As a sanity check, we also prove that the sufficient properties imply the necessary ones of Section 3.2.

Property 12 (Apartness is stable under type substitution). If \(\text{apart}(\bar{\sigma}, \bar{\tau}) \), then for all substitutions \(\Omega \), \(\text{apart}(\Omega(\bar{\sigma}), \Omega(\bar{\tau})) \).

Property 13 (No unifiers for apart types). If \(\text{apart}(\bar{\sigma}, \bar{\tau}) \), then there exists no substitution \(\Omega \) such that \(\Omega(\bar{\sigma}) = \Omega(\bar{\tau}) \).

The final property of the apartness check is the most complex. It ensures that, if an equation can fire for a given target and that target steps, then it is possible to simplify the reduce even further so that the same equation can fire on the final reduct.

Property 14 (Apartness can be regained after reduction). If \(\bar{\tau} = \Omega(\bar{\sigma}) \) and \(\Sigma \vdash \bar{\tau} \rightsquigarrow \bar{\tau}^i \), then there exists a \(\bar{\tau}^j \) such that

1. \(\Sigma \vdash \bar{\tau} \rightsquigarrow \bar{\tau}^j \)
2. \(\bar{\tau}^j = \Omega(\bar{\sigma}) \) for some \(\Omega \), and
3. for every \(\bar{\tau}^j \) such that \(\text{apart}(\bar{\sigma}, \bar{\tau}) ; \text{apart}(\bar{\sigma}, \bar{\tau}) \).

Here is an example of Property 14 in action. Consider the following type families \(F \) and \(G \):

\[
\begin{align*}
type family F \ a \ where \\
F(\text{Int, Bool}) &= \text{Char} \quad \text{-- (A)} \\
F(a, a) &= \text{Bool} \quad \text{-- (B)}
\end{align*}
\]

type family G \ x \ where \ G \text{Int} = \text{Double}

Suppose that our target is \(F \ (G \text{Int}, G \text{Int}) \), and that our particular implementation of apart allows equation (B) to fire; that is, \(\text{apart}((\text{Int, Bool}), (G \text{Int}, G \text{Int})) \). Now, suppose that instead of firing (B) we chose to reduce the first \(G \text{Int} \) argument to \(\text{Double} \). The new target is now \(F \ (\text{Double, G Int}) \). Now (B) cannot fire, because the new target simply does not match (B) any more. Property 14 ensures that there exist further reductions on the new target that make (B) firable again—in this case, stepping the second \(G \text{Int} \) to \(\text{Double} \) does the job. Conditions (2) and (3) of Property 14 formalize the notion “make (B) firable again”.

5.2 Type substitution in coercions

System \(\mu \text{FC} \) enjoys a standard term substitution lemma. This lemma is required to prove the preservation theorem. As shown in Figure 5, the term substitution lemma depends on the substitution lemma for coercions. We consider only the case of interest here, that of substitution in the rule Co_Axiom.

Lemma 15 (Co_Axiom Substitution). If \(\Sigma ; \Delta, \beta : \kappa, \Delta' \vdash_\xi C[i] \tau : F(\rho_i[\bar{\tau}/\alpha_i]) \rightsquigarrow v_i[\tau/\alpha_i] \) and \(\Sigma ; \Delta, \Delta' \vdash_\xi \sigma : \kappa \), then \(\Sigma ; \Delta, \Delta' [\tau/\beta] : F(\rho_i[\bar{\tau}/\alpha_i][\sigma/\beta]) \rightsquigarrow v_i[\tau/\alpha_i][\sigma/\beta] \).

The proof of this lemma, presented in the extended version of this paper, proceeds by case analysis on the no_conflict judgment. It requires the use of the (standard) type substitution lemma and Property 12, but is otherwise unremarkable.

5.3 Consistency

As discussed at the beginning of this section, to establish progress we must show consistency. Consistency ensures that we can never deduce equalities between distinct value types, denoted with \(\xi \).

\[
\xi ::= \ 	ext{H} \bar{\tau}_1 \rightsquigarrow \bar{\tau}_2 \mid \ \forall \alpha : \kappa, \tau
\]

For example, \(\text{Int, Bool} \), and \(\forall \alpha : \kappa, \alpha \rightarrow \alpha \) are all value types. A set of axioms is consistent if we cannot deduce bogue equalities like \(\text{Int} \rightsquigarrow \text{Bool} \) or \(\text{Int} \rightsquigarrow \forall \alpha : \kappa, \alpha \rightarrow \alpha \).
Definition 16 (Consistent contexts). A ground context Σ is consistent if, for all coercions γ such that $\Sigma; \vdash^{\top_{\omega}} \gamma : \xi_1 \sim \xi_2$:

1. If $\xi_1 = H \exists \tau_1$, then $\xi_2 = H \exists \tau_2$.
2. If $\xi_1 = \tau_1 \rightarrow \tau'_1$, then $\xi_2 = \tau_2 \rightarrow \tau'_2$, and
3. If $\xi_1 = \forall \alpha : \tau_1$, then $\xi_2 = \forall \beta : \tau_2$.

How can we check whether an axiom set is consistent? It is extremely hard to do so in general, so instead, following previous work (Weirich et al. 2011), we place syntactic restrictions on the axioms that conservatively guarantee consistency. A set of axioms that pass this check are said to be Good. We then prove the consistency lemma:

Lemma 17 (Consistency). If Good Σ, then Σ is consistent.

Following previous proofs, we show that if Good Σ and $\Sigma; \vdash^{\top_{\omega}} \gamma : \sigma_1 \sim \sigma_2$, then σ_1 and σ_2 have a common reduct in the \sim relation. Because the simplification relation preserves type constructors on the heads of types, we may conclude that Σ is consistent.

However, one of the cases in this argument is transitivity: the joinability relation must be transitive. That is, if τ_1 and τ_2 have a common reduct σ_1, and if τ_2 and τ_3 have a common reduct σ_2, then τ_1 and τ_3 must have a common reduct (they are joinable). To show transitivity of joinability, we must show confluence of the rewrite relation, in order to find the common reduct of σ_1 and σ_2 (which share τ_2 as an ancestor).

Our approach to this problem is to show local confluence (see Figure 6) and then use Newman’s Lemma (1942) to get full confluence. Newman’s Lemma requires that the rewrite system is terminating—this is where the assumption of termination is used.

The full, detailed proof appears in the extended version of this paper (Eisenberg et al. 2013).

5.4 Good contexts

What sort of checks should be in our syntactic conditions, Good? We would like Good to be a small set of common-sense conditions for a type reduction system, such as the following:

Definition 18 (Good contexts). We have Good Σ whenever the following four conditions hold:

1. For all $C; \Psi \in \Sigma$: Ψ is of the form $[\alpha \sigma_1 \mid \exists F \bar{p}] \sim \nu$ where all of the F_i are the same type family F and all of the type patterns \bar{p}_i do not mention any type families.
2. For all $C; \Psi \in \Sigma$ and equations $[\alpha \sigma_1 \mid \exists F \bar{p}] \sim \nu$ in Ψ: the variables \bar{p} all appear free at least once in \bar{p}.
3. For all $C; \Psi \in \Sigma$: if Ψ defines an axiom over a type family F and has multiple equations, then no other axiom $C'; \Psi' \in \Sigma$ defines an axiom over F. That is, all type families with ordered equations are closed.
4. For all $C_1; \Phi_1 \in \Sigma$ and $C_2; \Phi_2 \in \Sigma$ (each with only one equation), compat(Φ_1, Φ_2). That is, among open type families, the patterns of distinct equations do not overlap.

The clauses of the definition of Good are straightforward syntactic checks. In fact, these conditions are exactly what GHC checks for when compiling type family instances. This definition of Good leads to the proof of Lemma 17, as described above.

6. Non-terminating type families

By default GHC checks every type family for termination, to guarantee that the type checker will never loop. Any such check is necessarily conservative; indeed, GHC rejects the TMember function of Section 2.4 (Schrijvers et al. 2008). Although GHC’s test could readily be improved, any conservative check limits expressiveness or convenience, so GHC allows the programmer to disable the check. This may make the type checker loop, but it should not threaten soundness.

However, the soundness result of Section 5 covers only terminating type families. Surprisingly (to us) non-termination really does lead to a soundness problem (Section 6.1). We propose a solution that (we believe) rules out this problem (Section 6.2), but explain why the main result of this paper is difficult to generalize to non-terminating type families, leaving an open problem for further work.

6.1 The problem with infinity

Consider this type family, adapted from Huet (1980):

\[
\text{type family } D \times x \text{ where}
\]

\[D ([b], b) = \text{Bool}\]

\[D (c, c) = \text{Int}\]

We wish to simplify the target $D (a, a)$. The type (a, a) matches the second pattern (c, c), but is it apart from the first pattern $([b], b)$? Definition 6 asserts that they are apart since they do not unify: unification fails with an occurs check error. Accordingly, Rule 9 would simplify $D (a, a)$ to Int. But consider the following definitions, where type family Loop is a nullary (0-argument) type family:

\[
\text{type family Loop}
\]

\[
\text{type instance Loop } = [\text{Loop}]
\]

If we instantiate a with Loop we get $(\text{Loop}, \text{Loop})$ which can simplify to $([\text{Loop}], \text{Loop})$. The latter does match the pattern $([b], b)$, violating Property 4, a necessary condition for soundness.

So, in a non-terminating system our apartness check is unsound. Concretely, using our apartness implementation from Definition 6, we can equate types Int and Bool, thus:

\[\text{Int } \sim D (\text{Loop}, \text{Loop}) \sim D ([\text{Loop}], \text{Loop}) \sim \text{Bool}\]

Conclusion: we must not treat (a, a) as apart from the pattern $([b], b)$, even though they do not unify. In some ways this is not so surprising. In our earlier examples, apartness was based on an explicit contradiction (“a Bool cannot be an Int”), but here unification fails only because of an occurs check. As the Loop example shows, allowing non-terminating type-family definitions amounts to introducing infinite types, and if we were to allow infinite types, then (a, a) does unify with $([b], b)$!

6.2 Fixing the problem

The problem with the current apartness check is that finite unification fails too often. We need to replace the unification test in the definition of apartness with unification over infinite types:
type instance \(A = C A \)

Definition 19 (Infinite unification). Two types \(\tau_1, \tau_2 \) are infinitely unifiable, written \(\text{unify}_\infty(\tau_1, \tau_2) \), if there exists a substitution \(\omega \) whose range may include infinite types, such that \(\omega(\tau_1) = \omega(\tau_2) \).

For example types \((a, a)\) and \((\{b\}, b)\) are unifiable with a substitution \(\omega = [a \mapsto [[\ldots]], b \mapsto [[\ldots]]]\). Efficient algorithms to decide unification over infinite types (and compute most general unifiers) have existed for some time and are based on well-established theory (Huet 1976; Courcelle 1983). See Jaffar (1984) for such an algorithm, and Knight (1989) for a general survey.

We conjecture that replacing all uses of unify with \(\text{unify}_\infty\) in our definitions guarantees soundness, even in the presence of non-terminating family equations. Alas, this conjecture turns out to be very hard to prove, and touches on open problems in the term-rewriting literature. For example, a rewrite system that has (a) infinite rewrite sequences and (b) non-left-linear patterns, does not necessarily guarantee confluence, even if its patterns do not overlap. Figure 7 gives an example, from Klop (1993).

Notice that replacing unify with \(\text{unify}_\infty\) may change the reduction relation. For example, a target which is apart from a pattern with a unify-based apartness check may no longer be apart from the same pattern with the more conservative \(\text{unify}_\infty\)-based apartness check.

6.3 Ramifications for open families

We pause briefly to consider the implications for GHC’s existing open type families. GHC allows the following definition for an open type family \(D\):

- **type family** \(D \rightarrow x y\)
- **type instance** \(D \rightarrow [b] \rightarrow Bool\)
- **type instance** \(D \rightarrow c \rightarrow Int\)

As described in Section 2, the type instance equations of an open type family are required to have non-overlapping left-hand sides, and GHC 7.6 believes that the two equations do not overlap because they do not unify. But, using certain flags, GHC also accepts the definition of \(\text{Loop}\) and the target \((D' \rightarrow \text{Loop \ Loop})\) demonstrates that the combination is unound as described above.\(^5\)

Happily, if the conjecture of Section 6.2 holds true, we can apply the same fix for open families as we did for closed families: simply use \(\text{unify}_\infty\) instead of unify when checking for overlap. Indeed, this is exactly how we have corrected this oversight in GHC 7.8.

7. Discussion and Future Work

The study of closed type families opens up a wide array of related issues. This section discusses some of the more interesting points we came across in our work.

7.1 Denotational techniques for consistency

We do not have a proof of consistency for a system with non-terminating, non-left-linear axioms (even when using \(\text{unify}_\infty\) instead of unify). We have seen that confluence is false, and hence cannot be used as a means to show consistency.

A possible alternative approach to proving consistency—side-stepping confluence—is via a denotational semantics for types. We would have to show that if we can build a coercion \(\gamma\) such that \(F \vdash_\gamma \tau \rightsquigarrow \sigma\), then \(\tau \equiv \sigma\), for some interpretation of types into a semantic domain. The "obvious" domain for such a semantics, in the presence of non-terminating computations, is the domain that includes \(\bot\) as well as finite and infinite trees. Typically in de-notational semantics, recursive type families would be interpreted as the limit of approximations of continuous functions. However, the "obvious" interpretation of type families in this simple domain is not monotone. Consider this type family:

type family \(F a b\) where
- \(F \rightarrow x \rightarrow x = \text{Int}\)
- \(F \rightarrow [x] (\text{Maybe } x) = \text{Char}\)

It is the case that \((\bot \subseteq \mathbf{[\ldots]}\) and \((\bot \subseteq \mathbf{Maybe} \bot)\), but the semantic interpretation of \(F\), call it \(f\), should satisfy \(f(\bot, \bot) = \text{Int}\) and \(f(\mathbf{[\ldots]}, \mathbf{Maybe} \bot) = \text{Char}\). Hence, monotonicity breaks. The lack of monotonicity means that limits of chains of approximations do not exist, and thus that interpretations of functions, such as \(f\), are ill-defined.

An alternate definition would give \(f(\bot, \bot) = \bot\), but then substitutivity breaks. Indeed, the proof theory can deduce that \(F x x\) is equal to \(\text{Int}\) for any \(x\) even those that have denotation \(\bot\).

Alternatively to these approaches, one might want to explore different domains to host the interpretation of types.

7.2 Conservativity of apartness

We note in Section 3.3 that the implementation of apartness is conservative. This conservativity is unavoidable—it is possible for open type families to have instances scattered across modules, and thus the apartness check cannot adequately simplify the types involved in every case. However, the current check considers *none* of the type family axioms available, even if one would inform the apartness check. For example, consider

type family \(G a\) where
- \(G \rightarrow \text{Int} = \text{Bool}\)
- \(G \rightarrow [a] = \text{Char}\)

and we wish to simplify target \(\text{Equal Double } (G b)\). It is clear that an application of \(G\) can never simplify to \(\text{Double}\), so we could imagine a more refined apartness check that could reduce this target to \(\text{False}\). We leave the details of such a check to future work.

7.3 Conservativity of coincident overlap: partial knowledge

It is worth noting that the compatibility check (Definition 8) is somewhat conservative. For example, take the type family

type family \(F a b\) where
- \(F \rightarrow \text{Bool} c = \text{Int}\)
- \(F \rightarrow d e = e\)

Consider a target \(F g \rightarrow \text{Int}\). The target matches the second equation, but not the first. But, the simplification rule does not allow us to fire the second equation—the two equations are not compatible, and the target is not apart from the first equation. Yet it clearly would be safe to fire the second equation in this case, because even if \(g\) turns out to be \(\text{Bool}\), the first equation would give the same result.

It would, however, be easy to modify \(F\) to allow the desired simplification: just add a new second equation \(F a \rightarrow \text{Int} = \text{Int}\). This
new equation would be compatible with the first one and therefore would allow the simplification of $F g \text{ Int}$.

7.4 Conservativity of coincident overlap: requiring syntactic equality

The compatibility check is conservative in a different dimension: it requires syntactic equality of the RHSs after substitution. Consider this tantalizing example:

```
type family Plus a b where
  Plus Zero a = a       -- (A)
  Plus (Succ b) c = Succ (Plus b c) -- (B)
  Plus d Zero = d       -- (C)
  Plus e (Succ f) = Succ (Plus e f) -- (D)
```

If this type family worked as one would naively expect, it would simplify an addition once either argument’s top-level constructor were known. (In other dependently typed languages, definitions like this are not possible and require auxiliary lemmas to reduce when the second argument’s structure only is known.) Alas, it does not work as well as we would hope. The problem is that not all the equations are compatible. Let’s look at (B) and (C). To check if these are compatible, we unify $((\text{Succ } b), c)$ with (d, Zero) to get $[c \to \text{Zero}, d \to \text{Succ } b]$. The right-hand sides under this substitution are $\text{Succ } (\text{Plus } b \text{Zero})$ and $\text{Succ } b$. However, these are not syntactically identical, so equations (B) and (C) are not compatible, and a target such as $\text{Plus } g \text{ Zero}$ is stuck.

Why not just allow reduction in the RHSs before checking for compatibility? Because doing so is not obviously well-founded! Reducing the $\text{Succ } (\text{Plus } b \text{Zero})$ type that occurred during the compatibility check above requires knowing that equations (B) and (C) are compatible, which is exactly what we’re trying to establish. So, we require syntactic equality to support compatibility, and leave the more general check for future work.

7.5 Lack of inequality evidence

One drawback of closed type families is that they sometimes do not compose well with generalized algebraic datatypes (GADTs). Consider the following sensible-looking example:

```
data X a where
  XInt :: X Int
  XBool :: X Bool
  XChar :: X Char

type family Collapse a where
  Collapse Int = Int
  Collapse X = X Char

collapse :: X a \to X (Collapse a)
collapse XInt = XInt
collapse _ = XChar
```

The type function Collapse takes Int to itself and every other type to Char. Note the type of the term-level function collapse. Its implementation is to match XInt—the only constructor of X parameterized by Int—and return XInt; all other constructors become XChar. The structure of collapse exactly mimics that of Collapse.

Yet, this code does not compile.

The problem is that the type system has no evidence that, in the second equation for collapse, the type variable a cannot be Int. So, when type-checking the right-hand side XChar, it is not type-safe to equate $\text{Collapse } a$ with Char. The source of this problem is that the type system has no notion of inequality. If the case construct were enhanced to track inequality evidence and axiom application could consider such evidence, it is conceivable that the example above could be made to type-check. Such a notion of inequality has not yet been considered in depth, and we leave it as future work.

7.6 Type inference

The addition of closed type families to Haskell opens up new possibilities in type inference. By definition, the full behavior of a closed type family is known all at once. This closed-world assumption allows the type inference engine to perform more improvement on types than would otherwise be possible. Consider the following type family:

```
type family Inj a where
  Inj Int = Bool
  Inj Bool = Char
  Inj Char = Double
```

Type inference can discover in this case that Inj is indeed an injective type function. When trying to solve a constraint of the form $\text{Inj } \text{Int} \sim \text{Inj } q$ the type inference engine can deduce that q must be equal to Int for the constraint to have a solution. By contrast, if Inj were not identified as injective, we would be left with an unsolved constraint as in principle there could be multiple other types for q that could satisfy $\text{Inj } \text{Int} \sim \text{Inj } q$.

Along similar lines, we can imagine improving the connection between Equal and (\sim). Currently, if a proof $a \sim b$ is available, type inference will replace all occurrences of a with b, after which $\text{Equal } a \sim b$ will reduce to True. However, the other direction does not work: if the inference engine knows $\text{Equal } a \sim b$, it will not deduce $a \sim b$. Given the closed definition of Equal, though, it seems possible to enhance the inference engine to be able to go both ways.

These deductions are not currently implemented, but remain as compelling future work.

8. Related work

8.1 Previous work on System FC

The proof of type soundness presented in this paper depends heavily on previous work for System FC, first presented by Sulzmann et al. (2007a). That work proves consistency only for terminating type families, as we do here.

In a non-terminating system, local confluence does not imply confluence. Therefore, previous work (Weirich et al. 2011) showed confluence of the rewrite system induced by the (potentially non-terminating) axiom set by establishing a local diamond property (see Figure 6). However, the proof took a shortcut: the requirements for good contexts effectively limited all axioms to be linear. The local diamond proof relies on the fact that, in a system with linear patterns, matching is preserved under reduction. For instance, consider these axioms:

```
type instance F a b = H a

type instance G Int = Bool
```

The type $F (\text{G } \text{Int}) (\text{G } \text{Int})$ matches the equation for F and can potentially simplify to $F (\text{G } \text{Int}) \text{Bool}$ or to $\text{F } \text{Bool} (\text{G } \text{Int})$ or even to $\text{F } \text{Bool } \text{Bool}$. But, in all cases the reduce also matches the very same pattern for F, allowing local diamond property to be true.

What is necessary to support a local diamond property in a system with closed type families, still restricted to linear patterns? We need this property: If $F \tau$ can reduce by some equation q, and $\tau \sim \tau'$, then $F \tau'$ can reduce by that same equation q. With only open families, this property means that matching must be preserved by reduction. With closed families, however, both matching and apartness must be preserved by reduction. Consider the definition for F' below (where H is some other type family):

F'

8 Actually, under parallel reduction; see (Weirich et al. 2011).
We know that \(F' (G \text{Int}) \) (\(G \text{Int} \)) matches the second equation and is apart (Definition 6) from the first equation. The reduct \(F' (G \text{Int}) \) (\(G \text{Int} \)) also matches the second equation but is not apart from the first equation. Hence, \(F' (G \text{Int}) \) Bool cannot simplify by either equation for \(F' \), and the local diamond property does not hold. Put simply, our apartness implementation is not preserved by reduction.

In a terminating system, we are able to get away with the *weaker* Property 14 for apart (where apartness is not directly preserved under reduction), which our implementation does satisfy. We have designed an implementation of apart which is provably stable under reduction, but it is more conservative and less intuitive for programmers. Given that this alternative definition of apart brought a proof of type safety only for potentially non-terminating but *linear* patterns (prohibiting our canonical example *Equal*), and that it often led to stuck targets where a reduction naively seemed possible, we have dismissed it as being impractical. We thus seek out a proof of type safety in the presence of non-terminating, non-left-linear axiom sets.

8.2 Type families vs. functional dependencies

Functional dependencies (Jones 2000) (further formalized by Sulzmann et al. (2007b)) allow a programmer to specify a dependency between two or more parameters of a type class. For example, Kiselev et al. (2004) use this class for their type-level equality function:

```
class HEq x y (b :: Bool) | x y → b
instance HEq x x True
instance (b ~ False) ⇒ HEq x y b
```

The annotation \(x y → b \) in the class header declares a functional dependency from \(x \) and \(y \) to \(b \). In other words, given \(x \) and \(y \), we can always find \(b \).

Functional dependencies have no analogue in GHC's internal language, System FC; indeed they predate it. Rather, functional dependencies simply add extra unification constraints that guide type inference. This can lead to very compact and convenient code, especially when there are multiple class parameters and bi-directional functional dependencies. However, functional dependencies do not generate coercions witnessing the equality between two types. Hence they interact poorly with GADTs and, more generally, with local type equalities. For example, consider the following:

```
class Same a b | a → b
instance Same Int Int

data T a where
T1 :: T Int
T2 :: T a

data S a where
MkS :: Same a b ⇒ b → S a
f :: T a → S a → Int
f T1 (MkS b) = b
f T2 s = 3
```

In the \(T1 \) branch of \(f \) we know that \(a \) is Int, and hence (via the functional dependency and the *Same Int Int* instance declaration) the existentially-quantified \(b \) must also be Int, and the definition should type-check. But GHC rejects \(f \), because it cannot produce a well-typed FC term equivalent to it. Could we fix this, by producing evidence in System FC for functional dependencies? Yes; indeed, one can regard functional dependencies as a convenient syntactic sugar for a program using type families. For example we could translate the example like this:

```
class F a b ⇒ Same a b where
f a b

instance Same Int Int where
f Int = Int
```

Now the (unchanged) definition of \(f \) type-checks.

A stylistic difference is that functional dependencies and type classes encourage *logic* programming in the type system, whereas type families encourage *functional* programming.

8.3 Controlling overlap

Morris and Jones (2010) introduce instance chains, which obviate the need for overlapping instances by introducing a syntax for ordered overlap among instances. Their ideas are quite similar to the ones we present here, with a careful check to make sure that one instance is impossible before moving onto the next. However, the proof burden for their work is lower than ours—a flaw in instance selection may lead to incoherent behavior (e.g., different instances selected for the same code in different modules), but it cannot violate type safety. This is because class instances are compiled solely into term-level constructs (dictionaries), not type-level constructs. In particular, no equalities between different types are created as part of instance compilation.

8.4 Full-spectrum dependently typed languages

Type families resemble the type-level computation supported by dependently typed languages. Languages such as Coq (Coq development team 2004) and Agda (Norell 2007) allow ordinary functions to return types. As in Haskell, type equality in these languages is defined to include \(β\)-reduction of function application and \(ι\)-reduction of pattern matching.

However, there are several significant differences between these type-level functions and type families. The first is that Coq and Agda do not allow the elimination of their equivalents of kind \(* \). There is no way to write a Coq/Agda function analogous to the closed type family below, which returns \(True \) for function types and \(False \) otherwise.

```
type family IsArrow (a :: * :: *) :: Bool where
IsArrow (a → b) = True
IsArrow a = False
```

Instead, pattern matching is only available for inductive datatypes. The consistency of these languages prohibits the elimination of non-inductive types such as \(* \) (or \(Set, Prop, \) and \(Type \)).

Furthermore, pattern matching in Coq and Agda does not support non-linear patterns. As we discussed above, non-linear patterns allow computation to observe whether two types are equal. However, the equational theory of full spectrum languages is much more expressive than that of Haskell. Because these languages allow unsaturated functions in types, it must define when two functions are equal. This comparison is intensional, and allowing computation to observe intensional equality is somewhat suspicious. However, in Haskell, where all type functions must always appear saturated, this issue does not arise.

Due to the lack of non-linear patterns, Coq and Agda programmers must define individual functions for every type that supports decidable equality. (Coq provides a tactic—*decide equality*—to automate this definition.) Furthermore, these definitions do not immediately imply that equality is reflexive; this result must be proved separately and manually applied. In contrast, the closed type family *Equal* \(a a \) immediately reduces to \(True \).
Similarly, functions in Coq and Agda do not support coincident overlap at definition time. Again, these identities can be proven as lemmas, but must be manually applied.

8.5 Other functional programming languages

Is our work on closed type families translatable to other functional programming languages with rich type-level programming? We think so. Though the presentation in this paper is tied closely to Haskell, we believe that the notion of apartness would be quite similar (if not the same) in another programming language. Accordingly, the analysis of Section 3 would carry over without much change. The one caveat is that, as mentioned above, non-linear pattern matching depends on the saturation of all type-level functions. If this criterion is met, however, we believe that other languages could adopt the surface syntax and behavior of closed type families as presented here without much change.

9. Conclusions

Closed type families improve the usability of type-level computation, and make programming at the type level more reminiscent of ordinary term-level programming. At the same time, closed families allow for the definition of manifestly-reflexive, decidable equality on types of any kind. They allow automatic reductions of families allow for the definition of manifestly-reflexive, decidable equality on types of any kind. They allow automatic reductions of

On the theoretical side, the question of consistency for non-terminating non-left-linear rewrite systems is an interesting research problem in its own right, quite independent of Haskell or type families, and we offer it as a challenge problem to the reader.

Acknowledgments

We particularly thank Conor McBride, Joxan Jaffar, and Stefan Kahrs for helping us navigate the literature on term rewriting, and on unification over infinite types. Stefan Kahrs provided the

This material is partly supported by the National Science Foundation under Grant Nos. 1116620 and 1319880.

References

