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ABSTRACT
Modern client platforms, such as iOS, Android, Windows Phone,
and Windows 8, have progressed from a per-user isolation policy,
where users are isolated but a user’s applications run in the same
isolation container, to an application isolation policy, where differ-
ent applications are isolated from one another. However, this is
not enough because mutually distrusting content can interfere with
one another inside a single application. For example, an attacker-
crafted image may compromise a photo editor application and steal
all images processed by the editor.

In this paper, we advocate a content-based principal model in
which the OS treats content owners as its principals and isolates
content of different owners from one another. Our key contribu-
tion is to generalize the content-based principal model from web
browsers, namely, the same-origin policy, into an isolation policy
that is suitable for all applications. The key challenge we faced is to
support flexible isolation granularities while remaining compatible
with the web. In this paper, we present the design, implementation,
and evaluation of our prototype system that tackles this challenge.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Web browsers, same-origin policy, isolation

1 Introduction
Much research has been devoted to isolation mechanisms [38, 33,
29, 3, 53, 12, 17] to enable robust isolation containers in operating
systems. However, little research has been done on the dual of the
problem, isolation policies, namely, “what should be put into the
isolation containers”; this is the topic of this paper. Isolation policy
design is as critical as that of isolation mechanisms, since even with
perfect isolation containers, an improper isolation policy can render
the system insecure.

For example, today’s Windows-based or Unix-based desktop
PCs treat users as principals and protect user accounts of a ma-
chine from one another. However, mutually distrusting applications
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Figure 1: The evolution of isolation policies. Content-based isola-
tion provides two benefits over other policies: (1) Any remote content’s
impact is minimized (2) There is no need to ask users to determine
whether to risk opening remote content.

of a user can interfere with one another. This is the root cause of
the significant malware problem on desktops. Learning the lessons
from the desktop PCs, modern client platforms, such as iOS and
Android, have refined the user-based isolation policy to treat each
application code package as a separate principal, and different ap-
plications are run in separate isolation containers. This isolation
policy is still too coarse because mutually distrusting content can
interfere with one another within the same application. Consider
the scenario where Alice opens a PowerPoint presentation from
http://alice.com/x.ppt, which embeds a malicious video
from http://attacker.com/advideo.swf. The attacker
can compromise Alice’s presentation and all documents being ren-
dered by PowerPoint.

Figure 1 illustrates the evolution of isolation policies on client
platforms. In this paper, we further refine the isolate-by-code-
package policy and advocate future client platforms to embrace
a content-based isolation policy which puts execution instances
of mutually distrusting content into separate isolation containers.
Content-based isolation offers a fundamentally more secure system
because any content’s impact including that of malicious content is
minimized to just the content owner’s isolation container. Conse-
quently, there is no need to ask users to determine whether to take
the risk of opening any content. Existing applications often prompt
users (e.g., “Are you sure you want to open this document?”) be-
cause such fine-grained containment is not available, and risk han-
dling is outsourced to the user unreasonably.

The notion of a content-based principal model exists to some
extent in today’s web. All web browsers today implement the
same-origin policy [41], which prevents web content of different
origins (represented by a triple of <scheme, domain name, port>)
from interfering with one another. Unfortunately, these principals
may undesirably share the same isolation container in commercial
browsers [49]. Recent new research browsers like Gazelle [49] pro-



posed to separate web site principals into separate isolation contain-
ers, fully achieving a content-based principal model for the browser
setting.

The applicability of the content-based principal model goes be-
yond the browser setting as modern client platforms (e.g., iOS,
Android, Windows Phone, Windows 8) and applications embrace
cloud-centric computing where documents and computing logic re-
side in the cloud and are cached on client devices. Today, applica-
tions often need to process and embed remote content. For ex-
ample, Microsoft Office 2010 can open remote web documents,
PowerPoint 2010 allows users to embed YouTube videos in presen-
tations and the Google Cloud Connect [16] plug-in allows Office to
sync documents with the cloud. Such applications are effectively
becoming browsers for their own media types, and they are now
facing many of the same security challenges that web browsers
have faced over the past decade, namely, isolating mutually dis-
trusting content from one another.

Today, content isolation is left as a responsibility of each ap-
plication. For example, Microsoft Office 2010’s new Protected
View [30] feature provides a sandboxed read-only mode for doc-
uments originating from the Internet and users have to explicitly
“enable editing” to remove the sandbox and its restrictions at their
own risk. Adobe Reader recently introduced a similar sandbox-
ing feature [1]. Letting each application handle content protection
has serious drawbacks. First, the security of a user’s cloud data
is duplicated and entrusted to all of the user’s applications. At-
tackers need only find one badly-written application and target it
to exploit all content (at the web scale) that this application ren-
ders. Second, security logic in applications is often mixed with
error-prone content processing logic; content isolation vulnerabil-
ities are discovered not only in browsers and plug-ins [18, 49, 2],
but also in desktop applications. For example, the recent RSA Se-
curID token compromise [36] that affected 20,000 RSA’s enterprise
customers was caused by a maliciously crafted Excel email attach-
ment, and from 2008-2011, 88% (224) of Microsoft Office vulnera-
bilities are content parsing flaws exploitable by maliciously crafted
documents [34]. Worse, many desktop applications do not offer any
isolation for certain remote content. For example, PowerPoint 2010
renders embedded remote videos in the same process and makes
no attempt to isolate them, letting potential Flash vulnerabilities
endanger the PowerPoint application and its documents. Overall,
users must endure weak and inconsistent security of applications
that process their cloud-backed data.

In this work, we let the OS take over the burden of content isola-
tion from applications. By consolidating content isolation logic in
the OS, we reduce the trusted computing base from trusting many
applications’ isolation logic to trusting just that of the OS. The
main contribution of this paper is a general content-based principal
model suitable for all applications beyond just browsers. Our de-
sign goals are: (1) flexible isolation, from the granularity of a single
addressable document to documents hosted at multiple domains,
(2) compatibility with browsers’ isolation policy so that attackers
cannot violate browser security from non-browser applications and
vice versa, and (3) easy adaptation of traditional applications.

We present a design that achieves these goals and describe our
prototype system called ServiceOS, implemented as a reference
monitor between the kernel and applications in Windows. We
demonstrate that ServiceOS is practical by successfully adapting
several large applications, such as Microsoft Word, Outlook, and
Internet Explorer, onto ServiceOS with a relatively small amount
of effort. Our evaluation shows that ServiceOS eliminates a large
percentage of existing security vulnerabilities by design and has ac-

ceptable overhead. We also demonstrate how ServiceOS contains
two working exploits.

In the rest of this paper, we describe our threat model in Section 2
and our system model in Section 3. We define our system’s prin-
cipals in Section 4 and show how to enforce principal definitions
in Section 5. We present ServiceOS’s implementation and how we
adapted several traditional applications in Section 6, and evaluate
ServiceOS in Section 7. We discuss related work in Section 8 and
conclude in Section 9.

2 Threat Model
The primary attacker against which our system defends is the con-
tent owner attacker. Like the web attacker [23], the content owner
attacker controls their content server(s) serving malicious data that
exploits vulnerabilities or malicious code. Users may be enticed
to access such malicious content from e-mail spam, malvertising,
or phishing. The goal of ServiceOS is to minimize the impact of
any malicious content by designing the right isolation policy and
enforcement mechanisms. Our trusted computing base is the Ser-
viceOS kernel.

We leave it up to content owners to consider network attackers,
who may compromise content integrity and confidentiality. A con-
tent owner who is worried about network attackers should employ
end-to-end secure channels (such as SSL) for content transport.

We are also not concerned about attackers that target specific
content owners, such as cross-site scripting or cross-site request
forgery attacks. These are fundamentally content-specific vulnera-
bilities which only content owners can fundamentally fix.

3 System Model
A principal is the unit of isolation. Program execution instances
with different principal labels are isolated in separate isolation con-
tainers. We refer to an execution instance with a principal label as
principal instance (PI).

In ServiceOS, each principal has its own local store. A user may
use a certain online storage service, such as Dropbox or Google
Drive. We assume that all user-downloaded content is stored on
such services. This is quickly becoming the norm with modern
OSes, with integrations of ChromeOS and Google Drive, Windows
8 and SkyDrive, and OS X and iCloud.

There is no sharing across principals or isolation containers
(i.e., no global file systems unlike today’s desktop systems) except
through explicit cross-principal communication system APIs, anal-
ogous to IPC.

We have adopted user-driven access control [40] to allow users
to share data across isolation boundaries. This is done through au-
thentic user actions on trusted UIs (e.g., clicks on a copy button,
“save-as” button, or a file picker UI) or gestures like drag-and-drop
or Ctrl-V. User-driven access control enables a capability-based,
least-privileged access, driven by users’ natural interactions with
applications and the system. We will not discuss it further in this
paper and refer interested readers to [40].

For example, Microsoft Word would have its own local store on
ServiceOS. A user may launch Word and start editing a new doc-
ument. The document is auto-saved into Word’s own local store.
When the user wants to save the document to her Dropbox store
(across the isolation boundary), the user clicks on a trusted “save
as” button embedded in Word. The click brings up a trusted file
picker window. The user then selects Dropbox, specifies the file
name, and clicks on the “save” button (also part of the trusted file
picker). The system only allows Word to write to a user-specified
Dropbox path, but not other parts of Dropbox or other online stores,
achieving least-privilege access.



Figure 2: Execution instance as a content processing stack.

ServiceOS allows a user to have a local store, such as photo or
music libraries. We label all content in the user local store as “lo-
cal” principal, separate from all other principals. User-driven ac-
cess control is the means for the user to get content in or out of the
local store.

4 Defining Principals
An isolation policy design needs to answer two questions: (1) how
execution instances should be labeled, or what defines a principal,
(2) how remote content is fetched and dispatched into each princi-
pal to comply with the principal definition. This section presents
our design for the former and the next section addresses the latter.

4.1 Execution instance as content processing stack

Before presenting our design on labeling execution instances, we
first illustrate what constitutes an execution instance.

An execution instance may involve content from different own-
ers. Figure 2 illustrates such an example: a document is rendered
by a Java editor application which runs on a Java Virtual Ma-
chine (JVM) which in turn is a Win32 program running on Win-
dows. The document, editor, and JVM may belong to different
owners: e.g., the document may belong to alice.com, editor to
editor.com, and JVM to sun.com. Therefore, we character-
ize an execution instance as a content-processing stack. Each layer
of the stack consists of content that is owned by some entity and
that needs to be addressable (for example, a web document is ad-
dressable with a URL, but user input data is not addressable). The
content at a layer is consumed and processed by the next lower
layer. We refer to layers below the top layer as content processors.
For example, plug-ins in today’s browsers are treated as content
processors in our system.

We do not treat static data content as safer than active code con-
tent or content processors, because we want to allow both type-safe
and native applications on our system (as is the case for most real-
world client systems). Since maliciously-crafted static data can be
turned into code by exploiting memory errors in native applica-
tions, we treat code and data as equally-capable content.

The content-to-processor mapping (e.g., mapping alice.com’s
document content to the editor) can be configured by the content
owner (alice.com) or by the user. Today’s web servers indicate
content’s MIME type using the Content-Type header in HTTP
responses. Traditional applications can use the same mechanism
to convey their content types. Additionally, we propose a new
Content-Processor HTTP header to allow content servers
to specify desired content processors by a URL or unique ID. For
example, a web server serving photo.jpg could send:

Content-Processor: “http://www.photocompany.com/editor.app”

The content owner can sign this mapping with its private key.
Users or the OS vendor can configure default content processors.

4.2 Principal labeling and isolation policies
The labels of content processing stacks ultimately determine the
isolation policy of the system. Content processing stacks with the
same label belong to the same principal and isolation container. We
establish three goals for the principal labeling design.

1. Enable isolation policies of arbitrary granularities for URL-
addressable resources (a file at a URL rather than an internal
object in a file). The most fine-grained principal can be a
single document. However, a fixed policy like this can be
unnecessary and can impede functionality: some documents
may not be mutually distrusting and may have intimate cross-
document interactions. For example, a Microsoft Word doc-
ument may interact with an Excel document intimately (e.g.,
by referencing its data cells or charts). So, we need a flexible
mechanism to group documents into a single principal.

2. Separate content owning from content hosting so that a con-
tent owner can get its content hosted anywhere and be treated
as belonging to the same principal. Suppose Alice created a
number of documents or photos and uploaded them to vari-
ous online storage services (e.g., Dropbox) or photo sharing
services (e.g., Google’s Picasaweb). We would want to asso-
ciate all this content with the same owner Alice independent
of where they are hosted. This goal is especially important
for traditional applications where users often create content
locally and then decide separately on where to host it. This
is unlike web applications where content is usually tightly
associated with its host.

3. Be compatible with web browsers’ isolation policy. To-
day’s web browsers’ isolation policy is the same-origin
policy (SOP) [41] which treats web sites as mutually
distrusting principals, labeled with web site origins, a
triple of <protocol, domain, port> [48]. Web sites
can create subdomains to have more fine-grained princi-
pals (e.g., user1.socialnet.com, user2.socialnet.com). SOP
itself does not meet the above two goals that we set
for principal labeling. For example, youtube.com
and google.com belong to Google, but cannot be
configured to belong to the same principal. SOP
also does not support finer-grained isolation at path or
URL level: https://www.facebook.com/user1
and https://www.facebook.com/user2 cannot be
configured to be different principals.
Our goal of being compatible with SOP is due to two rea-
sons. First, it is undecidable for an OS to determine whether
an application is a web browser. Even non-browser applica-
tions may use core browser components; for example, Mi-
crosoft .NET provides a web browser control which allows
any .NET application to use browser functionality; similarly,
iOS and Android also allow browser component inclusions in
their applications. Second, even if an OS could tell the differ-
ence, it is still desirable for browsers and non-browser appli-
cations to have the same principal model because an attacker
could cause browsers to render non-browser content and vice
versa. Then, applications with coarser-grained isolation can
be used to undermine finer-grained isolation in other appli-
cations. For example, modern OSes like iOS and Android
isolate by application package (see Section 1), which is more
coarse-grained than browsers’ same-origin policy. Then, an
application of such OSes can access two web sites of dif-
ferent origins and have them co-exist in the same isolation
container, not meeting the web sites’ expectation of being
isolated from one another per same-origin policy. Therefore,
we aim to design a web-compatible principal model.



Figure 3: The origin stack as the default principal label.

4.2.1 Public key as owner ID

To achieve these goals, we propose public-key-based owner ID.
Each URL-addressable content is tagged with its owner’s public
key and a signature that signs the host URL. This signature indi-
cates that the signed host URL points to a resource owned by the
owner of the public key. We introduce a new HTTP response header
for this purpose:
Owner: publicKey=<key>; hostURLSig=signed(responseURL)

Content owners need to trust hosts to specify this header correctly
and this can be easily checked by the owners. Note that ensur-
ing content integrity and confidentiality are orthogonal features that
owners and hosts can collaborate to enable in addition to principal
definition specification.

A content processing stack is then labeled with a stack of pub-
lic key labels, which we refer to as the owner stack. ServiceOS
treats execution instances with the same owner stack as the same
principal.

Since legacy web sites do not use our Owner header for princi-
pal definition, our system, by default, labels an execution instance
with the origin stack of its content processing stack, capturing the
origin of the content at each layer. This default gives the same
isolation semantics as today’s browsers: different browser vendors
are content processors of different origins and isolate an origin’s
resources (e.g., cookie, cache, local storage) from other origins in
ServiceOS as well as in today’s systems.

If an Owner header is present for public key-based principal def-
inition, then our system overrides the origin label with the public
key value. Figure 3 shows six execution instances (or content pro-
cessing stacks) and their corresponding isolation containers with
the appropriate principal labels in the form of the origin stack1.
Note that traditional browser plugins like Adobe Flash and browser
renderers are treated as content processors.

Note that our owner ID design is different from locked same-
origin policy [25] which uses content host’s X.509 certificates as
principal labels for HTTPS origins. That scheme still ties the
principal definition with the host. This design also differs from
YURL [8] where YURL puts the host’s public key as part of the
URL, which also ties hosting with owning.

4.2.2 Augmenting SOP with Trust Lists

Although an owner ID offers both arbitrary isolation granularity
and independence from hosts, some application developers will
find it cumbersome to maintain a key pair and to compute signa-
tures for each URL, and will resort to using the same-origin policy.

1We omitted protocol schemes in the origins to save space, but they
should be part of the origin label.

For these developers, we introduce a “trust list” mechanism to aug-
ment SOP and to allow arbitrary isolation granularities (achieving
Goal 1), but without the independence from hosts (not achieving
Goal 2).

A content server can associate a trust list with any URL resource
R at the server. The trust list contains a set of URLs with which
R trusts to coexist in the same isolation container. This is one-way
trust, meaning that R trusting to coexist with S does not mean that
S trusts to coexist with R. Two resources from two different URLs
can live in the same isolation container if and only if they have
mutual trust. A resource R is allowed to be admitted to an isolation
container if and only if all existing resources in the container trust
to coexist with R, and R trusts to coexist with each of the existing
resources.

For resources sent over HTTP, we propose a new HTTP response
header called Trust to allow specifying a trust list. The value can
be either a URL of the trust list or the trust list itself. We allow
the wildcard “*” at the end of a URL for enumerating all resources
at a path. We disallow wildcards for domains so that developers
will not accidentally cluster mutually distrusting domains into a
single principal. When the Trust header is missing, ServiceOS
resorts back to the default, using the content server origin to label
the returned resource. For resources sent over non-HTTP protocols,
we resort to the default SOP where we use the application as the
scheme and the IP address as the domain. We expect this to be a
rare case as existing trends indicate that nearly all communication
happens over HTTP [37].

The default SOP principal model is equivalent to all resources
from an origin indicating a trust list of just its origin followed by a
“*”.

The trust list mechanism can be used to realize coarser-grained
or finer-grained2 principals than that of SOP. For example,
if youtube.com and google.com want to belong to the
same principal, then google.com’s server needs to provide
the header “Trust:list=http://youtube.com/”
and youtube.com needs to provide
“Trust:list=http://google.com/”.

Consider an example of using the Trust header to
achieve a fine-grained principal definition. A resource,
say at http://blog.com/alice/index.html, speci-
fies: Trust:list=http://blog.com/alice/*, express-
ing that the resource at the URL trusts to share the container
with all other content from the path corresponding to Alice. If
other resources at the path also indicate the same header, then this
achieves path-based principal isolation. Note that only explicitly
specified URLs are trusted. In this example, the resource from
http://blog.com/ is not trusted. Similarly, individual doc-
ument URLs can also be put into the Trust header to achieve
document-level granularity of isolation.

ServiceOS enforces the Trust header as follows. At any time,
ServiceOS maintains a stack of effective labels for the content pro-
cessing stacks (CPS) in an isolation container. The effective label
of layer L is the set of URLs of resources at layer L of all content
processing stacks. Given an isolation container with an effective
label stack C and and an HTTP response for a resource at URL u
with a trust list, ServiceOS determines whether u should be treated
as the same principal as C and be admitted to the container with

2Jackson et al [24] warned against using more fine-grained princi-
pal definitions than origin and claimed that the isolation boundary
can break down due to (1) malicious library being included or (2)
data export (e.g., form submission) being manipulated to send to
attacker URLs. These two problems can also happen to the origin
principal model and are not specific to finer-grained principals.



Algorithm 1 : Can the resource at URL u with a trust list be ad-
mitted to an isolation container with an effective label stack C? If
IsSamePrincipal(C, u) returns true, then ServiceOS admits u into C.

1: function IsSamePrincipal (C, u) {
2: us1 = C.TopLayerUrls();
3: us2 = {u};
4: repeat
5: if (not MutuallyTrusted (us1, us2))
6: return false
7: us1 = us1.processors
8: us2 = us2.processors
9: until (us2.processors == null)

10: UpdateContainerLabelWithNewURL (C, u)
11: return true
12:
13: function MutuallyTrusted(URLSet1, URLSet2) {
14: foreach u1 in URLSet1
15: foreach u2 in URLSet2
16: if (u1 /∈ u2.TrustList or u2 /∈ u1.TrustList)
17: return false
18: return true

Figure 4: Non-transitivity in Trust. Although the trust lists show that
a and b are mutually trusting and b and c are mutually trusting, transi-
tive trust does not follow: a and c do not trust each other (as desired by
their trust list specification) and will never share an isolation container.

Algorithm 1: ServiceOS iterates over u and its lower content pro-
cessor layers and checks whether they are mutually trusted with
each layer of the effective label stack C of the isolation container.
If all layers of u mutually trust corresponding layers in C, u can be
admitted to the container C. In that case, C incorporates u’s and
its content processors’ labels into its own.

A interesting and desirable property of trust list is its non-
transitivity: given that a and b are mutually trusted and b and c
are mutually trusted, it does not follow that a and c are mutually
trusted and can share the same isolation container. Figure 4 illus-
trates this property.

A content server can easily manage trust lists by designating a
URL to contain the list and having each resource in the list use a
Trust:url=<policyurl> header. The list (principal defini-
tion) can then be evolved without changing each resource’s Trust
header value.

For simplicity of ServiceOS logic and content server tasks, we do
not mix trust-list-based principal definition with that of public-key
owner. A content server should pick one to use. When both headers
are present, ServiceOS uses the Owner header and ignores Trust
header.

Note that Trust and Owner are applicable to only isolated con-
tent [48] (e.g., standalone program, HTML program from a web
site) whose principal label is the owner of the isolated content.
These headers are not applicable to library content [48], such as
JavaScript included via a <script> tag or other libraries which

do not have their own principal identity, but are designed to be in-
cluded by standalone programs.

We advocate both modern client platforms (e.g., iOS, Android,
Windows 8) and web browsers (and web standards) to move to-
wards such a flexible, unified principal model.

4.2.3 Co-existence with legacy browsers

If web servers use our Trust and Owner headers to configure
principal definitions, their developers need to consider their behav-
iors on legacy browsers.

If a principal definition is coarser-grained than an origin, a site
can encounter functionality loss because legacy browsers would
deny legitimate cross-origin interactions permitted by the principal
definition. The site would need additional cross-origin communi-
cation code to maintain compatibility.

If a principal definition is finer-grained than an origin, then the
site may lose expected isolation on legacy browsers. Security-
sensitive web sites may just resort to the origin principal model
to implement their isolation policies and to avoid two implemen-
tations (one for legacy browsers and one for new systems) un-
til all major browsers adopt our proposals. Nevertheless, web
sites that want to use finer-grained isolation but are not yet
able to do so (e.g., https://www.facebook.com/user1
and https://www.facebook.com/user2 may want to be
treated as different principals) may happily embrace the new head-
ers and be safer on ServiceOS-capable systems.

5 Enforcing Principal Definitions
Central to enforcing our content-based principal definitions is how
remote content is fetched from the network and to which principal
instance (and isolation container) the returned content should be
dispatched. Note that this enforcement mechanism is needed in
addition to having a robust isolation container. In this section, we
describe this fetching and dispatching logic and how it ensures that
principal definitions are obeyed.

The dispatch decision is trivial when a Principal Instance (PI) of
a requester principal fetches a remote resource of the same princi-
pal. We simply dispatch the returned resource to the requester PI.
Determining whether a remote resource belongs to the same prin-
cipal as the requester is done through the IsSamePrincipal
check in Algorithm 1 if the resource’s principal definition is based
on a trust list, through public key stack comparision if an owner-ID-
based principal definition is used, or through origin stack compar-
ison if neither trust lists nor owner-based definitions are provided
(Section 4).

More care is needed for cross-principal content fetch, namely,
when the requester fetches content from the server of a different
principal. Such a request can happen for two reasons: (1) Data
communication: the requester wants some data from the responder
server and the returned data should be dispatched to the requester
principal instance; or (2) Spawning a new principal: the requester
wants to spawn a new instance of the responder principal, for ex-
ample if a user clicked on a hyperlink to open a new document, or
a document of the requester principal embeds a resource from the
responder principal; in this case, the returned data should be dis-
patched to the responder principal instance rather than that of the
requester.

Because the requester can be malicious, we must ensure that our
content fetch and dispatch logic can properly protect and isolate the
responder principal from an attacking requester even in the face of
arbitrary system API (ab)use.



alice.com/tax.doc 

Fetch  
bank.com/tax.macro 

bank.com 
 
 
 
 
 
 
 
 

HTTP request for bank.com/tax.macro: 
  Origin: alice.com/tax.doc 
  Dispatch-bit: data-communication 

yes no 
HTTP Response with tax.macro data 
  Dispatch-bit-understood: true 
   

HTTP Error 

Requester PI ServiceOS Responder server 

HTTP Response with tax.macro data 
  Dispatch-bit: data-communication 
   
HTTP Response with tax.macro data 
  Dispatch-bit: spawn-new-principal 
   

Error  
(destination is alice.com 

and not bank.com) 

tax.macro data 

Error 

(a) 
Requester 
specifies 

dispatch bit 

alice.com/tax.doc 

Fetch  
bank.com/tax.macro 

bank.com 
 
 
 
 
 
 
 
 

HTTP request for bank.com/tax.macro: 
  Origin: alice.com/tax.doc 

yes 

Requester PI ServiceOS Responder server 

tax.macro data 

Check if 
destination PI 
is bank.com 

Can alice.com spawn 
a new bank.com PI 

with tax.macro? 

no 

yes 

no 

HTTP Error Error 

(b) 
Responder 

specifies 
dispatch bit 

Can alice.com 
access tax.macro? 

Can alice.com 
access tax.macro? 

Figure 5: Two design choices for specifying the dispatch bit. Here, a Word application rendering a document from alice.com attempts to retrieve a
helper macro from bank.com, to be used in the alice.com principal instance.

The key idea in our design is to use a dispatch bit in either the
request or the response to differentiate the two cross-principal con-
tent fetching scenarios.

There are two design choices of specifying this bit, illustrated in
Figure 5. First, ServiceOS can specify the bit in the outgoing re-
quest to the responder server to convey whether the returned data
will be dispatched to the requester PI or a (new) responder PI. Then,
the server makes an access control decision for the request, and
ServiceOS forwards the response to the requester PI. Second, the
responder server (with knowledge of requester’s label) can specify
the bit in its response to ServiceOS to indicate whether the data is
authorized to be dispatched to the requester PI or to a responder PI.
Then, ServiceOS enforces the bit and either dispatches or discards
the returned data. In both design choices, the request needs to con-
tain the principal label of the requester, which we include in HTTP
origin header [4].

Both designs can support legacy servers as follows. If the bit
lives in the response, its absence tells ServiceOS this is a legacy
server. If the bit lives in the request, then the response needs to
declare that the bit was understood, the absence of that declaration
tells ServiceOS this is a legacy server. For legacy servers, Ser-
viceOS will deliver the data to the responder PI to be compatible
with browsers’ same-origin policy.

The advantage of putting the bit in the request is that it lets the
server optimize away a response that is destined to be dropped and
return an error instead. The advantage of putting the bit in the re-
sponse is that it can be statically configured for each URL, rather
than having the server perform access control checks for each re-
quest. Therefore, we advocate supporting the bit in both requests
and responses to allow responder servers to get both advantages
if desired: a diligent server can perform access control on each
request and reduce network overhead (and indicate the server’s
knowledge of the dispatch bit in the request), and a lazy server
can just statically configure its URLs when possible. When the
dispatch bit from the response differs from that of request, the re-
sponse’s dispatch bit takes precedence.

Because HTTP has become the narrow waist of all communica-
tions [37], ServiceOS exposes system APIs for HTTP-based con-
tent fetch, and we indicate the dispatch bit with HTTP headers
(Section 6). For application-level protocols other than HTTP, it
is impossible (and undesirable) for ServiceOS to know their se-
mantics and parse out their respective dispatch bits (even if they
implement them). So, in the absence of dispatch bits, our system

resorts to the default of returning the data to a responder PI only.
With this default, applications that use peer-to-peer communication
require modifications to run on ServiceOS. They must rely on ex-
plicit client-side cross-principal IPC to achieve peer-to-peer data
transfer. For example, if a requester wants to retrieve data from the
server of a responder principal with a non-HTTP P2P protocol, then
the requester can first launch the responder’s client-side PI through
our system API CreatePI(responderClientCodeURL);
the new responder PI then retrieves the data and then passes it on
to the requester PI.

Backward compatibility with existing web sites. To support
web compatibility, ServiceOS supports MIME-type-based con-
tent dispatch as in Gazelle [49], translating MIME types in re-
sponses into dispatch bits in responses. We also support cook-
ies and cross-site client-server communication primitives XML-
HttpRequest Level 2 [52] and XDomainRequest [28], along with
the associated CORS consent protocol [46]. Despite the availabil-
ity of cookies, we strongly advocate traditional applications not to
use the cookie mechanism, but to explicitly include their state (such
as user preferences and authentication state) in their data requests to
reduce the chance of cross-site request forgery (CSRF) attacks [5].

6 Implementation
We have implemented a prototype of ServiceOS on Windows 7 as
a reference monitor between the OS and applications. Our imple-
mentation is in C# using .NET 3.5 and has two major components:
the ServiceOS monitor and the system shell.

The monitor consists of 9.4k lines of code. It communicates
with principal instances using ServiceOS system calls and upcalls,
which are implemented as asynchronous XML-based messages
sent over named pipes. The monitor creates a unique named pipe
for each principal instance to issue system calls and receive upcalls.

The system shell consists of 3.6k lines of code. It provides a tab-
based UI for users to enter URLs to visit web sites, view content
rendered by traditional applications, or open standalone applica-
tions. The UI passes a newly typed URL to the monitor, which
fetches the content, picks a content processor, and admits this con-
tent processing stack into the right isolation container, following
the semantics of Sections 4 and 5.

Isolation mechanisms. We adopted Drawbridge [38] as our
main sandboxing mechanism. Drawbridge can run unmodified
Windows applications in a highly isolated mode by refactoring
Windows into a library OS and virtualizing all high-level OS com-



ServiceOS API Examples of traditional application func-
tions (e.g., for Word, SSH client)

Examples of browser functions

CreatePI(URL, postData) Open remote Word file Enter URL into address bar, navigate to a link
Fetch(URL, postData) Retrieve required resources for a document,

such as templates, macros, or images
Same-origin <iframe>, <script>, <style>, original
XMLHTTPRequest

Embed(URL, windowSpec, postData) Embed remote images, spreadsheets, or videos Cross-origin <iframe>, <object>, <embed>, <img>

Table 1: Core ServiceOS APIs

ponents, such as windowing libraries, files, or registry. Drawbridge
exposes a very narrow base API for allocating virtual memory,
threading, synchronization, and generic stream-based I/O (e.g., to
access files that are part of an application). To protect our secu-
rity policy, ServiceOS instructs Drawbridge to restrict I/O calls to
only allow access to files that are part of the current principal’s pri-
vate storage, and to disallow pipe access other than to communicate
with ServiceOS monitor.

With Drawbridge, we are theoretically able to support all user-
space-only Windows applications on our system, though in prac-
tice, Drawbridge is not yet mature enough to support certain ap-
plication features (such as DLLs necessary to run macros in Office
documents).

Note that our system design is independent of specific isolation
mechanisms like Drawbridge. As proof, we added support for an-
other sandboxing mechanism, which associates each principal with
a separate, restricted user account, and runs applications in pro-
cesses using these restricted UIDs. This allows greater application
compatibility than is currently possible with Drawbridge, but it is
not as secure: it has a much wider API surface, and UIDs alone
do not form a security boundary in Windows (e.g., one could ex-
ecute shatter attacks [43] based on window messages across UID
boundaries).

To complete the system, our monitor augments APIs exposed by
our isolation containers with several higher-level APIs, which we
discuss next.

Core ServiceOS system calls. There are three core system
calls that we support: Fetch, CreatePI, and Embed. Ta-
ble 1 shows examples of how applications may utilize these APIs.
Fetch is used for data communications, and we implemented
both synchronous and asynchronous versions. The other two calls
are for creating new principal instances: CreatePI(newUrl)
launches a new PI with a standalone UI (in a new tab), and
Embed(newUrl, <window specs>) launches a new PI and
embeds its UI window into the caller’s UI. For all three calls,
ServiceOS makes HTTP requests using .NET’s built-in WebRe-
quest classes. ServiceOS uses custom implementations of a cookie
database and authentication manager. We implemented support for
both Owner and Trust headers (Section 4), as well as algorithm 1
for admitting resources to isolation containers.

For principal definition enforcement, we have implemented the
design choice of having the dispatch bit in the HTTP response
since this is the case where ServiceOS has to do additional en-
forcement work. We add a new directive name “dispatch-to” in
the existing CSP [11] HTTP header with two possible values, ’re-
quester’ or ’responder’. If a server wants the returned data to
be dispatched to a responder PI, then it specifies in its response
header: X-Content-Security-Policy: dispatch-to
’responder’. The ServiceOS monitor checks for the directive
in the HTTP response for each HTTP response and performs dis-
patching accordingly.

Display management. Our monitor controls window position-
ing, dimensions, transparency, and overlaying policies but is agnos-
tic of the UI primitives available on the host OS. It communicates
these policies to the UI, which implements application windows

using .NET Forms. Sandboxed Drawbridge applications run an in-
ternal RDP [31] server to expose visual output and forward user
input. Our UI implements ActiveX RDP clients, which the Ser-
viceOS monitor connects to the corresponding applications’ RDP
servers. When running with no isolation or with UID-based isola-
tion, ServiceOS relies on the Windows SetParent API call to at-
tach applications’ UI into our shell UI and to implement Embed().

Packaging content processors. Content processors and stan-
dalone applications are packaged and delivered as an archive file
with extension .app, which our monitor decompresses and exe-
cutes as a new isolated process. These packages carry a manifest
file containing information like the content processor’s unique ID,
main executable to run, or handled content types. Web servers may
allow content processors to be cached using standard HTTP head-
ers; we rely on this as a rudimentary update mechanism and leave
more elaborate, finer-grained schemes (such as [9]) as future work.

6.1 Adapting traditional applications

To run on ServiceOS, an application must connect to the ServiceOS
monitor, register its display output with ServiceOS’s UI, and use
ServiceOS calls for fetching and dispatching content.

Some of these requirements can be handled transparently to ap-
plications. In particular, we provide a wrapper program to connect
a given application to the ServiceOS monitor over a named pipe and
to register its main window’s visual output. As well, we observe
that many Windows applications use the WinInet [32] library for
HTTP communication. To ease porting for such applications, we
used public WinInet API documentation [32]) to implement an al-
ternate version of wininet.dll, which remaps its HTTP calls to
invoke ServiceOS’s Fetch() call. We then force our applications
to use this DLL. We similarly remap the Windows socket library,
ws2_32.dll, onto our raw socket API to support non-HTTP trans-
port. Applications that do not use these libraries for communication
will require porting to use our APIs, but we expect this to be rare:
we examined 50 popular Windows applications, and found that all
except Firefox used WinInet for HTTP communication.

This wrapping is enough to run the applications that do
not fetch remote content or fetch remote content that does
not need protection. As examples, we have packaged Cal-
culator and Solitaire to run on ServiceOS. These applica-
tions can be executed simply by browsing to a URL like
http://games.com/solitaire.app in ServiceOS’s UI.

Unlike display setup and content fetch, we cannot automatically
infer when to use the CreatePI() and Embed() calls to ren-
der remote content. This functionality is closely tied to application
semantics and requires applications to be modified to use them.
To facilitate this effort, we created a library called LibServiceOS
which, similarly to libc, handles all communication details between
an application and ServiceOS. It exposes ServiceOS system calls
and provides an upcall interface for applications to implement. We
implemented both a C++ version of LibServiceOS for native ap-
plications and a type-safe, C# version for .NET applications. In
Section 7.1, we evaluate the ease of ServiceOS adaptation for sev-
eral large real-world applications.



7 Evaluation
To evaluate ServiceOS, this section answers and discusses four
main questions: (1) how easy is it to adapt traditional applications
to run on ServiceOS, (2) by how much does minimizing impact
of malicious content improve security of the system, (3) can Ser-
viceOS stop real exploits, and (4) is our prototype’s performance
acceptable?

7.1 Ease of adapting traditional applications

Recall from Section 6.1 that we need to manually adapt only ap-
plications that need to spawn a new principal with CreatePI()
(e.g., to support users clicking on a URL) or Embed() (e.g., to
support embedding a video clip belonging to a different principal).
In this section, we describe our adapation experience for several
large, real-world Windows applications. Overall, we find the adap-
tation effort to be moderate.

7.1.1 Microsoft Word and Excel 2010

Microsoft Word is increasingly used to obtain, read, and edit re-
mote documents. We had two goals in adapting Word: (1) isolate
documents according to their content owners, and (2) allow docu-
ments to safely embed untrusted remote content, such as YouTube
videos. Office 2010 exposes a rich add-in interface [39] which we
used for all our modifications, thus avoiding the need to access
Word and Excel source code.

Our add-in ensures that every opened document is routed to an
appropriate Word instance using CreatePI(), and it extends
Word’s hyperlink class, which is used to embed links in documents,
to enable an iframe-like embedding model, allowing users to em-
bed a frame pointing to a remote web page or object. On Word’s
“document open” event, our add-in scans the document for these
special hyperlinks, extracts information such as frame’s URL, posi-
tion, and dimensions, and calls Embed() accordingly. In response,
ServiceOS will fetch corresponding remote content, dispatch it to a
properly isolated principal instance, and connect the rendered con-
tent’s visual output into its UI container in the Word document. As
an example, we have used our add-in to securely embed video clips
from YouTube, playable right from the containing Word document
— functionality that has so far been unavailable in Word.

Our Word add-in consists of only 223 lines of C# code and took
about one man-day to write after getting familiar with Word’s add-
in APIs. As a separate exercise, we have ported the plug-in to Excel
2010 to provide the same functionality. This took only 2 man-hours
and resulted in a 227-line Excel add-in.

Each Word or Excel principal instance has its own UI with all
menu items, most of which perform functions on the underlying
document and continue to work on ServiceOS. Some functions,
such as document comparison or merge, will not work if the in-
volved documents are owned by different principals3. Although
we have not yet done so, such features can be enabled via explicit
ServiceOS-mediated IPC between different instances of Word.

7.1.2 Wordpad

Wordpad is a sophisticated text editor. We pick it as a case study
of porting via source code modification, since unlike Word, Word-
pad is not modularized and does not provide plug-in interfaces. It
consists of more than 50k lines of C++ code, and we consider it
representative of reasonably complex applications.

We extended Wordpad with the same ServiceOS support as for
Word and Excel. For example, we modified the document parser
to recognize special objects representing remote content and to call
3Note that is an example of a future problem that never actually
occurs in Office today.

Content processing
Total (prevented in ServiceOS)

Microsoft Office 256 224 (88%)
Adobe Reader 202 64 (83% of known∗)
Internet Explorer 144 122 (85%)

Table 2: Security analysis of vulnerabilities (’08-’11). ∗ We could
not analyze 125 Adobe vulnerabilities with unspecified attack vectors.

Embed(), and we modified UI code to make room for embedded
content frames when rendering the document. With no prior knowl-
edge of Wordpad, this effort took about 50 hours for one author,
with most of it spent on understanding the source code. In total,
we added only 435 lines of C++ code, and we expect that Wordpad
developers could make these changes much more quickly. Overall,
our experience showed that adaptation onto ServiceOS is feasible
even when source code modification is required.

7.1.3 Internet Explorer

As our primary browser renderer, we have ported Microsoft In-
ternet Explorer’s Trident rendering engine to use our new system
APIs. This effort closely mirrors the implementation of the Gazelle
browser [49], so we omit further details here. In summary, we
changed Trident to use ServiceOS system calls (see Table 1) using
public IE COM interfaces, and by doing so, we forced Trident to
use ServiceOS’s isolation policies instead IE’s. This could impact
web compatibility. While this merits further investigation, recent
work showed that an architecture like ours should have little or no
compatibility hit [44].

7.1.4 Microsoft Outlook 2010

Microsoft Outlook 2010 is a popular e-mail and personal informa-
tion management application. Outlook needs to isolate untrusted
content in e-mail messages, but unlike Word documents or web
pages, e-mail messages are not addressable via URLs. For such
content, applications can still use our Embed() call to conve-
niently offload content isolation while still rendering it in-place
with the rest of application’s UI. We follow this approach and ex-
tend Outlook to use Embed() to render e-mail messages in-place
as before, but in a separate protection domain, using our IE ren-
derer (Section 7.1.3). Because ServiceOS cannot determine such
content’s owner information or even retrieve it, we let Outlook
download message bodies and provide them directly to Embed
(via “data:” URLs); ServiceOS uses uniquely-labeled containers
in such cases.

Outlook’s own protection mechanisms for restricting e-mail ren-
dering, such as filters for <script>, <iframe>, and other dan-
gerous tags, have been error-prone: two recent patches fixed 15
vulnerabilities that, in most severe cases, allowed attackers to take
control of a system when a victim simply viewed a specially-crafted
e-mail [34]. With ServiceOS, Outlook gains stronger isolation from
e-mail rendering bugs, while e-mail content can benefit from addi-
tional functionality provided by IE, such as scripts and embeddable
iframes.

We also extended Outlook to safely preview attachments using
any ServiceOS content processor. ServiceOS picks the renderer
based on the content type of the attachment; this replaces previewer
lookup in the system-wide Windows registry, which is unavailable
in sandboxed applications. This isolation is not only stronger but
also more usable, as it obviates Outlook’s prompting the user to
consent to a preview of untrusted attachments.

Like Word, we modified Outlook using its add-in framework.
This effort required 20 hours, including understanding Outlook’s
add-in model, and resulted in a small 342-line add-in.



7.2 Vulnerability analysis

We analyzed vulnerabilities of three applications published during
2008-2011 [34, 2], and evaluated whether ServiceOS’s design mit-
igated them by checking whether each vulnerability was related to
parsing or other content processing errors. The results are shown
in Table 2. Content processing errors are widespread: 88% of Of-
fice vulnerabilities and 85% of IE vulnerabilities are related to con-
tent parsing. Adobe Reader’s numbers included 125 vulnerabilities
with unknown attack vectors; of the rest, 83% involved content
processing. Exploits of all these flaws would be naturally con-
tained if users were using these applications on ServiceOS; Sec-
tion 7.3 demonstrates this with two concrete exploits. The rest
of the vulnerabilities that ServiceOS cannot contain include inse-
cure library loading vulnerabilities exploitable by planting mali-
cious DLLs, HTML sanitization vulnerabilities leading to XSS, and
denial-of-service vulnerabilities.

The ServiceOS monitor has only 9.4K lines of code which is sig-
nificantly smaller than many applications. For example, OpenOf-
fice has about 9M lines of code [6], and even the relatively simple
Wordpad has more than 50K lines of code. Fundamentally, Ser-
viceOS does not rely on large applications to enforce remote con-
tent security and thus reduces the TCB for isolation logic signifi-
cantly.

7.3 Exploit mitigation

To verify that our system can indeed stop exploits of content pro-
cessing flaws we analyzed above, we examined two real-world
Word 2010 exploits. First, we used a proof-of-concept parsing ex-
ploit that uses a RTF Header stack overflow vulnerability [35] to
construct a malicious document that looks for other, potentially
sensitive Word documents the user has concurrently opened the
same Word instance and sends them to an attacker via HTTP. The
attack worked successfully on Word 2010 version 14.0.4760, by-
passing both DEP and ASLR.4

We also crafted a second malicious document that uses macros
to perform the same attack. Word treats documents opened from
the web as untrusted and does not run macros by default, but of-
fers users a choice to trust the document via a single click on a
yellow security button above it. The attack document tricks the
victim to click on this button by pretending to be a greeting card
that needs permission to be customized. Such an attack is much
easier to implement as it does not require bypasses of existing se-
curity mechanisms, and it demonstrates the pitfalls of relying on
user prompts for isolation decisions. This attack works on the lat-
est version of Word 2010, provided the victim clicks on the yellow
security button.

Note that application-based isolation (such as that on iOS or An-
droid) would also not be able to stop these two exploits, as they both
work within the permission boundaries of their Word instance.

Next, we tried opening both attack documents in Word run-
ning on ServiceOS. We ran ServiceOS with UID-based sandboxing
(Section 6), as Drawbridge does not yet correctly support libraries
to parse an older Word document format required in the first ex-
ploit, or to run macros for the second exploit. We observed that
ServiceOS stopped both exploits. Moreover, ServiceOS’s Word
version did not use any user prompts to enable macros — it no
longer needs to restrict remote documents in any way since they
are already isolated according to their owner. This provides bet-
ter user experience for documents that legitimately use dangerous
features such as macros or ActiveX.

4Microsoft has patched this vulnerability in later Word versions.

0.3 0.6 

4.2 

0.4 
1.0 

5.3 

0.4 0.4 0.8 

4.4 

0.5 
1.0 

5.3 

0.5 0.5 0.9 

5.7 

0.9 1.3 

5.7 

1.9 

0.0

2.0

4.0

6.0

8.0

10.0

Excel 10KB Excel 10MB Excel
100MB

Wordpad
10KB

Wordpad
10MB

Wordpad
100MB

Internet
Explorer

St
ar

t 
Ti

m
e

 (
s)

 Windows ServiceOS ServiceOS (Drawbridge)

Figure 6: Time to start applications.

7.4 Performance

In measuring ServiceOS’s performance, we were primarily inter-
ested in (1) startup latencies we impose on opening documents,
which could happen in an existing process on Windows but require
starting a new process in our model, (2) overheads on memory us-
age, since our model uses more processes, one for each content
owner rather than one per application, and (3) performance of our
content fetch APIs, which ServiceOS applications must use instead
of native Windows libraries. Our measurements were performed on
a 64-bit Windows 7 desktop with dual 3.16GHz Intel Xeon E8500
Duo-Core CPUs, 4GB of RAM, and a Broadcom NetXtrem Giga-
bit Ethernet NIC. We present results for three applications: Excel
2010, Internet Explorer (IE), and Wordpad. Excel and Wordpad ex-
periments used 10KB, 10MB and 100MB documents; IE was used
to open a simple test page on an Intranet web server. We separate
the overhead of Drawbridge from overhead of the rest of our sys-
tem where possible, since our system works with other sandboxing
mechanisms. To run a ServiceOS application without Drawbridge,
we execute it as a regular Windows process.

Startup latencies. The ServiceOS monitor and shell take 118ms
to start. After a user navigates to a URL, our system starts up the
appropriate renderer. Figure 6 compares this startup time to startup
times of applications’ native versions on Windows. We find that
most overhead (up to 1.5 sec) comes from starting the Drawbridge
environment. Excluding Drawbridge, in all tests ServiceOS adds
less than 200ms to connect to the monitor and initialize. An obvi-
ous optimization is to maintain a small number of pre-created ren-
derers for popular content types. Even without this optimization,
we feel the startup overhead is acceptable. For example, if a user
is viewing a web page with an embedded 10KB Excel spreadsheet,
starting our modified Excel on ServiceOS would add only 112ms
to Excel’s normal startup time.

Memory usage. We measured the committed memory size for
each application with one document open. Excel running on Ser-
viceOS uses about 47MB more memory than when running on
Windows, regardless of document size. This is due to Excel’s load-
ing of interoperability DLLs required to run any Excel add-in; our
plug-in itself has negligible additional memory cost. Both Word-
pad and ported IE carry a very small memory overhead (less than
3MB), which is required to load and initialize our 74KB LibSer-
viceOS DLL. Drawbridge isolation introduces an additional over-
head of up to 37MB for Excel.

Figures 7 and 8 show the aggregate memory usage for running
multiple instances of Excel and Wordpad simultaneously. Both na-
tive and ServiceOS-enabled Excel is capable of opening multiple
documents in the same process or separate processes. ServiceOS-
enabled Excel render documents in the same process only if their
owners are the same; e.g., a chart embedded in an Excel spread-
sheet from same owner would stay in the same process. We can see
that we impose no significant penalty for opening documents from
the same owner, but documents from different owners (using differ-
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Each new instance loads a 10MB document.

ent processes) do carry a sizable memory overhead. However, most
of it comes from (1) Drawbridge, and (2) loading Excel’s add-in li-
braries, which adds 47MB for each new process. We could address
(1) by picking a more efficient isolation mechanism, and improve
(2) with native source-code modification, as exemplified by Word-
pad which only adds 9MB for 10 instances.

ServiceOS’s monitor and shell have little memory footprint, us-
ing 31.4MB of memory at worst during our tests.

Content fetch APIs. We measured the time it takes our IE ren-
derer to use our Fetch() API to retrieve three documents of var-
ious sizes from a web server on a 100Mbps local network, and
compared to two popular ways Windows programs retrieve con-
tent today: using .NET’s native HttpWebRequest class, and using
the WinInet library in Windows (recall that ServiceOS’s implemen-
tation of HTTP also uses .NET’s HttpWebRequest). Table 3 shows
our results.

We find that ServiceOS introduces some latency for passing con-
tent to renderers, but that overhead is amortized for larger document
sizes. For example, for a 10MB document, ServiceOS is only 3%
(31ms) slower than a native .NET program, excluding the 62ms of
Drawbridge overhead. Most of this is due to extra IPCs to Ser-
viceOS monitor and unoptimized buffering. Interestingly, .NET’s
HTTP library outperforms WinInet for larger documents; the mar-
gin is large enough to mask ServiceOS’s overhead. Thus, native
Windows applications that used WinInet may actually encounter
faster content fetch with ServiceOS.

We also evaluated the overhead of various new headers we in-
troduced for content fetch in Sections 4 and 5, and found that it is
negligible. For example, verifying a signature in the Owner header
with a 1024-bit public key adds only about 1.5ms to each content
fetch roundtrip, enforcing the dispatch-to directive takes less than
1ms, and parsing and verifying trust lists takes less than 1ms even
when checking whether a document can be admitted to a PI with

116 bytes 1MB 10MB
Windows (.NET program) 3ms 98ms 924ms
Native (WinInet program) 1ms 297ms 1337ms
ServiceOS, no Drawbridge 15ms 124ms 955ms
ServiceOS, with Drawbridge 16ms 156ms 1017ms

Table 3: Overhead of fetching content of various sizes.

100 other documents, with all documents having 101-entry trust
lists.

8 Related Work
Browsers. Much recent work in browsers explored stronger isola-
tion of web sites. OP [18] applies a microkernel architecture design
with a browser kernel that enforces SOP. Tahoma [10] isolates (its
own definition of) web applications using virtual machines. Major
commercial browsers like Chrome and IE have adopted a process-
per-tab kind of multi-process model and reduce privileges of tab
processes. Gazelle [49] has a design that treats web sites as OS
principals and makes its browser kernel the exclusive place for
cross-principal protection. Our work builds on Gazelle and gen-
eralizes Gazelle’s design to support all applications beyond web
applications. We introduce the notion of a content processing
stack to give a uniform treatment for both web content and con-
tent processed by traditional applications, we generalize browsers’
same-origin policy to allow arbitrary isolation granularity for URI-
addressable content and to enable separation of owning and host-
ing, and we introduce the dispatch bit mechanism to enforce prin-
cipal definitions.

Modern client platforms. iOS, Android, Windows Phone, Win-
dows 8, and the research OS Singularity [20, 51] all treat applica-
tion code packages as different principals and put their execution
instances into separate processes with different uids. While this
marks a milestone of finally moving away from the decades-old
model of treating user accounts as principals, we take another sig-
nificant step by advocating a content-based principal model.

IBOS [45] aims to reduce the trusted computing base for
browsers by applying microkernel design for all traditional OS
components, exposing browser abstractions at the lowest software
layer, and removing many components not needed by browsers.
IBOS solves an orthogonal problem from ours. Our problem is
to let OS provide content-based isolation for browsers and non-
browser applications alike.

Embassies [19] describes web browsers as pico-datacenters
where each "machine" corresponds to a web site and is isolated
from other sites or "machines". This view is consistent with the
semantics of existing browsers where the same-origin policy is ap-
plied to isolate web sites. Nevertheless, existing browsers do not re-
alize isolation reliably. Embassies advocates refactoring browsers
into CEI and DPI. This mirrors the refactoring done in Gazelle [49]:
CEI corresponds to the Browser Kernel API in Gazelle which
is runtime-independent; DPI corresponds to the runtime API in
Gazelle’s principal instances, which allows any programming lan-
guages or enrichment of the runtime as needed. Embassies defines
web site principals using public keys, similar to one of our princi-
pal ID proposals (Section 4.2.1). Our work additionally considers
content processing stacks (Section 4.1) and cross-principal content
fetch of two forms: data communication and spawning new princi-
pals (Section 5) which are commonplace in practice. Finally, Ser-
viceOS aims to support both web applications and traditional ap-
plications on the same OS platform without compromising security
semantics of the web while allowing easy adaptation of traditional
applications.



This work follows up on our earlier position paper on Ser-
viceOS [50].

Other isolation policies. SubOS [22] observed that each (re-
mote) data object needs to be rendered with a different principal
label, called a sub-user id. SubOS includes a browser [21] which
puts each URL page in a separate SubOS process. The SubOS’s
isolation policy is fixed and can be too fine-grained for many con-
tent owners. In contrast, we enable isolation policies of arbitrary
granularity while being compatible with web.

PinUP [14] advocates an isolation policy that restricts which ap-
plications may access a particular local file. Unlike ServiceOS,
PinUP does not isolate mutually distrusting files opened by a sin-
gle application.

COP [7] extends the same-origin policy by letting web content
specify alternate origins using unique IDs. Although the goals of
COP are similar to the goals of our principal labeling proposals
(Section 4.2), the underlying mechanisms are different. ServiceOS
generalizes SOP to both web and native applications, while COP
was designed to improve SOP’s flexibility for web sites only.

Isolation mechanisms. Many mechanisms [33, 53, 12, 38, 47,
15, 29, 3, 26] have been developed to confine applications. Usu-
ally, these approaches either require applications to formulate their
own security policies, resulting in many inconsistent policies coex-
isting on the system, or they put this burden on administrators. Our
work defines a uniform isolation policy as defined by the content-
based principal model and shifts its enforcement to the OS. We also
needed to design new mechanisms for specifying (Section 4) and
enforcing (Section 5) the principal definitions.

Object-capability systems and DIFC techniques [42, 54, 13, 27]
can be used to implement isolation mechanisms. Realizing our
principal model on these systems is an area of future research.

9 Conclusion
We advocate a content-based principal model in which the operat-
ing system relieves applications from the burden of isolating re-
motely addressable content, boosting the security of both user’s
data and the system by localizing the impact of any content includ-
ing malicious content. Our key contribution is to generalize web
browsers’ same-origin policy into an isolation policy suitable for
all applications while maintaining compatibility with the web. To
this end, we have invented content processing stacks to conceptu-
alize execution instances and introduced a general principal model
that enables flexible isolation granularities using public-key-based
owner IDs or trust lists to define principals. For principal defi-
nition enforcement (beyond robust isolation container design), we
introduced the dispatch bit for cross-principal content fetch and dis-
patch.

We have built a substantial prototype system and adapted to it a
number of real-world applications, such as Word, Excel, and Out-
look. Our vulnerability study indicates that exploits against more
than 80% of vulnerabilities of popular software can be contained.
We have demonstrated that real-world exploits’ impact can indeed
be isolated in our system. Our performance evaluation shows ac-
ceptable performance overhead. From these experiences, we be-
lieve that content-based isolation policy is indispensable for fu-
ture client platforms where applications increasingly interface with
cloud-backed content.
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