
Simple Usage Polymorphism

Keith Wansbrough

�

Computer Laboratory

University of Cambridge

Cambridge CB2 3QG, England

kw217�
l.
am.a
.uk

www.
l.
am.a
.uk/users/kw217/

Simon Peyton Jones

Mi
rosoft Resear
h Ltd

St George House, 1 Guildhall St

Cambridge CB2 3NH, England

simonpj�mi
rosoft.
om

resear
h.mi
rosoft.
om/Users/simonpj/

Abstra
t

We present a novel inferen
e algorithm for a type system

featuring subtyping and usage (annotation) polymorphism.

This algorithm infers simply-polymorphi
 types rather than

the
onstrained-polymorphi
 types usual in su
h a setting;

it a
hieves this by means of
onstraint approximation. The

algorithm is motivated by pra
ti
al
onsiderations and ex-

perien
e of a previous system, and has been implemented in

a produ
tion
ompiler with positive results. We believe the

algorithm may well have appli
ations in settings other than

usage-type inferen
e.

1 Introdu
tion

Consider the following fun
tion
all, written in the lazy

fun
tional language Haskell:

f (g x)

Most Haskell implementations will
onstru
t a self-updating

thunk, or suspension, for f 's argument, (g x), and pass that

thunk to f . If it
an be demonstrated that f uses its argu-

ment at most on
e, then this thunk need not be overwritten

after the evaluation of (g x). The thunk is still
onstru
ted,

but it is less expensive than before. It turns out that this

is but one of a range of motivations for analysing fun
tional

programs (stri
t ones as well as lazy ones) to �gure out when

a sub-expression will only be \used on
e".

Thus motivated, several resear
hers in
luding ourselves have

sought a type system that
an stati
ally determine some

notion of used-on
e-ness. In an earlier paper we des
ribed

just su
h a system [WPJ99℄, UsageSP, fo
using espe
ially

on two points: we dealt with a realisti
 language, in
luding

polymorphism and re
ursive data types; and we used sub-

typing to make UsageSP more expressive than an earlier,

monomorphi
 proposal [TWM95℄.

At that time we had only a prototype implementation. To

our dismay, when we s
aled it up to a full s
ale system, we

�

Resear
h supported in part by the Commonwealth S
holarship

Commission under the Commonwealth S
holarship and Fellowship

Plan, and by UK EPSRC grant GR/M04716.

Appears in informal pro
eedings of Third International

Workshop on Types in Compilation (TIC 2000), 21

September 2000, Montreal, Canada.

2000 ACM.

dis
overed that UsageSP was almost useless in pra
ti
e! It

turned out that
urried fun
tions re
eived rather poor types;

sin
e
urrying is ubiquitous in Haskell, this meant that the

system missed almost all used-on
e expressions, in
luding

ones that are blatantly obvious to the programmer. We

explain the problem in detail in Se
tion 3.2.

This paper presents our solution to the problem of
urrying.

Spe
i�
ally, our new
ontributions are these:

� We present the results of
omprehensive measurements of

the potential gains to be had from a system like UsageSP.

These results
on�rm those of an earlier study [Mar93℄,

and of folklore: in lazy languages, a very high proportion

of thunks are only demanded on
e (Se
tion 2).

� Observing (along with Gustavsson [Gus98℄ and
ontrary

to our previous belief) that subtyping is not suÆ
ient to

give satisfa
tory types, we introdu
e usage polymorphism

and
hara
terise pre
isely when it is ne
essary; namely,

when a usage variable appears in both a
ovariant and a

ontravariant position in a fun
tion's type (Se
tion 3.3).

This form of polymorphism di�ers from the polyvarian
e

dis
ussed as future work in [TWM95℄ and [Gus98℄, in that

our system provides a usage-polymorphi
 type for a single

opy of a fun
tion, without spe
ialisation or
loning.

� We argue that the full generality of
onstrained polymor-

phism, while te
hni
ally straightforward, has a very poor

power-to-weight ratio (Se
tion 3.4). Our main
on
eptual

ontribution is to identify a \sweet spot" in the design

spa
e: the types it gives are mu
h smaller, albeit not

quite as re�ned, as those of a
onstrained polymorphi

system (Se
tion 3.5).

� Our prin
ipal te
hni
al
ontribution is a new type infer-

en
e algorithm that infers types that are just polymor-

phi
 enough to express these
o-/
ontra- dependen
ies

(Se
tion 6). So far as we know, this algorithm is novel,

and it may well have appli
ations in other settings, su
h

as binding-time analysis [DHM95℄.

� We sket
h our implementation, whi
h is part of the Glas-

gow Haskell Compiler (GHC), a state of the art
ompiler

for Haskell (Se
tion 7). GHC uses a Girard{Reynolds-

style typed intermediate language. We extend this lan-

guage with usage abstra
tions and appli
ations, so that

the result of usage-type inferen
e is expressed in the in-

termediate language itself (Se
tion 5). As a result, sub-

sequent program transformations
an preserve a

urate

usage types.

� We give preliminary measurements of the e�e
tiveness

of the new algorithm (Se
tion 7.1). It su

essfully deals

with the
urrying problem, although the bottom-line re-

sults are still a bit disappointing. However, we have ev-

iden
e that they
an be improved substantially without

hanging the type system.

Our type system has just two annotations: \used on
e" (i.e.,

at most on
e) and \used many times" (i.e., don't know). We

are
on�dent that we
an smoothly extend this little two-

point spa
e into a seven-point latti
e (see Se
tion 9) that

will
ombine usage analysis, stri
tness analysis and absen
e

analysis, thereby
ombining three separate analyses in one

uniform framework. This paper represents solid progress

towards that alluring goal.

2 The opportunity

In our earlier paper we des
ribed in some detail the bene-

�ts that a

rue from stati
 knowledge that a value is used

at most on
e [WPJ99℄. Avoiding updates for thunks is an

obvious bene�t, but others in
lude better inlining and let-

oating. We will not repeat this dis
ussion here.

So knowledge of used-on
e-ness is
ertainly bene�
ial { but

how bene�
ial? If the maximum bene�t is tiny, there is

little point in working on the analysis. It is hard to quan-

tify the potential bene�ts of making other transformations

(inlining, let-
oating) more widely appli
able, but we
an

dire
tly quantify the maximum number of thunks whose up-

date
ould be avoided.

We modi�ed our Haskell
ompiler, GHC, so that it gener-

ated
ode to re
ord the proportion of all allo
ated thunks

that are demanded at most on
e. The ne
essary modi�-

ations are rather simple: we only need to tra
k the total

number of thunks allo
ated and, for ea
h thunk, whether

it is entered never, on
e, or more than on
e. We
ompiled

and ran the entire nofib suite, a large suite of around 50

ben
hmark programs ranging from tiny ones up to 10,000

line appli
ations [Par93℄.

Figure 1 gives the results, whi
h amply support the folklore

and are
onsistent with the data of [Mar93℄. In every pro-

gram but one, the majority of thunks are demanded at most

on
e, and hen
e do not need to be updated. In more than a

third of the programs, over 95% of thunks are never entered

more than on
e! There is
learly huge s
ope for optimisation

here.

Of
ourse, no stati
 analysis will �nd all thunks that are

demanded only on
e, but at least we now know for sure

that our analysis is digging in ri
h soil.

3 The problem of
urrying

In this se
tion we will identify the problem we propose to

atta
k, beginning with a qui
k review of the
ontext.

3.1 Usage types

Our
ompiler takes an ordinary Haskell program and be-

gins by performing type inferen
e on it, translating it into

an expli
itly-typed intermediate language, the GHC Core

language. This Core language is a Girard{Reynolds-style

Figure 1 The opportunity.

Per
entage of thunks used at most on
e

N

u

m

b

e

r

o

f

p

r

o

g

r

a

m

s

i

n

n

o

f

i

b

100%90%80%70%60%50%40%30%20%10%0%

30

25

20

15

10

5

0

lambda
al
ulus, augmented with let, letre
,
onstru
tors,

ase expressions, and primitive operations. We then per-

form usage-type inferen
e on this program, yielding a new

Core program whose types embody usage information. This

information is used to guide the
ompiler's transformations.

At any time, the usage types
an be refreshed by re-running

the inferen
e algorithm. The programmer never sees the

usage types.

For example,
onsider the Core de�nition:

f = �x : x+ 1

Initially f has the type Int ! Int. After usage inferen
e it

gets the more informative type (Int

1

! Int

!

)

!

. This type

says that (a) f demands its argument at most on
e (Int

1

),

(b) that its result may be used arbitrarily often (Int

!

) and,

(
) that the fun
tion itself may be used arbitrarily often (the

outer !).

f 's type says that it may be applied to an argument of type

Int

1

, but we employ subtyping to permit f to be applied to

an argument of type Int

!

. This subtyping dire
tly mat
hes

our operational intuitions: a fun
tion
an a

ept any ar-

gument whi
h
an be used more often than the fun
tion

requires. The use of subtyping in this way was a major fea-

ture of our earlier paper,

1

and we do not stress it further

here [WPJ99℄.

So mu
h for the argument type of f . What about (
), the

outermost \!" in f 's type? This part of f 's type is a�e
ted

by the way in whi
h f is used, not by f 's de�nition. For

example, suppose that f 's de�nition had appeared in this

ontext:

let f = �x : x+ 1

in if b

then f 1

else f 2

Now, it is
lear that f is
alled only on
e, so f
ould have

been given the type (Int

1

! Int

!

)

1

. (A
tually, su
h an

improvement has no operational bene�t in this
ase, but

in prin
iple it might.) However, if f is a top-level (ex-

ported) de�nition in a module,
alled from arbitrary pla
es

1

This use of subtyping turns out to have been proposed indepen-

dently by Gustavsson [Gus98℄ and by Fax�en [Fax95℄; in the
ontext

of binding-time analysis it was already well-known [Mos93℄.

2

elsewhere, we pessimisti
ally assume that it is
alled many

times, and for
e its outermost annotation to !.

3.2 Currying

Now
onsider the following inno
uous de�nition:

g = �x : �y : x+ y � 1

It would seem as if g demands its arguments only on
e, so

we would expe
t a type like

g :: (Int

1

! (Int

1

! Int

!

)

!

)

!

The trouble is that this type is simply not
orre
t. Suppose

g was used like this:

let h = g wurble

in h 3 + h 4

How many times will the thunk wurble be demanded?

Twi
e, on
e for ea
h
all of h! So g's type must be wrong.

Going ba
k to the de�nition of g, we see that x is used in-

side the �y-abstra
tion, so x is used at least as mu
h as the

�y-abstra
tion. There are two
orre
t types we
an assign

to g (we subs
ript the g so that we
an name these di�erent

typings):

g

2

:: (Int

!

! (Int

1

! Int

!

)

!

)

!

g

3

:: (Int

1

! (Int

1

! Int

!

)

1

)

!

In the �rst, g

2

's �rst argument is given the (bad) annotation

!, but in ex
hange the fun
tion returned by g wurble has a

!-type. In the se
ond, g

3

's �rst argument has the (good)

annotation 1, but the pri
e is that the partial appli
ation of

g
annot be shared.

These
onstraints are perfe
tly reasonable: if g wurble is

alled many times, then wurble will be demanded many

times. What is not reasonable is that the analysis of

[WPJ99℄ is for
ed to make the
hoi
e on
e and for all, at

g's de�nition site. If g is ever partially applied, then all

uses of g will have an ! annotation on their �rst argument.

The frequen
y of partial appli
ations in Haskell
ode makes

this a very poor strategy.

3.3 The solution: Simple usage polymorphism

Now that the problem is
lear, the solution is
ompletely

obvious. We want usage polymorphism, thus:

g

4

:: (8u : Int

u

! (Int

1

! Int

!

)

u

)

!

Now the two valid types are instan
es of this polymorphi

type, and ea
h
all site
an instantiate g

4

's type appropri-

ately. (The reader may be surprised by the lo
ation of the

8u inside the outermost usage annotation; see Se
tion 5.1

for a dis
ussion of this point.)

That solves the problem ni
ely. The remaining
hallenge

is how to
ome up with this type for g. After all, here is

another possible type for g:

g

5

:: (8u; v; x : Int

u

! (Int

v

! Int

x

)

u

)

!

Here, we have repla
ed the ! and 1 annotations with usage

variables, and then quanti�ed over them. This type is a
tu-

ally sound in the type system we de�ne in Se
tion 5, but it

is unne
essarily
ompli
ated, be
ause nothing is gained by

the extra polymorphism. For example, the usage \v" on the

se
ond argument of g

5

does not give any extra information

to the
aller (\1" was as informative as possible), nor does

it make g

5

any more appli
able. Similarly, the usage \x"

instead of \!"
arries no bene�t. This is a key point of our

earlier paper [WPJ99, x6.3℄.

We
an
hara
terise the situation quite pre
isely, as follows:

� A usage variable in a
ovariant (positive) position { for

example, x in the type of g

5

{ may as well be turned into

the
onstant \!".

� A usage variable in a
ontravariant (negative) position {

for example, v in the type of g

5

{ may as well be turned

into the
onstant \1".

� Only usage variables that appear both
ovariantly and

ontravariantly in the fun
tion's type must be universally

quanti�ed.

This argument depends on the use of subtyping. One might

argue that it would be easier to get rid of subtyping and use

polymorphism instead. But in our expli
itly-typed interme-

diate language, at every
all site of a polymorphi
 fun
tion,

the fun
tion is applied to all the type and usage arguments

ne
essary to instantiate all its universally quanti�ed vari-

ables. So the more variables we quantify over, the larger our

intermediate programs will be
ome. Further, there are two

distin
t properties to be expressed. Our system therefore

uses subtyping to express the fa
t that a fun
tion may a

ept

a range of argument types, and polymorphism to express

interdependen
ies between the usage annotations within a

single type.

Simple usage polymorphism, therefore, des
ribes a type sys-

tem that supports subtyping and polymorphism, but does

not permit subtyping
onstraints on quanti�ed variables.

It should be noted that while simple usage polymorphism is

ertainly better than the monomorphi
 system of [WPJ99℄,

it doesn't solve all our problems. Binary fun
tions like g now

get optimal types, but ternary fun
tions like plus3 (Figure 2)

end up unifying the usages of their �rst two arguments, po-

tentially for
ing thunks in fa
t used at most on
e to be anno-

tated !. Ultimately, polyvarian
e may be the best solution,

and we dis
uss this further in Se
tion 7.2.

3.4 Constrained polymorphism

Have we now gone far enough? From a te
hni
al stand-

point, a more natural
hoi
e might seem to be
onstrained

polymorphism [Cur90, AW93℄.

2

A yet more general type for

g is this:

g

6

:: (8u; v : u � v : Int

u

! (Int

1

! Int

!

)

v

)

!

This type makes expli
it that the usage of g's �rst argument

and its partial appli
ation don't need to be the same; all

that is needed is that the usage of the argument is at least

that of the partial appli
ation. (The
onstraint may look

ba
k to front; we will explain the polarity of our subtyping

relationship in Se
tion 5.1.)

2

An intermediate possibility between simple and
onstrained poly-

morphism,
onsidered no further here, might be bounded polymor-

phism, as introdu
ed by Cardelli [CW85, CMMS94℄.

3

Table 1 Usage type system design spa
e.

Monomorphi

Simple

polymorphism

Constrained

polymorphism

No

subtyping

[TWM95℄

(
heap enough)

(2) (3)

(expressive enough)

Fun arg

subtyping

[WPJ99℄

(4)

This paper

[GS00℄

(6)

Constrained polymorphism has been moderately well stud-

ied [TS96, OSW98, PS96, JP99℄, and it is
ertainly more

expressive than simple polymorphism (the simplest type

on whi
h they di�er is that of plus3; see Se
tion 6.3).

However, the pra
ti
al
osts are heavy. Types be
ome

(mu
h) larger, be
ause there are typi
ally many more quan-

ti�ed variables, together with many
onstraints
onne
ting

them [Pot98, AWP97℄. Furthermore, GHC's entire internal

language would have to be augmented with type
onstraints,

no simple matter.

3.5 Summary

Table 1 summarises our
on
lusions so far. The two axes of

the table
orrespond to two di�erent design
hoi
es. Systems

in the top row la
k subtyping, while those in the bottom row

allow subtyping at fun
tion appli
ations. Systems in the

�rst
olumn are monomorphi
 in usage annotations (poly-

morphism in the underlying language is an orthogonal issue,

as we showed in [WPJ99℄). Systems in the middle
olumn of-

fer simple usage polymorphism, while those in the third
ol-

umn employ
onstrained polymorphism. (3), for example,

is suggested in [TWM95, x4.5℄. [Gus98℄ and [Fax95℄
ould

also be pla
ed in (4), and [BS96℄ (for uniqueness, rather than

usage) and perhaps [Fax97℄ belong in (6).

Our
entral hypothesis is this: The analyses in the �rst

olumn, and (2) in the se
ond, are not expressive enough;

the third
olumn is unreasonably expensive; thus the
om-

bination of simple usage polymorphism and subtyping of-

fers a �ne
ompromise between expressiveness and
ost. It

seems
lear that the former are
ertainly insuÆ
iently ex-

pressive; as to the latter the vast body of work in the area

of
onstrained polymorphism already
ited
on�rms its high

ost, although this may well be justi�ed by the bene�ts

(q.v. [GS00℄). The present paper proposes a novel way of

trading o� these
osts against the bene�ts.

Noti
e that though the type system is simpler without
on-

strained polymorphism, the inferen
e algorithm may be

more
omplex. Any inferen
e algorithm is going to work by

gathering and then resolving
onstraints. With
onstrained

polymorphism, we
an quantify over these
onstraints; with

simple polymorphism we must instead approximate. Spe
if-

i
ally, where we have a
onstraint u � v we simply identify

(unify) u and v (
ompare the types for g in Se
tions 3.3

and 3.4). That's the idea anyway; the a
tual algorithm is

quite subtle, as we dis
uss in Se
tion 6.2, and
onstitutes

the te
hni
al heart of our paper.

4 Examples

We embark on the te
hni
al material in Se
tion 5, but �rst

we pause to examine some motivating examples typed in our

proposed system.

Figure 2 gives the usage-polymorphi
 typings inferred by our

system for a number of standard Haskell library fun
tions.

3

When typing su
h library fun
tions, we
learly must
hoose

types that permit all possible uses; that is, that make no

assumptions about how often the fun
tion or its partial ap-

pli
ations are
alled. The types in the �gure make use of

usage polymorphism; without this, all variable annotations

in the �gure would take the \don't know" value !, thus

yielding dreadful results from the analysis.

� Usage polymorphism is used to des
ribe dependen
ies be-

tween argument and result. The simplest possible ex-

ample of this is the identity fun
tion, id, whi
h simply

returns its argument untou
hed. Clearly, if id is passed

a use-on
e (use-many) thunk, it returns a use-on
e (use-

many) thunk; this is expressed by its type.

� The short-
ir
uit \and" is de�ned like this: and a b =

ase a of fTrue ! b; False! Falseg. Its type
ontains

the same partial appli
ation dependen
y as Se
tion 3.3's

g

4

(in u

1

). However, it also
ontains a dependen
y (in

u

2

) between its se
ond argument and result: if the �rst

argument is True the fun
tion behaves like id. This de-

penden
y does not
on
i
t with the False
ase be
ause

the returned value (False) shared between all invo
ations

of and is given the type Bool

!

, whi
h is a subtype of

Bool

u

2

.

� The three-argument
urried addition fun
tion plus3

demonstrates that
urried fun
tions of more than two ar-

guments still only have a single usage argument dealing

with partial appli
ation. A type of the form �

u

1

! (�

u

2

!

(�

1

! �

!

)

u

4

)

u

3

would have the
onstraint u

1

� u

3

as be-

fore (the �rst argument is used at least as many times as

the �rst partial appli
ation), along with the unsurprising

u

2

� u

4

(the se
ond argument is used at least as many

times as the se
ond partial appli
ation), but in addition

there is a
onstraint u

1

� u

4

(the �rst argument is also

used as many times as the se
ond partial appli
ation).

These three
onstraints are resolved by unifying all four

usage variables.

� The
ip fun
tion is de�ned thus:
ip f x y = f y x.

Noti
e the \1" in its type, indi
ating that when it
alls

f it always fully applies it.

� Fun
tion
omposition
ompose is de�ned
onventionally:

ompose f g x = f (g x)

It exhibits a
ommon pattern in whi
h to ea
h 8�
or-

responds a 8u, and all o

urren
es of � are de
orated

by that u. This pattern does not however justify ab-

stra
ting over �-types (i.e., allowing id to have type

(8� : � ! �)

!

), as we would then be unable to express

useful types su
h as �

1

: see [WPJ99, x6.2℄.

3

Most of these should be self-explanatory. apply, written as in-

�x $ in Haskell, is stri
tly unne
essary but useful (be
ause of its

pre
eden
e) for avoiding ex
ess parentheses in expressions. build and

augment are used in `
heap deforestation,' des
ribed in [Gil96, x3.4.2℄.

4

Figure 2 Some sample typings.

plus :: (8u

1

: Int

u

1

! (Int

1

! Int

!

)

u

1

)

!

id :: (8u

1

: 8� : �

u

1

! �

u

1

)

!

and :: (8u

1

; u

2

: Bool

u

1

! (Bool

u

2

! Bool

u

2

)

u

1

)

!

apply :: (8u

1

; u

2

; u

3

: 8�; � : (�

u

1

! �

u

2

)

u

3

! (�

u

1

! �

u

2

)

u

3

)

!

plus3 :: (8u

1

: Int

u

1

! (Int

u

1

! (Int

1

! Int

!

)

u

1

)

u

1

)

!

ip :: (8u

1

; u

2

; u

3

: 8�; �;
 : (�

u

1

! (�

u

2

!

u

3

)

1

)

u

2

! (�

u

2

! (�

u

1

!

u

3

)

u

2

)

u

2

)

!

ompose :: (8u

1

; u

2

; u

3

; u

4

:8�; �;
 : (�

u

1

!

u

2

)

u

3

! ((�

u

4

! �

u

1

)

u

3

! (�

u

4

!

u

2

)

u

3

)

u

3

)

!

map :: (8u

1

; u

2

: 8�; � : (�

u

1

! �

u

2

)

!

! ((List �)

u

1

! (List �)

u

2

)

!

)

!

foldr :: (8u

1

; u

2

: 8�; � : (�

u

1

! (�

u

2

! �

u

2

)

1

)

!

! (�

!

! ((List �)

u

1

! �

u

2

)

!

)

!

)

!

build :: (8u

1

; u

2

: 8� :

�

8� : (�

u

1

! (�

u

1

! �

u

1

)

u

1

)

!

! (�

!

! �

u

2

)

1

�

1

! (List �)

u

2

)

!

augment :: (8u

1

; u

2

; u

3

: 8� :

�

8� : (�

u

1

! (�

u

1

! �

u

1

)

u

1

)

!

! (�

u

2

! �

u

3

)

1

�

!

! ((List �)

u

2

! (List �)

u

3

)

!

)

!

zipWith :: (8u

1

; u

2

; u

3

: 8�; �;
 : (�

u

1

! (�

u

2

!

u

3

)

1

)

!

! ((List �)

u

1

! ((List �)

u

2

! (List
)

u

3

)

u

1

)

!

)

!

mkPair :: (8u

1

: 8�; � : �

u

1

! (�

u

1

! (Pair � �)

u

1

)

u

1

)

!

fst :: (8u

1

: 8�; � : (Pair � �)

u

1

! �

u

1

)

!

� Constru
tor fun
tions like mkPair and destru
tor fun
-

tions like fst
an now be given regular types; in our earlier

work [WPJ99℄ these required spe
ial typing rules.

5 Type system

Our goal is to
onstru
t an analysis whi
h will take unanno-

tated sour
e terms and translate them into usage-annotated

target terms, by means of type inferen
e. Firstly, however,

we must de�ne the sour
e and target languages, and present

the rules that de�ne when a target term is well-annotated.

Our previous paper [WPJ99℄ fo
ussed on de
ent handling

of polymorphism and of
onstru
tors and
ase over user-

de�ned algebrai
 data types. Therefore the present paper

makes the following major simpli�
ations, for both sour
e

and target languages:

� We omit the Girard{Reynolds-style expli
it type abstra
-

tion and appli
ation.

� We omit
onstru
tors and
ase, repla
ing them instead

by the
hoi
e operator e

1

8 e

2

. This sele
ts one bran
h to

evaluate, nondeterministi
ally and thus in a manner not

predi
table by the type system.

� We restri
t letre
s to a single binding rather than a mu-

tually re
ursive group.

The language we deal with here exhausts all the te
hni
al

omplexity of the full language, with minimal
lutter. Ex-

tending it to the full language is straightforward: all of our

previous work on these features
arries over dire
tly into the

present system.

The sour
e language we deal with is de�ned in Figure 3.

It is essentially a simpli�ed, monomorphi
, expli
itly-typed

variant of Core (see Se
tion 3.1). The target language is

de�ned below it, and adds usage annotations, along with

usage polymorphism in the form of expli
t usage abstra
-

tion (generalisation) �u : e and appli
ation (spe
ialisation)

e �. Usage annotations � may be
onstants 1 (used at most

on
e) or ! (possibly used many times), or variables u; v; w.

Annotations appear on top of types, and re
ursively on both

sides of the fun
tion arrow. In terms, annotations appear

Figure 3 The sour
e and target languages.

Sour
e terms M ::= x j n

j �x : t : M j M

1

M

2

j M

1

+M

2

j M

1

8M

2

j letre
 x

1

: t

1

= M

1

in M

Sour
e t-types t ::= t

1

! t

2

j Int

Target terms e ::= x j n

j �

�

x : � : e j e

1

e

2

j �u : e j e �

j e

1

+ e

2

j e

1

8 e

2

j letre
 x

1

: �

1

= e

1

in e

Target � -types � ::= �

1

! �

2

j Int

j 8u : �

Target �-types � ::= �

�

Usage annotations � ::= 1 j ! j u; v; w

Figure 4 The subtype (4) and primitive (�) orderings.

�

1

� �

2

�

1

4 �

2

(4-Annot)

�

1

�

1

4 �

2

�

2

�

1

4 �

2

(4-All-U)

8u : �

1

4 8u : �

2

(4-Int)

Int 4 Int

�

3

4 �

1

�

2

4 �

4

(4-Arrow)

�

1

! �

2

4 �

3

! �

4

! � � � � 1 u � u

as part of types, and also expli
itly on lambdas and in us-

age appli
ations. The lambda annotation denotes the use

of the lambda abstra
tion, whi
h is distin
t from the use of

its argument; in the full system
onstru
tors also take an

annotation.

5

5.1 Type rules

The type rules in Figure 5 de�ne what it means for a target

term to be well-typed. The judgement � ` e : � states that

in
ontext �, the target expression e
an be given type �.

Our rules are based on those of [WPJ99℄, and share with

that system two key features. The system is (loosely) an

aÆne linear one,

4

but using the synta
ti
 o

urren
e fun
-

tion o

ur(�; �)

5

rather than the equivalent weakening and

ontra
tion rules; and has subsumption. Figure 4 de�nes

the primitive ordering � on usages and the indu
ed stru
-

tural subtype ordering 4 on types. Note that sin
e the

annotation 1 is more informative than !, we have

6

! � 1

and �

!

4 �

1

.

The well-typing rules should be unsurprising. We use j�j

to denote the topmost annotation of a type �. Usage poly-

morphism is added by the rules (`-UAbs) and (`-UApp).

Abstra
ted usage variables must not be free in the
ontext,

or be the topmost annotation of a type. This synta
ti

restri
tion|8u : � is de�ned to be a � -type rather than a

�-type|is required to ensure that j�j is always well-de�ned

(
onsider the possible meaning of j8u : �

u

j); the same re-

stri
tion is made in [GS00℄.

That this type system is sound with respe
t to an appropri-

ate operational semanti
s may be demonstrated by a simple

extension of the proofs in [WPJ99℄, or as a
orollary of the

proofs for a
onstrained polymorphi
 system su
h as [GS00℄.

6 Inferen
e

We now present our inferen
e algorithm, the prin
ipal
on-

tribution of this paper. We seek an algorithm that:

� Translates ea
h sour
e term to a target term whose era-

sure is the original sour
e term.

� Yields a well-typed target term for any well-typed sour
e

term.

� Yields annotations that are as pre
ise as possible.

The �rst point ensures we merely add information, and do

not alter the semanti
s of the program. The se
ond point

ensures our analysis is \soft" [CF91℄: our analysis does not

a�e
t the set of programs one is allowed to write. This

permits it to be hidden from the programmer. The third

point is a
laim of optimality: we would like to generate the

`best possible' annotations.

6.1 Basi
 algorithm

The well-typing rules of Figure 5 spe
ify what it means for

a program to be type-
orre
t, but do not in themselves
on-

stitute an algorithm for inferring type annotations for an

unannotated sour
e program. Su
h an algorithm must be

onstru
ted separately, and then proven sound with respe
t

4

i.e., a linear type system [Gir87℄ admitting weakening but not

ontra
tion [Ja
94℄.

5

The value of o

ur(x; e) is the number of synta
ti
 o

urren
es of

the variable x in the term e, ex
ept that for
hoi
e terms e

1

8 e

2

it is

max(o

ur(x; e

1

); o

ur(x; e

2

)).

6

This is a notational
hange relative to [WPJ99℄.

to the well-typing rules. Our inferen
e algorithm is pre-

sented in Figures 6 and 7. The relation

C; � IM e : �

may be read \In
ontext �, sour
e term M may be trans-

lated to term e whi
h has type �, under
onstraints C."

The de�nition
an be seen as an algorithm, with I a fun
-

tion from (�;M) to (e; �; C). The algorithm
losely follows

standard ML type inferen
e [MTHM97℄ ex
ept that we also

gather
onstraints as we pro
eed.

Some notation: a
onstraint set is a set of atomi

onstraints

� � �

0

, where �; �

0

are usage annotations (see Figure 3). The

onjun
tion (union) of two
onstraint sets C

1

, C

2

is written

C

1

^ C

2

. We write f� = �

0

g to denote f� � �

0

; �

0

� �g

and we write fP) Cg to denote the
onstraint set that is

either C if P holds, or the trivial
onstraint set ; otherwise

(note that this is a simple
ontraint, not an impli
ational

onstraint: P is
onstant). We write f�

0

1

4 �

1

g to denote

the least set of atomi

onstraints � � �

0

from whi
h �

0

4 �

is derivable by the rules given in Figure 4.

7

The FreshAnnot(�) operator in (I-Abs) annotates a sour
e

type, yielding a target type with fresh usage variables ev-

erywhere. This is suÆ
iently general, sin
e our subtyping is

purely stru
tural. The FreshLUB operator in (I-Choi
e)

returns a
onstraint set and a type (possibly
ontaining fresh

usage variable annotations) su
h that under the
onstraints,

the result type is the least upper bound of the arguments.

On
e inferen
e is
omplete we solve the
onstraint set, ob-

taining a substitution of usage annotations for usage vari-

ables that satis�es the
onstraints in the set (if the
onstraint

set is insoluble, translation fails; Se
tion 6.4 argues that this

never o

urs). When there are multiple su
h substitutions,

we
hoose the best: the greatest under the obvious pointwise

ordering on substitutions.

8

There are two pla
es where we expli
itly deal with
onstraint

sets: at the end, where we solve the
onstraint set; and at

generalisation time, i.e., in (I-LetRe
). Here a spe
ial

losure operator is invoked.

6.2 Closure algorithm

The well-typing rules of Figure 5 give us no guidan
e in

hoosing where to usage-generalise a term, i.e., where to in-

sert usage abstra
tions in the translation. We
hoose simply

to follow the Hindley{Milner approa
h, and make all letre
s

usage-polymorphi
 (Figure 7). This is done by applying

a
losure operator to the
onstraint set generated by ea
h

binding group, to
ompute the most general usage types for

the bindings it
ontains.

This
losure operator Clos(�; �; �) is the
ore of the inferen
e,

and the major te
hni
al
ontribution of this paper. The

usage-monomorphi
 system presented in [WPJ99℄ may be

obtained by putting Clos(C;�; �

i

�

i

) = (C; [℄; [℄); instead,

we present below our new algorithm for generating un
on-

strained usage-polymorphi
 types by means of approxima-

tion.

Note that our target language
an express general impred-

i
ative (\nested") polymorphism; our algorithm infers only

7

As an aside, note that this means that expressions su
h as

fInt

u

1

4 (Int

u

2

! Int

u

3

)

u

4

g are unde�ned.

8

The algorithm of [WPJ99, x7.2℄ is used to �nd this solution, whi
h

exists and is unique due to the simple nature of the
onstraints.

6

Figure 5 Well-typing rules for the target language.

(`-Var)

�; x : � ` x : �

(`-Int)

� ` n : Int

!

�; x

1

: �

1

` e

1

: �

1

�; x

1

: �

1

` e : �

(o

ur(x

1

; e) + o

ur(x

1

; e

1

)) > 1) j�

1

j = !

(`-LetRe
)

� ` letre
 x

1

: �

1

= e

1

in e : �

� ` e

i

: � i = 1; 2

(`-Choi
e)

� ` e

1

8 e

2

: �

� ` e

i

: Int

1

i = 1; 2

(`-PrimOp)

� ` e

1

+ e

2

: Int

!

�; x : �

1

` e : �

2

o

ur(x; e) > 1) j�

1

j = !

o

ur(y; e) > 0) j�(y)j � � for all y 2 �

(`-Abs)

� ` �

�

x : �

1

: e : (�

1

! �

2

)

�

� ` e

1

: (�

1

! �

2

)

1

� ` e

2

: �

1

(`-App)

� ` e

1

e

2

: �

2

� ` e : �

�

u

i

=2 fuv(�) [fuv(�)

(`-UAbs)

� ` �u

i

: e : (8u

i

: �)

�

� ` e : (8u

i

: �)

�

(`-UApp)

� ` e �

i

: (� [u

i

:= �

i

℄)

�

� ` e : �

0

�

0

4 �

(`-Sub)

� ` e : �

Figure 6 Basi
 type inferen
e rules (omitting (I-LetRe
)).

fresh v

i

� a usage-monotype

(I-Var)

;; �; x : (8u

i

: �)

�

I x x v

i

: (� [u

i

:= v

i

℄)

�

(I-Int)

;; � I n n : Int

!

C

i

; � IM

i

 e

i

: �

i

i = 1; 2

(C

3

; �) = FreshLUB(�

1

; �

2

)

(I-Choi
e)

C

1

^ C

2

^ C

3

; � IM

1

8M

2

 e

1

8 e

2

: �

C

i

; � IM

i

 e

i

: Int

�

i

i = 1; 2

(I-PrimOp)

C

1

^ C

2

; � IM

1

+M

2

 e

1

+ e

2

: Int

!

fresh v �

1

= FreshAnnot(t

1

) C

1

; �; x : �

1

IM e : �

2

C

2

= fo

ur(x; e) > 1) j�

1

j = !g C

3

=

V

y2�

fo

ur(y; e) > 0) j�(y)j � vg

(I-Abs)

C

1

^ C

2

^ C

3

; � I �x : t

1

: M �

v

x : �

1

: e : (�

1

! �

2

)

v

C

1

; � IM

1

 e

1

: (�

1

! �

2

)

�

C

2

; � IM

2

 e

2

: �

0

1

C

3

= f�

0

1

4 �

1

g

(I-App)

C

1

^ C

2

^ C

3

; � IM

1

M

2

 e

1

e

2

: �

2

predi
ative usage type \s
hemes". However, impredi
ative

types may be present in the initial
ontext or in expli
it type

signatures, and will then be handled
orre
tly. Su
h types

have been shown to be useful in other
ontexts (su
h as in

the type of runST [LPJ94℄) and might
on
eivably prove to

be so here, but inferen
e is known to be unde
idable in this

ase. A possible approa
h suggests itself from the
ommon

pattern observed for
ompose in Se
tion 4: we
ould attempt

to follow ea
h nested type quanti�er with a usage quanti�er.

Su
h an approa
h might well improve the type of fun
tions

su
h as build (Figure 2). We have not tried this.

Figure 8 shows the
losure algorithm. The input is a triple:

a
onstraint set C for the binding group being
onsidered,

a
ontext � in whi
h the generalisation is to be done, and

a ve
tor of the types (usage-monomorphi
 by
onstru
tion)

and topmost annotations �

i

�

i

of the bindings. The output

is a redu
ed
onstraint set, a ve
tor of usage variables over

whi
h to generalise, and a unifying substitution to be ap-

plied.

The
losure algorithm is ne
essarily approximate|in gen-

eral, simple usage polymorphism does not admit most-

general types, and a term su
h as plus3 may have multi-

ple in
omparable types between whi
h we
hoose essentially

arbitrarily (Se
tion 6.3). The algorithm does however guar-

antee to yield maximally-appli
able types|types for binders

whi
h do not restri
t their use. This is ne
essary to satisfy

the se
ond requirement of Se
tion 6.

We take a moment to introdu
e some essential notation.

For target types, we de�ne a positive o

urren
e of a usage

variable u in a type � or � to be one annotating a
ovari-

ant position, and a negative o

urren
e to be one annotating

a
ontravariant position. In the
ase of a �-type, the top-

most annotation is
onsidered to be
ovariant. We de�ne

fun
tions fuv

+

(�) (fuv

�

(�)) as the set of usage variables o
-

urring positively (negatively) in �; similarly for � -types.

Thus if � = ((�

u

1

! �

u

2

)

u

3

! (

u

4

! Æ

u

5

)

u

6

)

u

7

, we have

fuv

+

(�) = fu

1

; u

5

; u

6

; u

7

g and fuv

�

(�) = fu

2

; u

3

; u

4

g. The

notation fuv(�) denotes the set of usage variables o

urring

positively or negatively in �; i.e., fuv

+

(�) [fuv

�

(�). We

use " to range over f+;�g. The relation �

C

is the partial

7

Figure 7 Type inferen
e rule (I-LetRe
).

�

1

v

1

= FreshAnnot(t

1

)

C

1

; �; x

1

: �

1

v

1

IM

1

 e

1

: �

0

1

C

2

= f�

0

1

4 �

1

v

1

g

(C

3

; u

k

; S) = Clos(C

1

^ C

2

;�; �

1

v

1

)

C

4

; �; x

1

: (8u

k

: S�

j

)

v

1

IM e : �

C

5

= f(o

ur(x

1

; e) + o

ur(x

1

; e

1

)) > 1) v

1

= !g

C

3

^ C

4

^ C

5

; �

I letre
 x

1

: t

1

=M

1

in M

 letre
 x

1

: (8u

k

: S�

1

)

v

1

= �u

k

: Se

1

[x

1

:= x

1

u

k

℄ in e : �

Figure 8 The
losure operation.

Clos(C

0

;�

0

; �

0i

�

0i

) = (C

0

; u

i

; S) where

(C; S

0

) = TransitiveClosure(C

0

)

� = S

0

�

0

�

i

�

i

= S

0

�

0i

�

0i

F = fu

"

j u 2 fuv

"

(�

i

)g

X = fuv(�) [fuv(�

i

)

�(A) = A \ F

\ fu

"

j u

"

2 A; :9x 2 X : x �

"

C

ug

\ fu

�

; v

+

j u �

C

v; u

�

2 A; v

+

2 Ag

G = gfp(�)

(�) = f(u; v); (v; u) j u �

C

v; u

�

2 G; v

+

2 Gg

U = fu j u

"

2 Gg = (�)

u

i

= a ve
tor
ontaining one representative

from ea
h equivalen
e
lass in U

S = f(x 7! u

i

) j 9u

�

; v

+

2 G : u �

C

x; x �

C

v; u

i

2 [u℄

(�)

g

C

0

= SC ^ fx � ! j :9u

�

2 G : u �

C

x; 9v

+

2 G : x �

C

vg

^ f1 � x j 9u

�

2 G : u �

C

x; :9v

+

2 G : x �

C

vg

order indu
ed by
onstraint set C, and we write u �

+

C

v for

u �

C

v and u �

�

C

v for v �

C

u.

The intent of the
losure operation is to
ompute the largest

possible set of variables to generalise over. There are four

reasons a variable should not be generalised: (i) it may be

onstrained already su
h that its range is restri
ted; (ii) it

may be possible that it will be
ome so
onstrained later in

the inferen
e pro
ess; or (iii) it may be a topmost annotation

and thus synta
ti
ally ungeneralisable.

9

Further, a variable should not be generalised if (iv) it does

not express a dependen
y. When inferring the type of an

expression it is safe to return a smaller (more informative)

type, sin
e subsumption will be applied to the result type.

We therefore desire to infer the smallest possible type for

the expression. This means that positive variables should

be minimised, and negative variables maximised. A depen-

den
y o

urs when a positive variable is
onstrained to be

greater than a negative variable; in this
ase the monomor-

phi
 solutions are in
omparable, and instead we unify the

variables and generalise (as dis
ussed in Se
tion 3.3). Con-

dition (iv) states (due to subsumption) that we need not

generalise other variables.

The
losure operation �rst implements
ondition (i) by sub-

stituting values for all
ompletely
onstrained variables.

10

These values are obtained by means of an auxiliary partial

onstraint solver TransitiveClosure whi
h forms the transi-

tive
losure of the
onstraints
olle
ted in C

0

. If this su
-

eeds it returns a set of substitutions S for variables whose

values are
ompletely determined by C

0

, and a residual
on-

straint set C
onstraining these variables dire
tly to their

values, and the remaining variables equivalently to C

0

. If

C

0

is unsatis�able, TransitiveClosure and the entire trans-

lation fail; Se
tion 6.4 argues that this never o

urs.

The set F
ontains the free usage variables of the result

types (whi
h are
andidates for generalisation), tagged by

the polarity of their o

urren
e,

11

and X
ontains free us-

age variables of the
ontext (for implementing
ondition (ii))

and of the topmost annotations (for implementing
ondi-

tion (iii)). Variables appearing in or
onstrained by other

variables in X should not be generalised. Given these, G is

the largest subset (`greatest �xed point', hen
e gfp) of F su
h

that
onditions (ii) through (iv) hold: the third
onjun
t re-

quires that variables in G not be
onstrained by variables in

X,

12

and the fourth
onjun
t requires that all positive (neg-

ative) variables be greater (less) than a negative (positive)

variable.

Having found the set of variables to be generalised, we now

perform the required uni�
ations. Note that the
onstraint

set C may
ontain many variables that do not o

ur in the

types �

i

, but have been generated internally during infer-

en
e. If two variables u and v are to be uni�ed and gener-

alised, then all variables in between them must be so also. In

general, we have a number of `
lusters' of related variables

in F ,
onstraining other variables between them. One su
h

luster might look as follows (this is an outline of a Hasse di-

agram, where apart from the typi
al variable x all variables

9

This synta
ti
 restri
tion is dis
ussed in Se
tion 5.1.

10

In our simple two-point latti
e, a variable's range is either unre-

stri
ted or restri
ted to a single value; this is likely not to be the
ase

for the system dis
ussed below in Se
tion 9, and so this part of the

algorithm will need to be rewritten.

11

If a usage variable u were to appear both positively and negatively

in the result types, it would appear twi
e in F , on
e as u

�

and on
e

as u

+

. It
an be shown, however, that with the translation algorithm

as given this never o

urs.

12

We need only
he
k that positive (negative) variables are not

greater (less) than variables in X; the other dire
tion is ensured by

the fourth
onjun
t, by transitivity of �.

8

in the
entral region have been omitted for
larity):

� v

+

� y

+

�x

�u

�

�w

�

Here u and w are negative, v and y are positive, and u � v,

w � y, u � y, w � v. Clearly u; v; w; y must be uni�ed, but

so too must x and all variables like it, in the region de�ned

by fx j (u � x _ w � x) ^ (x � v _ x � y)g. Furthermore,

variables above (below) su
h a uni�ed and generalised group

must be guaranteed to lie above (below) any instan
e of it.

This we a
hieve by
onstraining su
h variables to 1 (!).

The uni�
ation is performed as follows: we �rst
onstru
t

the equivalen
e relation (�) whi
h relates pairs of dependent

variables in G. From this we
onstru
t equivalen
e
lasses of

variables in G, pla
e an arbitrary ordering on these
lasses,

and pi
k an arbitrary representative element from ea
h. The

result is a ve
tor of variables u

i

. We then
reate the unifying

substitution: if a variable lies inside a
luster's region, we

repla
e it with the representative variable from the appro-

priate equivalen
e
lass.

Finally, we return the now-uni�ed
onstraint set,

13

aug-

mented with
onstraints that for
e variables lying above (be-

low) a
luster to 1 (!). Other variables are untou
hed. We

also return the ve
tor of uni�ed variables over whi
h to gen-

eralise, and the substitution to be applied.

14

6.3 Optimisations and design
hoi
es

During the implementation, two possible optimisations sug-

gested themselves. Variables lo
al to C

0

that are
ompletely

un
onstrained may be set to 1 immediately, anti
ipating the

global maximisation performed at the end of the inferen
e;

and
onstraints added to C

0

may also be added as substitu-

tions to S, and performed earlier.

Furthermore,
onsider the following situations:

(a)

� v

+

�x

�u

�

�w

�

!

(b)

� v

+

�u

�

� y

�

!

Here u; v; w are in F , and x; y are in X. In (a), a

ording

to the algorithm none of the variables may be generalised,

be
ause they are all related to x, a variable appearing in the

ontext. But in fa
t we
an generalise u and v, at the
ost

of for
ing w to !, as indi
ated by the arrow.

In fa
t, x need not be in X for this
ase to be interesting.

Consider that the same
onstraints arise when typing plus3,

as dis
ussed in Se
tion 4. Now if we knew at
losure time

that plus3 was likely to be very often partially applied to a

13

This uni�
ation SC
an in fa
t be implemented alternatively as

C ^ fx � u; u � x j (x 7! u) 2 Sg.

14

Sin
e variables o

urring in the
ontext
annot
onstrain gener-

alised variables, the substitution is (lu
kily) the identity outside the

binding group.

single argument, we
ould for
e x to !, and get the (in this

ontext) more useful type (8u : �

!

! (�

u

! (�

1

! �

!

)

u

)

!

)

!

,

rather than (8u : �

u

! (�

u

! (�

1

! �

!

)

u

)

u

)

!

.

In (b), we
an generalise u and v at the
ost of for
ing y,

a variable in the
ontext. This is
ertainly not HM-style

behaviour: we expe
t the
ontext to a�e
t bindings inferred

within it, not the other way around; but we know it is always

safe to for
e su
h a variable to ! (for
ing to 1 may
ause

inferen
e subsequently to fail).

There is no right
hoi
e for whether or not to for
e su
h

variables, be
ause the types resulting are in
omparable (
on-

sider the two types for plus3 above). In some
ases we
er-

tainly should not for
e: if we are still unable to generalise

after for
ing, we have lost information to no purpose. In

the absen
e of any general rule, we
hoose simply to ignore

these possibilities, and follow the algorithm as given.

15

6.4 Soundness and pre
ision

In Se
tion 6 we gave three requirements for our inferen
e

algorithm. Our algorithm
ertainly satis�es the �rst two;

maximum pre
ision turns out to be something of a movable

feast.

It is
lear by inspe
tion of the rules that the erasure of the

target term resulting from the translation is identi
al to the

original sour
e term. Thus our algorithm does not alter the

meaning of the program.

Soundness is slightly less trivial. We require that trans-

lations be well-typed whenever sour
e terms are; i.e., if

`M : t then C; � IM e : �, where C is satis�able and

for all substitutions S satisfying C we have ` Se : S�.

The proof of this makes use of a lemma: if C

i

; � I M

i

e

i

: �

i

and all the C

i

are satis�able, then the
onjun
tion

V

i

C

i

is also satis�able. We pro
eed by stru
tural indu
tion

on the inferen
e derivation tree. All the rules in Figure 6

an be seen by inspe
tion to preserve the well-typedness

property and the lemma, sin
e usage variables are only ever

onstrained to ! or a fresh usage variable. This leaves

(I-LetRe
). The proof for this requires us to show that

the unifying substitution and additional
onstraints gener-

ated by the
losure operation of Figure 8 do not violate the

lemma. While we have not yet
ondu
ted a formal proof of

this result, we are
on�dent that it holds.

The �nal requirement was that annotations are `as pre-

ise as possible'. For our earlier usage-monomorphi
 sys-

tem [WPJ99℄, this
ould be simply interpreted as `inferen
e

yields target programs with the greatest possible number

of 1 annotations'. The introdu
tion of usage polymorphism

signi�
antly
ompli
ates the a

ura
y ordering. As we saw

in Se
tion 6.3, terms su
h as plus3 have multiple in
ompara-

ble usage-polymorphi
 types, and thus there is no maximally

pre
ise type for our algorithm to �nd. However, experien
e

with the implementation leads us to believe our algorithm

behaves in a reasonable manner, and we hope (see Se
tion 9)

to give a more formal treatment in a subsequent paper.

15

Of
ourse, the problem trivially disappears in the presen
e of

onstrained polymorphism be
ause the
onstraint set is used unap-

proximated.

9

7 Implementation

We have implemented our analysis within the Glasgow

Haskell Compiler (GHC) [PJS98℄. GHC is an optimising

ompiler, and it operates by translating Haskell input into

Core, performing a long series of optimisation passes over

the Core program, and �nally translating the resulting Core

program into STG
ode and then obje
t
ode. The Core

language is typed, and types are maintained throughout the

optimisation phase of the
ompiler.

In our implementation, as we have seen, usage information

is made an integral part of the type language. This means

that we
an ensure usage annotations are preserved through

all the various transformations performed, and at any point

we
an perform a type-
he
k to verify that they are
orre
t

(i.e., that no optimisation pass has unintentionally violated

the usage annotations). This was not entirely straightfor-

ward to a
hieve, and in fa
t one transformation,
ommon

subexpression elimination, yields
ode that may require a

full re-inferen
e pass to preserve well-typedness. For most

transformations, however,
areful lo
al manipulation of an-

notations is suÆ
ient.

Our `plan of atta
k' is that of [WPJ99, x2.3℄: we perform an

initial usage type inferen
e soon after translation into Core;

subsequent transformations preserve usage type soundness,

but at any point we may
hoose to perform another infer-

en
e to improve the a

ura
y of the types (re
all that a

de
idable inferen
e of any interesting operational property

is ne
essarily an approximation). Finally, we perform a �-

nal inferen
e just prior to translation to STG, to ensure

maximally-a

urate usage information is available when de-

iding whi
h
ode to generate for ea
h thunk.

Usage information is used in two pla
es. Firstly, it is used

by the
ode generator to
hoose whether or not to generate

an updatable thunk and push an update frame on entry.

Se
ondly, it used by the optimisation passes. The major

(
urrently the only) information
hannel here is the usage

annotations on lambda expressions. Ea
h lambda knows

whether it is a `one-shot lambda' (i.e., a lambda that will be

applied at most on
e) or not. As shown in [San95, PJPS96℄

and dis
ussed in our earlier paper [WPJ99, x2℄, identifying

su
h one-shot lambdas greatly in
reases the s
ope for
ode-

oating transformations su
h as inlining and full laziness.

Previously a
ouple of rather ugly ha
ks identi�ed a few

spe
ial
ases where lambdas must be one-shot; our inferen
e

identi�es all these, and many more.

7.1 Measurements

Table 2 shows the overall results of adding our analysis to the

optimising
ompiler GHC. All standard libraries were
om-

piled with the analysis, in addition to the program under

test. For ea
h program, the
hange in total bytes allo
ated

and in run time is given relative to the version of the
om-

piler and libraries without usage inferen
e. We also list the

per
entage of thunks demanded at most on
e during exe
u-

tion that were stati
ally identi�ed as su
h by the analysis,

both with optimisation on and o� (optimisation was always

turned on for the standard libraries).

It
an be seen that both total allo
ations and run time de-

rease signi�
antly relative to the
ompiler without the anal-

ysis. Note, however, that essentially no used-on
e thunks

are identi�ed in the
ode generated. We hypothesise that the

Table 2 Measurements

Program Allo
s Run time 1-thunks found

-O -O -O -Onot

i
helli -1.16% -5.23% 0.00% 35.00%

ompress +1.12% -1.94% 0.00% 0.00%

event -3.34% +0.26% 0.00% 0.00%

exp3 8 0.00% -7.33% 0.00% 0.04%

fibheaps -8.78% -9.13% 0.00% 3.00%

gamteb -7.28% -16.44% 0.88% 17.00%

queens 0.00% +5.88% 0.00% 71.00%

solid 0.00% +6.16% 0.00% 0.00%

Average -2.49% -3.74%

IMPORTANT NOTE: The �gures in this table are known to be

in
orre
t. Corre
ted �gures will appear in the formal pro
eedings.

optimiser is taking advantage of usage information provided

it by our analysis to remove identi�ed used-on
e thunks alto-

gether. Unfortunately, a large number of unidenti�ed used-

on
e thunks remain.

Our other results (not shown) show that the
osts of the

analysis are not high. The standard libaries (and hen
e

binaries that link them in) in
rease by about 1% in size, al-

though many modules de
rease slightly; and
ompile times

in
rease by only a small fa
tor in most
ases (although a

few modules nearly double in time, presumably due to inef-

�
ien
y in our
onstraint-solution algorithm).

7.2 Dis
ussion

The improvements in total allo
ations and run time are quite

en
ouraging. A 3% improvement is de�nitely signi�
ant

given the number of other optimisations already performed

by GHC.

However, even with our analysis working on both libraries

and program, and optimisation turned o�, a program like

ompress allo
ates 810,000 thunks of whi
h 680,000 are en-

tered at most on
e|but our analysis identi�es pre
isely

one of them! For a number of programs our analysis per-

forms respe
tably, but for many the results are like those for

ompress. What is going wrong?

A more
omplete answer will have to await deeper analy-

sis, but initial investigations suggest a likely
ulprit is our

treatment of data stru
tures (dis
ussed in our previous pa-

per [WPJ99℄). We
urrently identify, for example, the usage

of the spine of a list with the usage of its elements; this is

bad for the
ommon pattern of an intermediate data stru
-

ture, where the list itself is used on
e but the
ontents may

be used multiple times. We are presently investigating the

impa
t of using a less drasti
 typing for data stru
tures.

Another possible fa
tor is our
hoi
e to restri
t the analy-

sis to monovarian
e: we generate just a single
opy of ea
h

fun
tion, and provide that with as polymorphi
 a type as

possible. Would a polyvariant analysis do better? As a very

rude test

16

we told the
ode generator to treat thunks an-

notated with usage variables as used-on
e, rather than used-

many: this e�e
tively spe
ialised all fun
tions at 1, at the

ost of soundness. Surprisingly, although some of the pro-

grams in our test suite aborted with the diagnosti
 \single-

entry thunk re-entered", a large fra
tion of the programs in

our test suite en
ountered no problems; yet the per
entage

16

Like Rutherford's experiment, this was in fa
t an a

ident!

10

of used-on
e thunks allo
ated went up dramati
ally. This

indi
ates that spe
ialisation would very likely improve the

situation dramati
ally. Helpfully, the spe
ialisation ma
hin-

ery is all
urrently present in GHC anyway, and adding the

required spe
ialisations would be relatively straightforward.

8 Related work

Constrained polymorphism was introdu
ed independently

by Curtis [Cur90℄ and by Aiken and Wimmers [AW93℄, and

a signi�
ant body of work has developed sin
e. Constrained

polymorphism is
losely related to bounded polymorphism,

introdu
ed by Cardelli et al. in [CW85, CMMS94℄. With

the addition of re
ursive types, bounded polymorphism be-

omes equivalent to
onstrained polymorphism [PS96℄, and

this latter setting seems more natural for many problems.

Trifonov and Smith's [TS96℄ is a key paper dealing with the

theory of subtyping in this
ontext.

Mu
h work has also been done on the type inferen
e prob-

lem for these systems [JP99℄; in pra
ti
e this redu
es to the

problem of
onstraint simpli�
ation [AWP97, Pot98, FF99,

MW97, FM90℄. Our subtype ordering is purely stru
tural,

making simpli�
ation signi�
antly easier than the general

ase.

Constraint simpli�
ation attempts to �nd a minimal des
rip-

tion of a given type. We go further, and restri
t the form

of the des
ription in a way that for
es it to be smaller, but

also for
es it (in general) to be approximate. There are two

approximation algorithms of whi
h we are aware. Cardelli's

`greedy algorithm' [Car93℄ (for a bounded polymorphi
 lan-

guage) resolves all subtyping
onstraints immediately (i.e.,

on generation at appli
ation sites), performing uni�
ation

on type variables as ne
essary to ensure that
onstraints

need never be propagated. Slightly less greedy is the algo-

rithm of Nordlander [Nor98℄ (for a
onstrained polymorphi

language), whi
h resolves only lo
al subtyping
onstraints

immediately, and propagates
onstraints on variables in the

environment further upwards. Nordlander's algorithm is rel-

atively ad ho
, motivated by a desire for the subtype infer-

en
e algorithm to follow the standard uni�
ation algorithm

as
losely as possible. Our
losure algorithm provides a

mu
h more formal presentation of
onstraint approximation,

and should be more amenable to dis
ussion and analysis.

Flanagan and Felleisen [FF99℄ dis
uss in detail the prob-

lem of ranking multiple solutions to a
onstraint set so as

to sele
t the `best' or most a

urate one. Their a

ura
y

ordering v

s

is
ovariant on fun
tion types, and is distin
t

from their subtype ordering whi
h is, as usual,
ontravari-

ant on fun
tion types. This may provide a formal basis for

our pointwise (i.e.,
ovariant) ordering of
onstraint-set so-

lutions, des
ribed in [WPJ99℄ and retained in the present

paper (Se
tion 6.1).

The idea of usage polymorphism itself is in no way new.

It is proposed in the paper that started us o�, [TWM95℄,

although in the
ontext of either
ode spe
ialisation or run-

time usage-passing. A similar notion of annotation polymor-

phism is also familiar in the
ow analysis
ommunity, un-

der the term polyvarian
e [Bul84, JW95, WJ98℄; many
ow

analyses are abstra
t interpretations rather than type-based

analyses, but it has been shown that the two are
losely re-

lated [Jen91℄. Polyvarian
e has been applied to many di�er-

ent analyses, notably here binding-time analysis [DHM95℄,

and so its appli
ation to usage is unsurprising.

Gustavsson [Gus98℄ infers both usage information (in ex-

a
tly our sense) and update-marker-
he
k information for a

language similar to ours. Re
ently [GS00℄ he has added
on-

strained polymorphism (the `natural
hoi
e' we mentioned

in Se
tion 3.4) to his analysis, and believes that it will prove

feasible in pra
ti
e. Similarly, the Clean uniqueness typ-

ing system of Barendsen et al. [BS96℄ features
onstrained

uniqueness polymorphism for lambda-lifted fun
tions and

data
onstru
tors. Our analysis takes a di�erent approa
h;

we believe that simple polymorphism will be
heaper and

hope that it will be suÆ
ient in pra
ti
e. We do not at-

tempt to address the update-marker-
he
k problem.

Systems based on soft typing [CF91℄, in
ommon with our

analysis, must be able to type all valid programs; and in

both
ases maximum bene�t o

urs when the types inferred

are as a

urate as possible. However, soft typing is ne
essar-

ily visible to the programmer: it is intended for debugging;

in
ontrast, our analysis is intended to be invisible: it is in-

tended to guide optimisation. Further, type mismat
hes in a

soft typing system are typi
ally resolved by arbitrary stati

oer
ions supported by dynami

he
ks; in our system, type

mismat
hes provably do not o

ur, by
onstru
tion.

Work relating to usage analysis but not spe
i�
ally to usage

polymorphism is dis
ussed in our earlier paper, [WPJ99℄.

9 Con
lusions and future work

We have presented a novel algorithm that infers simple poly-

morphi
 types (rather than the natural
onstrained poly-

morphi
 types) for a language with subtyping, by means of

judi
ious
onstraint approximation. This algorithm should

be appli
able to any analysis that
urrently uses
on-

strained polymorphism, su
h as the binding-time analysis of

[DHM95℄. We have implemented our analysis in the Glasgow

Haskell Compiler, and performed some preliminary measure-

ments of its e�e
tiveness. These measurements are en
our-

aging, although there is still a signi�
ant amount of work

to be done in maximising the bene�t to the
ompiler of our

analysis.

There are a number of matters remaining to be investigated.

Clearly we need a deeper formal understanding of exa
tly

whi
h types and annotations are found by our algorithm.

We have some ideas as to how this might be a
hieved. Our

algorithm may be viewed as taking a type

17

and attempting

to �nd an optimal des
ription for it, given
ertain restri
-

tions on the form of that des
ription (namely, that it be only

simply polymorphi
). Clearly we must maintain soundness

and so for
losed types at least, the type we
hoose is (al-

most) the least type des
ribable that is both greater than

the given type and as appli
able

18

as the given type, ex
ept

that in
ertain
ases there is no su
h least type. We defer a

omplete treatment of this to a subsequent paper dis
ussing

the theoreti
al issues underlying our algorithm.

One major target we have in view is the extension of our

usage annotations from the simple two-point latti
e ! � 1

to the following seven-point `latti
e' (the apparently-missing

17

We here identify a type � with the set [[�℄℄ of its ground instan
es,

and order types by reverse set in
lusion: � v �

0

i� [[�

0

℄℄ � [[�℄℄.

18

Appli
ability is a notion related to the pessimising translation

performed for exported fun
tions; the latter simply returns the least

maximally-appli
able type of the same shape as its input. Appli
a-

bility requires
ovariant annotations to lie in the inverse primitive

ordering, and ignores
ontravariant annotations.

11

top element would be meaningless). This subsumes absen
e,

stri
tness, and linearity, in addition to the present (aÆne

linear) usage analysis:

= 0

aÆne

= 1

> 1

stri
t

� 1 6= 1 � 1

?

We term this the Bierman latti
e, after [Bie92℄; it is
losely

related to the usage intervals of [Ses91, x5℄ and to the log-

i
s of [Wri96℄. We are
lose to
ompleting the extension of

our monomorphi
 analysis to this latti
e, and believe that

it should be possible to extend the usage-polymorphi
 infer-

en
e algorithm we have presented similarly. We aim thereby

to have the
ompiler perform all these analyses simultane-

ously.

There remains also signi�
ant implementation e�ort,
on-

vin
ing GHC to make the best possible use of the informa-

tion a�orded by the analysis, and ensuring that the usage

types (whi
h are surprisingly fragile) are preserved by the

various transformations within it.

A
knowledgements

We wish to thank Lu
a Cardelli, Karl-Filip Fax�en, J�orgen

Gustavsson, Fritz Henglein, Mark Jones, Martin M�uller,

Martin Odersky, Andrew Pitts, Fran�
ois Pottier, Martin

Sulzmann, Josef Sveningsson, Valery Trifonov, and the

anonymous reviewers for helpful
omments and fruitful dis-

ussions by email and in person. Their input has made this

presentation mu
h
learer.

Referen
es

[AW93℄ Alexander Aiken and Edward L. Wimmers. Type in
lu-

sion
onstraints and type inferen
e. In Pro
eedings of

the Seventh ACM Conferen
e on Fun
tional Program-

ming and Computer Ar
hite
ture (FPCA'93), Copen-

hagen, Denmark, pages 31{41. ACM Press, 1993.

[AWP97℄ Alexander Aiken, Edward L. Wimmers, and Jens Pals-

berg. Optimal representations of polymorphi
 types

with subtyping (extended abstra
t). In Pro
eedings

of TACS'97, International Symposium on Theoreti
al

Aspe
ts of Computer Software, Sendai, Japan, number

1281 in Le
ture Notes in Computer S
ien
e, pages 47{

76. Springer{Verlag, September 1997. Journal version

appears as [AWP99℄.

[AWP99℄ Alexander Aiken, Edward L. Wimmers, and Jens Pals-

berg. Optimal representations of polymorphi
 types

with subtyping (extended abstra
t). Higher-Order and

Symboli
 Computation, 12(3), O
tober 1999. Journal

version of [AWP97℄.

[Bie92℄ Gavin Bierman. Type systems, linearity and fun
tional

languages. In CLICS Workshop, Aarhus, Mar
h 23{

27, 1992, 1992. Appears as Te
hni
al Report DAIMI

PB-397-I, Department of Computer S
ien
e, Aarhus

University, May 1992, pp. 71{91.

[BS96℄ Erik Barendsen and Sjaak Smetsers. Uniqueness typing

for fun
tional languages with graph rewriting seman-

ti
s. Mathemati
al Stru
tures in Computer S
ien
e,

6:579{612, 1996.

[Bul84℄ M. A. Buluyonkov. Polyvariant mixed
omputation

for analyzer programs. A
ta Informati
a, 21:473{484,

1984.

[Car93℄ Lu
a Cardelli. An implementation of F

<:

. SRC Re-

sear
h Report 97, Digital Equipment Corporation, Sys-

tems Resear
h Center, February 23 1993. Revised June

1997.

[CF91℄ Robert Cartwright and Mike Fagan. Soft typing. ACM

SIGPLAN Noti
es, 26(6):278{292, June 1991.

[CMMS94℄ Lu
a Cardelli, John C. Mit
hell, Simone Martini, and

Andre S
edrov. An extension of System F with sub-

typing. Information and Computation, 109(1/2):4{56,

February 1994.

[Cur90℄ Pavel Curtis. Constrained quanti�
ation in polymor-

phi
 type analysis. Te
hni
al Report CSL-90-1, Xerox

Palo Alto Resear
h Center, February 1990.

[CW85℄ Lu
a Cardelli and Peter Wegner. On understanding

types, data abstra
tion, and polymorphism. Comput-

ing Surveys, 17(4):471{522, 1985.

[DHM95℄ Dirk Dussart, Fritz Henglein, and Christian Mossin.

Polymorphi
 re
ursion and subtype quali�
ations:

Polymorphi
 binding-time analysis in polynomial time.

In My
roft [My
95℄. Extended version, obtained from

third author's home page.

[Fax95℄ Karl-Filip Fax�en. Optimizing lazy fun
tional programs

using
ow inferen
e. In My
roft [My
95℄.

[Fax97℄ Karl-Filip Fax�en. Analysing, Transforming and Com-

piling Lazy Fun
tional Programs. PhD thesis, Depart-

ment of Teleinformati
s, Royal Institute of Te
hnology,

Sto
kholm, 1997. Appears as Resear
h Report TRITA-

IT R 97:08.

[FF99℄ Corma
 Flanagan and Matthias Felleisen. Compo-

nential set-based analysis. ACM Transa
tions on

Programming Languages and Systems, 21(2):370{416,

Mar
h 1999.

[FM90℄ You-Chin Fuh and Prateek Mishra. Type infer-

en
e with subtypes. Theoreti
al Computer S
ien
e,

72(2):155{175, June 1990.

[Gil96℄ Andrew John Gill. Cheap Deforestation for Non-Stri
t

Fun
tional Languages. PhD thesis, University of Glas-

gow Department of Computing S
ien
e, January 1996.

[Gir87℄ Jean-Yves Girard. Linear logi
. Theoreti
al Computer

S
ien
e, pages 1{102, 1987.

[GS00℄ J�orgen Gustavsson and Josef Sveningsson. A usage

analysis with bounded usage polymorphism and sub-

typing. In Implementation of Fun
tional Languages

12th International Workshop (IFL'00), Aa
hen, Ger-

many, September 2000. Pro
eedings to be published

as a te
hni
al report of the Department of Computer

S
ien
e, RWTH Aa
hen.

[Gus98℄ J�orgen Gustavsson. A type based sharing analysis for

update avoidan
e and optimisation. In ICFP [ICF98℄.

[ICF98℄ ACM SIGPLAN International Conferen
e on Fun
-

tional Programming (ICFP'98), 1998.

[Ja
94℄ Bart Ja
obs. Semanti
s of weakening and
ontra
tion.

Annals of Pure and Applied Logi
, 69:73{106, 1994.

[Jen91℄ Thomas P. Jensen. Stri
tness analysis in logi
al form.

In Pro
eedings of the 5th ACM Conferen
e on Fun
-

tional Programming Languages and Computer Ar
hi-

te
ture, Boston, MA, number 788 in Le
ture Notes in

Computer S
ien
e. Springer{Verlag, August 1991.

12

[JP99℄ Trevor Jim and Jens Palsberg. Type infer-

en
e in systems of re
ursive types with subtyp-

ing. Available http://www.
s.purdue.edu/homes/

palsberg/publi
ations.html, June 1999.

[JW95℄ Suresh Jagannathan and Andrew Wright. E�e
tive

ow analysis for avoiding run-time
he
ks. In My
roft

[My
95℄, pages 207{224.

[LPJ94℄ John Laun
hbury and Simon L. Peyton Jones. Lazy

fun
tional state threads. In Programming Languages

Design and Implementation, Orlando, 1994. ACM

Press. Extended version appears as [LPJ95℄.

[LPJ95℄ John Laun
hbury and Simon L. Peyton Jones. State in

Haskell. Lisp and Symboli
 Computation, 8:293{341,

1995.

[Mar93℄ Simon Marlow. Update avoidan
e analysis by ab-

stra
t interpretation. In Glasgow Workshop on Fun
-

tional Programming, Ayr, Springer Verlag Workshops

in Computing Series, July 1993.

[Mos93℄ Christian Mossin. Polymorphi
 binding time analysis.

Master's thesis, DIKU, Department of Computer S
i-

en
e, University of Copenhagen, July 21 1993.

[MTHM97℄ Robin Milner, Mads Tofte, Robert Harper, and

David Ma
Queen. The De�nition of Standard ML |

Revised. MIT Press, 1997.

[MW97℄ Simon Marlow and Philip Wadler. A pra
ti
al subtyp-

ing system for Erlang. In International Conferen
e on

Fun
tional Programming (ICFP), Amsterdam, June

1997, 1997.

[My
95℄ Alan My
roft, editor. Pro
eedings of the Se
ond Inter-

national Stati
 Analysis Symposium (SAS), Glasgow,

S
otland, number 983 in Le
ture Notes in Computer

S
ien
e. Springer{Verlag, September 25{27 1995.

[Nor98℄ Johan Nordlander. Pragmati
 subtyping in polymor-

phi
 languages. In ICFP [ICF98℄.

[OSW98℄ Martin Odersky, Martin Sulzmann, and Martin Wehr.

Type inferen
e with
onstrained types. Theory and

Pra
ti
e of Obje
t Systems, 1998. To appear.

[Par93℄ Will D. Partain. The nofib ben
hmark suite of Haskell

programs. In John Laun
hbury and Patri
k M. San-

som, editors, Fun
tional Programming, Glasgow 1992,

Workshops in Computing, page 195, Berlin, 1993.

Springer-Verlag.

[PJPS96℄ Simon Peyton Jones, Will Partain, and Andr�e Santos.

Let-
oating: Moving bindings to give faster programs.

In ACM SIGPLAN International Conferen
e on Fun
-

tional Programming (ICFP'96), New York, 1996. ACM

Press.

[PJS98℄ Simon L. Peyton Jones and Andr�e L. M. Santos. A

transformation-based optimiser for Haskell. S
ien
e

of Computer Programming, 32(1{3):3{47, September

1998.

[Pot98℄ Fran�
ois Pottier. Simplifying subtyping
onstraints:

A theory. Information and Computation, De
ember

1998. Submitted. Available http://pauilla
.inria.

fr/~fpottier/publis/publi
ations.html.en.

[PS96℄ Jens Palsberg and S
ott Smith. Constrained types and

their expressiveness. ACM Transa
tions on Program-

ming Languages and Systems, 18(5):519{527, Septem-

ber 1996.

[San95℄ Andr�e Lu��s de Mederios Santos. Compilation by Trans-

formation in Non-Stri
t Fun
tional Languages. PhD

thesis, Department of Computing S
ien
e, University

of Glasgow, July 1995. Available as Te
hni
al Report

TR-1995-17.

[Ses91℄ Peter Sestoft. Analysis and EÆ
ient Implementation

of Fun
tional Programs. PhD thesis, DIKU, Depart-

ment of Computer S
ien
e, University of Copenhagen,

O
tober 3 1991. Available as DIKU Resear
h Report

92/6.

[TS96℄ Valery Trifonov and S
ott Smith. Subtyping
on-

strained types. In R. Cousot and D. A. S
hmidt, ed-

itors, Pro
eedings of the Third International Sympo-

sium on Stati
 Analysis (SAS'96), Aa
hen, Germany,

number 1145 in Le
ture Notes in Computer S
ien
e,

pages 349{265. Springer{Verlag, September 1996.

[TWM95℄ David N. Turner, Philip Wadler, and Christian

Mossin. On
e upon a type. In Conferen
e Re
ord of

FPCA'95 SIGPLAN{SIGARCH{WG2.8 Conferen
e

on Fun
tional Programming Languages and Computer

Ar
hite
ture, La Jolla, California, 25{28 June 1995,

pages 1{11. ACM, 1995.

[WJ98℄ Andrew Wright and Suresh Jagannathan. Polymor-

phi
 splitting: An e�e
tive polyvariant
ow analysis.

ACM Transa
tions on Programming Languages and

Systems, 20(1):166{207, January 1998.

[WPJ99℄ Keith Wansbrough and Simon Peyton Jones. On
e

upon a polymorphi
 type. In Twenty-sixth ACM

SIGPLAN{SIGACT Symposium on Prin
iples of Pro-

gramming Languages (POPL'99), January 20{22,

1999, San Antonio, Texas. ACM Press, 1999.

[Wri96℄ David A. Wright. Linear, stri
tness and usage log-

i
s. In Pro
eedings of CATS'96 (Computing: The Aus-

tralasian Theory Symposium), Melbourne, Australia,

January 29{January 30 1996, 1996.

13

