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Abstract

We present a novel inference algorithm for a type system
featuring subtyping and usage (annotation) polymorphism.
This algorithm infers semply-polymorphic types rather than
the constrained-polymorphic types usual in such a setting;
it achieves this by means of constraint approzimation. The
algorithm is motivated by practical considerations and ex-
perience of a previous system, and has been implemented in
a production compiler with positive results. We believe the
algorithm may well have applications in settings other than
usage-type inference.

1 Introduction

Cousider the following function call, written in the lazy
functional language Haskell:

f(g=)

Most Haskell implementations will construct a self-updating
thunk, or suspension, for f’s argument, (g z), and pass that
thunk to f. If it can be demonstrated that f uses its argu-
ment at most once, then this thunk need not be overwritten
after the evaluation of (g ). The thunk is still constructed,
but it is less expensive than before. It turns out that this
is but one of a range of motivations for analysing functional
programs (strict ones as well as lazy ones) to figure out when
a sub-expression will only be “used once”.

Thus motivated, several researchers including ourselves have
sought a type system that can statically determine some
notion of used-once-ness. In an earlier paper we described
just such a system [WPJ99], UsageSP, focusing especially
on two points: we dealt with a realistic language, including
polymorphism and recursive data types; and we used sub-
typing to make UsageSP more expressive than an earlier,
monomorphic proposal [TWM95].

At that time we had ounly a prototype implementation. To
our dismay, when we scaled it up to a full scale system, we
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discovered that UsageSP was almost useless in practice! It
turned out that curried functions received rather poor types;
since currying is ubiquitous in Haskell, this meant that the
system missed almost all used-once expressions, including
ones that are blatantly obvious to the programmer. We
explain the problem in detail in Section 3.2.

This paper presents our solution to the problem of currying.
Specifically, our new contributions are these:

e We present the results of comprehensive measurements of
the potential gains to be had from a system like UsageSP.
These results confirm those of an earlier study [Mar93],
and of folklore: in lazy languages, a very high proportion
of thunks are only demanded once (Section 2).

e Observing (along with Gustavsson [Gus98] and contrary
to our previous belief) that subtyping is not sufficient to
give satisfactory types, we introduce usage polymorphism
and characterise precisely when it is necessary; namely,
when a usage variable appears in both a covariant and a
contravariant position in a function’s type (Section 3.3).
This form of polymorphism differs from the polyvariance
discussed as future work in [TWM95] and [Gus98], in that
our system provides a usage-polymorphic type for a single
copy of a function, without specialisation or cloning.

e We argue that the full generality of constrained polymor-
phism, while technically straightforward, has a very poor
power-to-weight ratio (Section 3.4). Our main conceptual
contribution is to identify a “sweet spot” in the design
space: the types it gives are much smaller, albeit not
quite as refined, as those of a constrained polymorphic
system (Section 3.5).

e Our principal technical contribution is a new type infer-
ence algorithm that infers types that are just polymor-
phic enough to express these co-/contra- dependencies
(Section 6). So far as we know, this algorithm is novel,
and it may well have applications in other settings, such
as binding-time analysis [DHM95].

e We sketch our implementation, which is part of the Glas-
gow Haskell Compiler (GHC), a state of the art compiler
for Haskell (Section 7). GHC uses a Girard-Reynolds-
style typed intermediate language. We extend this lan-
guage with usage abstractions and applications, so that
the result of usage-type inference is expressed in the in-
termediate language itself (Section 5). As a result, sub-
sequent program transformations can preserve accurate
usage types.



e We give preliminary measurements of the effectiveness
of the new algorithm (Section 7.1). It successfully deals
with the currying problem, although the bottom-line re-
sults are still a bit disappointing. However, we have ev-
idence that they can be improved substantially without
changing the type system.

Our type system has just two annotations: “used once” (i.e.,
at most once) and “used many times” (i.e., don’t know). We
are confident that we can smoothly extend this little two-
point space into a seven-point lattice (see Section 9) that
will combine usage analysis, strictness analysis and absence
analysis, thereby combining three separate analyses in one
uniform framework. This paper represents solid progress
towards that alluring goal.

2 The opportunity

In our earlier paper we described in some detail the bene-
fits that accrue from static knowledge that a value is used
at most once [WPJ99]. Avoiding updates for thunks is an
obvious benefit, but others include better inlining and let-
floating. We will not repeat this discussion here.

So knowledge of used-once-ness is certainly beneficial — but
how beneficial? If the maximum benefit is tiny, there is
little point in working on the analysis. It is hard to quan-
tify the potential benefits of making other transformations
(inlining, let-floating) more widely applicable, but we can
directly quantify the maximum number of thunks whose up-
date could be avoided.

We modified our Haskell compiler, GHC, so that it gener-
ated code to record the proportion of all allocated thunks
that are demanded at most once. The necessary modifi-
cations are rather simple: we only need to track the total
number of thunks allocated and, for each thunk, whether
it is entered never, once, or more than once. We compiled
and ran the entire nofib suite, a large suite of around 50
benchmark programs ranging from tiny ones up to 10,000
line applications [Par93].

Figure 1 gives the results, which amply support the folklore
and are consistent with the data of [Mar93]. In every pro-
gram but one, the majority of thunks are demanded at most
once, and hence do not need to be updated. In more than a
third of the programs, over 95% of thunks are never entered
more than once! There is clearly huge scope for optimisation
here.

Of course, no static analysis will find all thunks that are
demanded only once, but at least we now know for sure
that our analysis is digging in rich soil.

3 The problem of currying

In this section we will identify the problem we propose to
attack, beginning with a quick review of the context.

3.1 Usage types

Our compiler takes an ordinary Haskell program and be-
gins by performing type inference on it, translating it into
an explicitly-typed intermediate language, the GHC Core
language. This Core language is a Girard—Reymnolds-style

Figure 1 The opportunity.
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lambda calculus, augmented with let, letrec, constructors,
case expressions, and primitive operations. We then per-
form usage-type inference on this program, yielding a new
Core program whose types embody usage information. This
information is used to guide the compiler’s transformations.
At any time, the usage types can be refreshed by re-running
the inference algorithm. The programmer never sees the
usage types.

For example, consider the Core definition:
f=xz.z+1

Initially f has the type Int — Int. After usage inference it
gets the more informative type (Int' — Int*)“. This type
says that (a) f demands its argument at most once (Int'),
(b) that its result may be used arbitrarily often (Int”) and,
(c) that the function itself may be used arbitrarily often (the
outer w).

f’s type says that it may be applied to an argument of type
Int', but we employ subtyping to permit f to be applied to
an argument of type Int”. This subtyping directly matches
our operational intuitions: a function can accept any ar-
gument which can be used more often than the function
requires. The use of subtyping in this way was a major fea-
ture of our earlier paper,! and we do not stress it further
here [WPJ99].

So much for the argument type of f. What about (c), the
outermost “w” in f’s type? This part of f’s type is affected
by the way in which f is used, not by f’s definition. For
example, suppose that f’s definition had appeared in this
context:

let f=Az.x+1
in ifb

then f 1

else f 2

Now, it is clear that f is called only once, so f could have
been given the type (Int' — Int*)!. (Actually, such an
improvement has no operational benefit in this case, but
in principle it might.) However, if f is a top-level (ex-
ported) definition in a module, called from arbitrary places

1This use of subtyping turns out to have been proposed indepen-
dently by Gustavsson [Gus98] and by Faxén [Fax95]; in the context
of binding-time analysis it was already well-known [Mos93].



elsewhere, we pessimistically assume that it is called many
times, and force its outermost annotation to w.

3.2 Currying
Now consider the following innocuous definition:
g=Az.Ay.x+y—1

It would seem as if g demands its arguments only once, so
we would expect a type like

g = (Int' = (Int' — Int*)*)

The trouble is that this type is simply not correct. Suppose
g was used like this:

let h = g wurble
in h3+h4

How many times will the thunk wurble be demanded?
Twice, once for each call of h! So g’s type must be wrong.
Going back to the definition of g, we see that = is used in-
side the Ay-abstraction, so x is used at least as much as the
Ay-abstraction. There are two correct types we can assign
to g (we subscript the g so that we can name these different
typings):

g2 2 (Int* = (Int' — Int*)*)*

g3 = (Intt = (Int' — Int¥))*

In the first, go’s first argument is given the (bad) annotation
w, but in exchange the function returned by g wurble has a
w-type. In the second, gs’s first argument has the (good)
annotation 1, but the price is that the partial application of
g cannot be shared.

These constraints are perfectly reasonable: if g wurble is
called many times, then wurble will be demanded many
times. What is not reasonable is that the analysis of
[WPJ99] is forced to make the choice once and for all, at
g’s definition site. If g is ever partially applied, then all
uses of g will have an w annotation on their first argument.
The frequency of partial applications in Haskell code makes
this a very poor strategy.

3.3 The solution: Simple usage polymorphism

Now that the problem is clear, the solution is completely
obvious. We want usage polymorphism, thus:

ga = (Vu . Int* = (Int" — Int¥)*)*

Now the two valid types are instances of this polymorphic
type, and each call site can instantiate gs4’s type appropri-
ately. (The reader may be surprised by the location of the
Vu inside the outermost usage annotation; see Section 5.1
for a discussion of this point.)

That solves the problem nicely. The remaining challenge
is how to come up with this type for g. After all, here is
another possible type for g:

g5 (Vu,v,z . Int* — (Int” — Int")*)*

Here, we have replaced the w and 1 annotations with usage
variables, and then quantified over them. This type is actu-
ally sound in the type system we define in Section 5, but it

is unnecessarily complicated, because nothing is gained by
the extra polymorphism. For example, the usage “v” on the
second argument of gs does not give any extra information
to the caller (“1” was as informative as possible), nor does
it make gs any more applicable. Similarly, the usage “z”
instead of “w” carries no benefit. This is a key point of our

earlier paper [WPJ99, §6.3].

We can characterise the situation quite precisely, as follows:

e A usage variable in a covariant (positive) position — for
example, z in the type of g5 — may as well be turned into
the constant “w”.

e A usage variable in a contravariant (negative) position —
for example, v in the type of g5 — may as well be turned
into the constant “1”.

e Only usage variables that appear both covariantly and
contravariantly in the function’s type must be universally
quantified.

This argument depends on the use of subtyping. One might
argue that it would be easier to get rid of subtyping and use
polymorphism instead. But in our explicitly-typed interme-
diate language, at every call site of a polymorphic function,
the function is applied to all the type and usage arguments
necessary to instantiate all its universally quantified vari-
ables. So the more variables we quantify over, the larger our
intermediate programs will become. Further, there are two
distinct properties to be expressed. Our system therefore
uses subtyping to express the fact that a function may accept
a range of argument types, and polymorphism to express
interdependencies between the usage annotations within a
single type.

Simple usage polymorphism, therefore, describes a type sys-
tem that supports subtyping and polymorphism, but does
not permit subtyping constraints on quantified variables.

It should be noted that while simple usage polymorphism is
certainly better than the monomorphic system of [WPJ99],
it doesn’t solve all our problems. Binary functions like g now
get optimal types, but ternary functions like plus3 (Figure 2)
end up unifying the usages of their first two arguments, po-
tentially forcing thunks in fact used at most once to be anno-
tated w. Ultimately, polyvariance may be the best solution,
and we discuss this further in Section 7.2.

3.4 Constrained polymorphism

Have we now gone far enough? From a technical stand-
point, a more natural choice might seem to be constrained
polymorphism [Cur90, AW93].2 A yet more general type for
g is this:

g6 = (Yu,v:u <w.Int* = (Int" = Int*)")*

This type makes explicit that the usage of g’s first argument
and its partial application don’t need to be the same; all
that is needed is that the usage of the argument is at least
that of the partial application. (The constraint may look
back to front; we will explain the polarity of our subtyping
relationship in Section 5.1.)

2 An intermediate possibility between simple and constrained poly-
morphism, considered no further here, might be bounded polymor-
phism, as introduced by Cardelli [CW85, CMMS94].



Table 1 Usage type system design space.

Monomorphic Simple Constrained
polymorphism polymorphism
No
subtyping [TWM95] (2) (3)
Fun arg WPJ99] <This papeﬂ [GS00]
subtyping
(cheap enough) (expressive enough)

Constrained polymorphism has been moderately well stud-
ied [TS96, OSW98, PS96, JP99], and it is certainly more
expressive than simple polymorphism (the simplest type
on which they differ is that of plus8; see Section 6.3).
However, the practical costs are heavy. Types become
(much) larger, because there are typically many more quan-
tified variables, together with many constraints connecting
them [Pot98, AWP97]. Furthermore, GHC’s entire internal
language would have to be augmented with type constraints,
no simple matter.

3.5 Summary

Table 1 summarises our conclusions so far. The two axes of
the table correspond to two different design choices. Systems
in the top row lack subtyping, while those in the bottom row
allow subtyping at function applications. Systems in the
first column are monomorphic in usage annotations (poly-
morphism in the underlying language is an orthogonal issue,
as we showed in [WPJ99]). Systems in the middle column of-
fer simple usage polymorphism, while those in the third col-
umn employ constrained polymorphism. (3), for example,
is suggested in [TWM95, §4.5]. [Gus98] and [Fax95] could
also be placed in (4), and [BS96] (for uniqueness, rather than
usage) and perhaps [Fax97] belong in (6).

Our central hypothesis is this: The analyses in the first
column, and (2) in the second, are not expressive enough;
the third column is unreasonably expensive; thus the com-
bination of simple usage polymorphism and subtyping of-
fers a fine compromise between expressiveness and cost. It
seems clear that the former are certainly insufficiently ex-
pressive; as to the latter the vast body of work in the area
of constrained polymorphism already cited confirms its high
cost, although this may well be justified by the benefits
(g.v. [GS00]). The present paper proposes a novel way of
trading off these costs against the benefits.

Notice that though the type system is simpler without con-
strained polymorphism, the inference algorithm may be
more complex. Any inference algorithm is going to work by
gathering and then resolving constraints. With constrained
polymorphism, we can quantify over these constraints; with
simple polymorphism we must instead approximate. Specif-
ically, where we have a constraint » < v we simply identify
(unify) w and v (compare the types for g in Sections 3.3
and 3.4). That’s the idea anyway; the actual algorithm is
quite subtle, as we discuss in Section 6.2, and constitutes
the technical heart of our paper.

4 Examples

We embark on the technical material in Section 5, but first
we pause to examine some motivating examples typed in our
proposed system.

Figure 2 gives the usage-polymorphic typings inferred by our
system for a number of standard Haskell library functions.®
When typing such library functions, we clearly must choose
types that permit all possible uses; that is, that make no
assumptions about how often the function or its partial ap-
plications are called. The types in the figure make use of
usage polymorphism; without this, all variable annotations
in the figure would take the “don’t know” value w, thus
yielding dreadful results from the analysis.

e Usage polymorphism is used to describe dependencies be-
tween argument and result. The simplest possible ex-
ample of this is the identity function, ¢d, which simply
returns its argument untouched. Clearly, if id is passed
a use-once (use-many) thunk, it returns a use-once (use-
many) thunk; this is expressed by its type.

e The short-circuit “and” is defined like this: and a b =
case a of {True — b; False — False}. Its type contains
the same partial application dependency as Section 3.3’s
ga (in w1). However, it also contains a dependency (in
u2) between its second argument and result: if the first
argument is True the function behaves like id. This de-
pendency does not conflict with the False case because
the returned value (False) shared between all invocations
of and is given the type Bool®, which is a subtype of
Bool“2.

e The three-argument curried addition function plus3
demonstrates that curried functions of more than two ar-
guments still only have a single usage argument dealing
with partial application. A type of the form -“* — (-*2 —
(-1 = “)¥4)¥s would have the constraint u; < us as be-
fore (the first argument is used at least as many times as
the first partial application), along with the unsurprising
us < ug (the second argument is used at least as many
times as the second partial application), but in addition
there is a constraint u; < w4 (the first argument is also
used as many times as the second partial application).
These three constraints are resolved by unifying all four
usage variables.

e The flip function is defined thus: flip f x y = f y x.
Notice the “1” in its type, indicating that when it calls
f it always fully applies it.

e Function composition compose is defined conventionally:

compose f gz = f (g x)

It exhibits a common pattern in which to each Va cor-
responds a Vu, and all occurrences of « are decorated
by that u. This pattern does not however justify ab-
stracting over o-types (i.e., allowing id to have type
(Va . a = «)¥), as we would then be unable to express
useful types such as o': see [WPJ99, §6.2].

3Most of these should be self-explanatory. apply, written as in-
fix $ in Haskell, is strictly unnecessary but useful (because of its
precedence) for avoiding excess parentheses in expressions. build and
augment are used in ‘cheap deforestation,’ described in [Gil96, §3.4.2].



Figure 2 Some sample typings.

plus (Vuy . Int“t — (Int' — Int¥)“t )«
id (Vuq . Va . a"l — a*l )«
and (Vur,us Bool“* — (Bool*? — Bool“2)%! )«
apply (Vur,uz,us . Vo, 8. (a"t = B2)"5 = ("t — g*2)"s )¢
plus3 (Vuy . Int“t — (Int“* — (Int’ — Int*)¥1)“2 )“
flip to (Yur,uz,us . Yoy By (@ = (B2 = 482)1)82 — (B2 — (a1t — yt3)u2)u2 )¢
compose . (Vui,uz,us,us Vo, B,y . (Bt = 4*2)*3 = ((a®* — B*1)*3 — (a¥t — y¥2)¥3)us )“
map o (Yur,uz Va, B . (a*t — B“2)* — ((List a)** — (List B)*2)¥ )“
foldr (Vui, u2 VYa, B . (@'t — (8“2 — B“2)1)¥ = (B — ((List )"t — g¥2)*)* )“
build (Yu1,us . Va . VB . (ot = (B — )" )Y — (BY — 5"2)1)1 — (List a)*2 )«
augment (Yui,uz,uz . Va. VB . (o = (B¥ — BY)*1)Y — ("2 — 5"3)1)"’ — ((List @)*? — (List a)*3)~ )“
zip With (Yu1,us2, u3 Yo, 8,7 . (a™ = (B%2 = y*3)1)® — ((List a)“t — ((List 3)*2 — (List 7)“8)41)* )«
mkPair (Vuq . Va, B . a*t — (Bt — (Pair a B)*1)“t )¢
fst (Vuy . Vo, . (Paira B)*t — o™t )

e Constructor functions like mkPair and destructor func-
tions like fst can now be given regular types; in our earlier
work [WPJ99] these required special typing rules.

5 Type system

Our goal is to construct an analysis which will take unanno-
tated source terms and translate them into usage-annotated
target terms, by means of type inference. Firstly, however,
we must define the source and target languages, and present
the rules that define when a target term is well-annotated.

Our previous paper [WPJ99] focussed on decent handling
of polymorphism and of constructors and case over user-
defined algebraic data types. Therefore the present paper
makes the following major simplifications, for both source
and target languages:

o We omit the Girard-Reynolds-style explicit type abstrac-
tion and application.

e We omit constructors and case, replacing them instead
by the choice operator e; [ e2. This selects one branch to
evaluate, nondeterministically and thus in a manner not
predictable by the type system.

o We restrict letrecs to a single binding rather than a mu-
tually recursive group.

The language we deal with here exhausts all the technical
complexity of the full language, with minimal clutter. Ex-
tending it to the full language is straightforward: all of our
previous work on these features carries over directly into the
present system.

The source language we deal with is defined in Figure 3.
It is essentially a simplified, monomorphic, explicitly-typed
variant of Core (see Section 3.1). The target language is
defined below it, and adds usage annotations, along with
usage polymorphism in the form of explict usage abstrac-
tion (generalisation) Awu . e and application (specialisation)
e k. Usage annotations x may be constants 1 (used at most
once) or w (possibly used many times), or variables u, v, w.
Annotations appear on top of types, and recursively on both
sides of the function arrow. In terms, annotations appear

Figure 3 The source and target languages.
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Figure 4 The subtype (=) and primitive (<) orderings.
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as part of types, and also explicitly on lambdas and in us-
age applications. The lambda annotation denotes the use
of the lambda abstraction, which is distinct from the use of
its argument; in the full system constructors also take an
annotation.



5.1 Type rules

The type rules in Figure 5 define what it means for a target
term to be well-typed. The judgement [' |- e : o states that
in context I', the target expression e can be given type o.

Our rules are based on those of [WPJ99], and share with
that system two key features. The system is (loosely) an
affine linear one,’ but using the syntactic occurrence func-
tion occur(-,-)® rather than the equivalent weakening and
contraction rules; and has subsumption. Figure 4 defines
the primitive ordering < on usages and the induced struc-
tural subtype ordering < on types. Note that since the
annotation 1 is more informative than w, we have® w < 1
and 7% < 1.

The well-typing rules should be unsurprising. We use |o|
to denote the topmost annotation of a type o. Usage poly-
morphism is added by the rules (-UABs) and (F-UAPP).
Abstracted usage variables must not be free in the context,
or be the topmost annotation of a type. This syntactic
restriction—Vu . - is defined to be a 7-type rather than a
o-type—is required to ensure that |o| is always well-defined
(consider the possible meaning of [Vu . 7|); the same re-
striction is made in [GS00].

That this type system is sound with respect to an appropri-
ate operational semantics may be demonstrated by a simple
extension of the proofs in [WPJ99], or as a corollary of the
proofs for a constrained polymorphic system such as [GS00].

6 Inference

We now present our inference algorithm, the principal con-
tribution of this paper. We seek an algorithm that:

e Translates each source term to a target term whose era-
sure is the original source term.

e Yields a well-typed target term for any well-typed source
term.

e Yields annotations that are as precise as possible.

The first point ensures we merely add information, and do
not alter the semantics of the program. The second point
ensures our analysis is “soft” [CF91]: our analysis does not
affect the set of programs one is allowed to write. This
permits it to be hidden from the programmer. The third
point is a claim of optimality: we would like to generate the
‘best possible’ annotations.

6.1 Basic algorithm

The well-typing rules of Figure 5 specify what it means for
a program to be type-correct, but do not in themselves con-
stitute an algorithm for inferring type annotations for an
unannotated source program. Such an algorithm must be
constructed separately, and then proven sound with respect

4i.e., a linear type system [Gir87] admitting weakening but not
contraction [Jac94].

5The value of occur(z, €) is the number of syntactic occurrences of
the variable  in the term e, except that for choice terms e; [ ez it is
max(occur(z, e1), occur(z, e2)).

5This is a notational change relative to [WPJ99].

to the well-typing rules. Our inference algorithm is pre-
sented in Figures 6 and 7. The relation

C;T'» M~e:o

may be read “In context I', source term M may be trans-
lated to term e which has type o, under constraints C.”
The definition can be seen as an algorithm, with p» a func-
tion from (I", M) to (e,o,C). The algorithm closely follows
standard ML type inference [MTHMO97] except that we also
gather constraints as we proceed.

Some notation: a constraint set is a set of atomic constraints
k < k', where , k' are usage annotations (see Figure 3). The
conjunction (union) of two constraint sets C1, C> is written
Ci1 A Cy. We write {k = £’} to denote {rk < r',r’ < K}
and we write {P = C} to denote the constraint set that is
either C if P holds, or the trivial constraint set ) otherwise
(note that this is a simple contraint, not an implicational
constraint: P is constant). We write {o] < o1} to denote
the least set of atomic constraints x < &’ from which ¢’ < o
is derivable by the rules given in Figure 4.7

The FreshAnnot(-) operator in (»-ABS) annotates a source
type, yielding a target type with fresh usage variables ev-
erywhere. This is sufficiently general, since our subtyping is
purely structural. The FreshLUB operator in (»-CHOICE)
returns a constraint set and a type (possibly containing fresh
usage variable annotations) such that under the constraints,
the result type is the least upper bound of the arguments.

Once inference is complete we solve the constraint set, ob-
taining a substitution of usage annotations for usage vari-
ables that satisfies the constraints in the set (if the constraint
set is insoluble, translation fails; Section 6.4 argues that this
never occurs). When there are multiple such substitutions,
we choose the best: the greatest under the obvious pointwise
ordering on substitutions.®

There are two places where we explicitly deal with constraint
sets: at the end, where we solve the constraint set; and at
generalisation time, i.e., in (»-LETREC). Here a special
closure operator is invoked.

6.2 Closure algorithm

The well-typing rules of Figure 5 give us no guidance in
choosing where to usage-generalise a term, ¢.e., where to in-
sert usage abstractions in the translation. We choose simply
to follow the Hindley—Milner approach, and make all letrecs
usage-polymorphic (Figure 7). This is done by applying
a closure operator to the constraint set generated by each
binding group, to compute the most general usage types for
the bindings it contains.

This closure operator Clos(-,-,-) is the core of the inference,
and the major technical contribution of this paper. The
usage-monomorphic system presented in [WPJ99] may be
obtained by putting Clos(C,I',75%) = (C,[],[]); instead,
we present below our new algorithm for generating uncon-
strained usage-polymorphic types by means of approxima-
tion.

Note that our target language can express general impred-
icative (“nested”) polymorphism; our algorithm infers only

"As an aside, note that this means that expressions such as
{Int*! < (Int“2 — Int“3)“4} are undefined.

8The algorithm of [WPJ99, §7.2] is used to find this solution, which
exists and is unique due to the simple nature of the constraints.



Figure 5 Well-typing rules for the target language.
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predicative usage type “schemes”. However, impredicative
types may be present in the initial context or in explicit type
signatures, and will then be handled correctly. Such types
have been shown to be useful in other contexts (such as in
the type of runST [LPJ94]) and might conceivably prove to
be so here, but inference is known to be undecidable in this
case. A possible approach suggests itself from the common
pattern observed for compose in Section 4: we could attempt
to follow each nested type quantifier with a usage quantifier.
Such an approach might well improve the type of functions
such as build (Figure 2). We have not tried this.

Figure 8 shows the closure algorithm. The input is a triple:
a constraint set C for the binding group being considered,
a context I' in which the generalisation is to be done, and
a vector of the types (usage-monomorphic by construction)
and topmost annotations ;% of the bindings. The output
is a reduced constraint set, a vector of usage variables over
which to generalise, and a unifying substitution to be ap-
plied.

The closure algorithm is necessarily approzimate—in gen-

eral, simple usage polymorphism does not admit most-
general types, and a term such as plus3 may have multi-
ple incomparable types between which we choose essentially
arbitrarily (Section 6.3). The algorithm does however guar-
antee to yield mazimally-applicable types—types for binders
which do not restrict their use. This is necessary to satisty
the second requirement of Section 6.

We take a moment to introduce some essential notation.

For target types, we define a positive occurrence of a usage
variable u in a type 7 or o to be one annotating a covari-
ant position, and a negative occurrence to be one annotating
a contravariant position. In the case of a o-type, the top-
most annotation is considered to be covariant. We define
functions fuvt (o) (fuv™ (¢)) as the set of usage variables oc-
curring positively (negatively) in o; similarly for 7-types.
Thus if o = ((a"* — B*2)*3 — (y** — 6"5)“6)*7, we have
fuvt (o) = {u1,us, us,ur} and fuv~ (o) = {u2,us,us}. The
notation fuv(o) denotes the set of usage variables occurring
positively or negatively in o; i.c., fuv™ (o) U fuv™ (). We
use ¢ to range over {4+, —}. The relation <¢ is the partial



Figure 7 Type inference rule (»-LETREC).
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order induced by constraint set C, and we write u Sg v for
u <c v and u < v for v <c u.

The intent of the closure operation is to compute the largest
possible set of variables to generalise over. There are four
reasons a variable should not be generalised: (i) it may be
constrained already such that its range is restricted; (ii) it
may be possible that it will become so constrained later in
the inference process; or (iii) it may be a topmost annotation

(Vug . S1)"t = Auy, . Ser[z1 :=x1 U] ine: o

and thus syntactically ungeneralisable.®

Further, a variable should not be generalised if (iv) it does
not express a dependency. When inferring the type of an
expression it is safe to return a smaller (more informative)
type, since subsumption will be applied to the result type.
We therefore desire to infer the smallest possible type for
the expression. This means that positive variables should
be minimised, and negative variables maximised. A depen-
dency occurs when a positive variable is constrained to be
greater than a negative variable; in this case the monomor-
phic solutions are incomparable, and instead we unify the
variables and generalise (as discussed in Section 3.3). Con-
dition (iv) states (due to subsumption) that we need not
generalise other variables.

The closure operation first implements condition (i) by sub-
stituting values for all completely constrained variables.!°
These values are obtained by means of an auxiliary partial
constraint solver TransitiveClosure which forms the transi-
tive closure of the constraints collected in Cp. If this suc-
ceeds it returns a set of substitutions S for variables whose
values are completely determined by C), and a residual con-
straint set C constraining these variables directly to their
values, and the remaining variables equivalently to Cp. If
C)y is unsatisfiable, TransitiveClosure and the entire trans-
lation fail; Section 6.4 argues that this never occurs.

The set F' contains the free usage variables of the result
types (which are candidates for generalisation), tagged by
the polarity of their occurrence,*’ and X contains free us-
age variables of the context (for implementing condition (ii))
and of the topmost annotations (for implementing condi-
tion (iii)). Variables appearing in or constrained by other
variables in X should not be generalised. Given these, G is
the largest subset (‘greatest fixed point’, hence gfp) of F such
that conditions (ii) through (iv) hold: the third conjunct re-
quires that variables in G not be constrained by variables in
X,'? and the fourth conjunct requires that all positive (neg-
ative) variables be greater (less) than a negative (positive)
variable.

Having found the set of variables to be generalised, we now
perform the required unifications. Note that the constraint
set C' may contain many variables that do not occur in the
types 7;, but have been generated internally during infer-
ence. If two variables v and v are to be unified and gener-
alised, then all variables in between them must be so also. In
general, we have a number of ‘clusters’ of related variables
in F, constraining other variables between them. One such
cluster might look as follows (this is an outline of a Hasse di-
agram, where apart from the typical variable z all variables

9This syntactic restriction is discussed in Section 5.1.

19Tn our simple two-point lattice, a variable’s range is either unre-
stricted or restricted to a single value; this is likely not to be the case
for the system discussed below in Section 9, and so this part of the
algorithm will need to be rewritten.

Hifa usage variable u were to appear both positively and negatively
in the result types, it would appear twice in F', once as v~ and once
as uT. It can be shown, however, that with the translation algorithm
as given this never occurs.

2We need only check that positive (negative) variables are not
greater (less) than variables in X; the other direction is ensured by
the fourth conjunct, by transitivity of <.



in the central region have been omitted for clarity):

y+

X
N

Here u and w are negative, v and y are positive, and u < v,
w <y, u<y, w<v. Clearly u,v,w,y must be unified, but
S0 too must z and all variables like it, in the region defined
by {o | (u<aVw<a)A(e <vVa < y)} Furthermore,
variables above (below) such a unified and generalised group
must be guaranteed to lie above (below) any instance of it.
This we achieve by constraining such variables to 1 (w).

The unification is performed as follows: we first construct
the equivalence relation (~) which relates pairs of dependent
variables in G. From this we construct equivalence classes of
variables in GG, place an arbitrary ordering on these classes,
and pick an arbitrary representative element from each. The
result is a vector of variables w;. We then create the unifying
substitution: if a variable lies inside a cluster’s region, we
replace it with the representative variable from the appro-
priate equivalence class.

Finally, we return the now-unified constraint set,!®> aug-
mented with constraints that force variables lying above (be-
low) a cluster to 1 (w). Other variables are untouched. We
also return the vector of unified variables over which to gen-
eralise, and the substitution to be applied.!*

6.3 Optimisations and design choices

During the implementation, two possible optimisations sug-
gested themselves. Variables local to C’ that are completely
unconstrained may be set to 1 immediately, anticipating the
global maximisation performed at the end of the inference;
and constraints added to C’' may also be added as substitu-
tions to .S, and performed earlier.

Furthermore, consider the following situations:
(a) oy™ o (0) oyt
N VRN

X ow oy~ oy~

Ve Ve

Here u,v,w are in F, and x,y are in X. In (a), according
to the algorithm none of the variables may be generalised,
because they are all related to x, a variable appearing in the
context. But in fact we can generalise u and v, at the cost
of forcing w to w, as indicated by the arrow.

In fact,  need not be in X for this case to be interesting.
Consider that the same constraints arise when typing plus3,
as discussed in Section 4. Now if we knew at closure time
that plus8 was likely to be very often partially applied to a

13 This unification SC can in fact be implemented alternatively as
CA{z<u,u<z|(z+—u)eS}

4Since variables occurring in the context cannot constrain gener-
alised variables, the substitution is (luckily) the identity outside the
binding group.

single argument, we could force z to w, and get the (in this
context) more useful type (Vu . - — (- = (1 = #)*)*)*,
rather than (Vu . -* — (:* — (-} = -@)*)¥)~.

In (b), we can generalise u and v at the cost of forcing y,
a variable in the contezt. This is certainly not HM-style
behaviour: we expect the context to affect bindings inferred
within it, not the other way around; but we know it is always
safe to force such a variable to w (forcing to 1 may cause
inference subsequently to fail).

There is no right choice for whether or not to force such
variables, because the types resulting are incomparable (con-
sider the two types for plus$ above). In some cases we cer-
tainly should not force: if we are still unable to generalise
after forcing, we have lost information to no purpose. In
the absence of any general rule, we choose simply to ignore
these possibilities, and follow the algorithm as given.'®

6.4 Soundness and precision

In Section 6 we gave three requirements for our inference
algorithm. Our algorithm certainly satisfies the first two;
maximum precision turns out to be something of a movable
feast.

It is clear by inspection of the rules that the erasure of the
target term resulting from the translation is identical to the
original source term. Thus our algorithm does not alter the
meaning of the program.

Soundness is slightly less trivial. We require that trans-
lations be well-typed whenever source terms are; i.e., if
F M :tthen C; — » M ~~ e : o, where C is satisfiable and
for all substitutions S satistfying C' we have + Se: So.

The proof of this makes use of a lemma: if C;; ' » M; ~~
e; : o; and all the C; are satisfiable, then the conjunction
N\, Ci is also satisfiable. We proceed by structural induction
on the inference derivation tree. All the rules in Figure 6
can be seen by inspection to preserve the well-typedness
property and the lemma, since usage variables are only ever
constrained to w or a fresh usage variable. This leaves
(»-LETREC). The proof for this requires us to show that
the unifying substitution and additional constraints gener-
ated by the closure operation of Figure 8 do not violate the
lemma. While we have not yet conducted a formal proof of
this result, we are confident that it holds.

The final requirement was that annotations are ‘as pre-
cise as possible’. For our earlier usage-monomorphic sys-
tem [WPJ99], this could be simply interpreted as ‘inference
yields target programs with the greatest possible number
of 1 annotations’. The introduction of usage polymorphism
significantly complicates the accuracy ordering. As we saw
in Section 6.3, terms such as plus3 have multiple incompara-
ble usage-polymorphic types, and thus there is no maximally
precise type for our algorithm to find. However, experience
with the implementation leads us to believe our algorithm
behaves in a reasonable manner, and we hope (see Section 9)
to give a more formal treatment in a subsequent paper.

150f course, the problem trivially disappears in the presence of
constrained polymorphism because the constraint set is used unap-
proximated.



7 Implementation

We have implemented our analysis within the Glasgow
Haskell Compiler (GHC) [PJS98]. GHC is an optimising
compiler, and it operates by translating Haskell input into
Core, performing a long series of optimisation passes over
the Core program, and finally translating the resulting Core
program into STG code and then object code. The Core
language is typed, and types are maintained throughout the
optimisation phase of the compiler.

In our implementation, as we have seen, usage information
is made an integral part of the type language. This means
that we can ensure usage annotations are preserved through
all the various transformations performed, and at any point
we can perform a type-check to verify that they are correct
(é.e., that no optimisation pass has unintentionally violated
the usage annotations). This was not entirely straightfor-
ward to achieve, and in fact one transformation, common
subexpression elimination, yields code that may require a
full re-inference pass to preserve well-typedness. For most
transformations, however, careful local manipulation of an-
notations is sufficient.

Our ‘plan of attack’ is that of [WPJ99, §2.3]: we perform an
initial usage type inference soon after translation into Core;
subsequent transformations preserve usage type soundness,
but at any point we may choose to perform another infer-
ence to improve the accuracy of the types (recall that a
decidable inference of any interesting operational property
is necessarily an approximation). Finally, we perform a fi-
nal inference just prior to translation to STG, to ensure
maximally-accurate usage information is available when de-
ciding which code to generate for each thunk.

Usage information is used in two places. Firstly, it is used
by the code generator to choose whether or not to generate
an updatable thunk and push an update frame on entry.
Secondly, it used by the optimisation passes. The major
(currently the only) information channel here is the usage
annotations on lambda expressions. Each lambda knows
whether it is a ‘one-shot lambda’ (i.e., a lambda that will be
applied at most once) or not. As shown in [San95, PJPS96]
and discussed in our earlier paper [WPJ99, §2], identifying
such one-shot lambdas greatly increases the scope for code-
floating transformations such as inlining and full laziness.
Previously a couple of rather ugly hacks identified a few
special cases where lambdas must be one-shot; our inference
identifies all these, and many more.

7.1 Measurements

Table 2 shows the overall results of adding our analysis to the
optimising compiler GHC. All standard libraries were com-
piled with the analysis, in addition to the program under
test. For each program, the change in total bytes allocated
and in run time is given relative to the version of the com-
piler and libraries without usage inference. We also list the
percentage of thunks demanded at most once during execu-
tion that were statically identified as such by the analysis,
both with optimisation on and off (optimisation was always
turned on for the standard libraries).

It can be seen that both total allocations and run time de-
crease significantly relative to the compiler without the anal-
ysis. Note, however, that essentially no used-once thunks
are identified in the code generated. We hypothesise that the

10

Table 2 Measurements

Program Allocs Run time 1-thunks found

-0 -0 -0 -Onot
cichelli  -1.16% -5.23% 0.00% 35.00%
compress +1.12% -1.94% 0.00%  0.00%
event -3.34% +0.26% 0.00%  0.00%
exp3.8 0.00% -7.33% 0.00%  0.04%
fibheaps -8.78% -9.13%  0.00% 3.00%
gamteb -7.28% -16.44% 0.88% 17.00%
queens 0.00% +5.88% 0.00% 71.00%
solid 0.00% +6.16% 0.00%  0.00%
Average -2.49% -3.74%

IMPORTANT NOTE: The figures in this table are known to be
incorrect. Corrected figures will appear in the formal proceedings.

optimiser is taking advantage of usage information provided
it by our analysis to remove identified used-once thunks alto-
gether. Unfortunately, a large number of unidentified used-
once thunks remain.

Our other results (not shown) show that the costs of the
analysis are not high. The standard libaries (and hence
binaries that link them in) increase by about 1% in size, al-
though many modules decrease slightly; and compile times
increase by only a small factor in most cases (although a
few modules nearly double in time, presumably due to inef-
ficiency in our constraint-solution algorithm).

7.2 Discussion

The improvements in total allocations and run time are quite
encouraging. A 3% improvement is definitely significant
given the number of other optimisations already performed
by GHC.

However, even with our analysis working on both libraries
and program, and optimisation turned off, a program like
compress allocates 810,000 thunks of which 680,000 are en-
tered at most once—but our analysis identifies precisely
one of them! For a number of programs our analysis per-
forms respectably, but for many the results are like those for
compress. What is going wrong?

A more complete answer will have to await deeper analy-
sis, but initial investigations suggest a likely culprit is our
treatment of data structures (discussed in our previous pa-
per [WPJ99]). We currently identify, for example, the usage
of the spine of a list with the usage of its elements; this is
bad for the common pattern of an intermediate data struc-
ture, where the list itself is used once but the contents may
be used multiple times. We are presently investigating the
impact of using a less drastic typing for data structures.

Another possible factor is our choice to restrict the analy-
sis to monovariance: we generate just a single copy of each
function, and provide that with as polymorphic a type as
possible. Would a polyvariant analysis do better? As a very
crude test'® we told the code generator to treat thunks an-
notated with usage variables as used-once, rather than used-
many: this effectively specialised all functions at 1, at the
cost of soundness. Surprisingly, although some of the pro-
grams in our test suite aborted with the diagnostic “single-
entry thunk re-entered”, a large fraction of the programs in
our test suite encountered no problems; yet the percentage

16Like Rutherford’s experiment, this was in fact an accident!



of used-once thunks allocated went up dramatically. This
indicates that specialisation would very likely improve the
situation dramatically. Helpfully, the specialisation machin-
ery is all currently present in GHC anyway, and adding the
required specialisations would be relatively straightforward.

8 Related work

Constrained polymorphism was introduced independently
by Curtis [Cur90] and by Aiken and Wimmers [AW93], and
a significant body of work has developed since. Constrained
polymorphism is closely related to bounded polymorphism,
introduced by Cardelli et al. in [CW85, CMMS94]. With
the addition of recursive types, bounded polymorphism be-
comes equivalent to constrained polymorphism [PS96], and
this latter setting seems more natural for many problems.
Trifonov and Smith’s [TS96] is a key paper dealing with the
theory of subtyping in this context.

Much work has also been done on the type inference prob-
lem for these systems [JP99]; in practice this reduces to the
problem of constraint simplification [AWP97, Pot98, FF99,
MW97, FM90]. Our subtype ordering is purely structural,
making simplification significantly easier than the general
case.

Constraint simplification attempts to find a minimal descrip-
tion of a given type. We go further, and restrict the form
of the description in a way that forces it to be smaller, but
also forces it (in general) to be approzimate. There are two
approximation algorithms of which we are aware. Cardelli’s
‘greedy algorithm’ [Car93] (for a bounded polymorphic lan-
guage) resolves all subtyping constraints immediately (i.e.,
on generation at application sites), performing unification
on type variables as necessary to ensure that constraints
need never be propagated. Slightly less greedy is the algo-
rithm of Nordlander [Nor98] (for a constrained polymorphic
language), which resolves only local subtyping constraints
immediately, and propagates constraints on variables in the
environment further upwards. Nordlander’s algorithm is rel-
atively ad hoc, motivated by a desire for the subtype infer-
ence algorithm to follow the standard unification algorithm
as closely as possible. Our closure algorithm provides a
much more formal presentation of constraint approximation,
and should be more amenable to discussion and analysis.

Flanagan and Felleisen [FF99] discuss in detail the prob-
lem of ranking multiple solutions to a constraint set so as
to select the ‘best’ or most accurate one. Their accuracy
ordering T, is covartant on function types, and is distinct
from their subtype ordering which is, as usual, contravari-
ant on function types. This may provide a formal basis for
our pointwise (i.e., covariant) ordering of constraint-set so-
lutions, described in [WPJ99] and retained in the present
paper (Section 6.1).

The idea of usage polymorphism itself is in no way new.
It is proposed in the paper that started us off, [TWM95],
although in the context of either code specialisation or run-
time usage-passing. A similar notion of annotation polymor-
phism is also familiar in the flow analysis community, un-
der the term polyvariance [Bul84, JW95, WJ98]; many flow
analyses are abstract interpretations rather than type-based
analyses, but it has been shown that the two are closely re-
lated [Jen91]. Polyvariance has been applied to many differ-
ent analyses, notably here binding-time analysis [DHM95],
and so its application to usage is unsurprising.
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Gustavsson [Gus98] infers both usage information (in ex-
actly our sense) and update-marker-check information for a
language similar to ours. Recently [GS00] he has added con-
strained polymorphism (the ‘natural choice’ we mentioned
in Section 3.4) to his analysis, and believes that it will prove
feasible in practice. Similarly, the Clean uniqueness typ-
ing system of Barendsen et al. [BS96] features constrained
uniqueness polymorphism for lambda-lifted functions and
data constructors. Our analysis takes a different approach;
we believe that simple polymorphism will be cheaper and
hope that it will be sufficient in practice. We do not at-
tempt to address the update-marker-check problem.

Systems based on soft typing [CF91], in common with our
analysis, must be able to type all valid programs; and in
both cases maximum benefit occurs when the types inferred
are as accurate as possible. However, soft typing is necessar-
ily visible to the programmer: it is intended for debugging;
in contrast, our analysis is intended to be invisible: it is in-
tended to guide optimisation. Further, type mismatches in a
soft typing system are typically resolved by arbitrary static
coercions supported by dynamic checks; in our system, type
mismatches provably do not occur, by construction.

Work relating to usage analysis but not specifically to usage
polymorphism is discussed in our earlier paper, [WPJ99].

9 Conclusions and future work

We have presented a novel algorithm that infers simple poly-
morphic types (rather than the natural constrained poly-
morphic types) for a language with subtyping, by means of
judicious constraint approximation. This algorithm should
be applicable to any analysis that currently uses con-
strained polymorphism, such as the binding-time analysis of
[DHM95]. We have implemented our analysis in the Glasgow
Haskell Compiler, and performed some preliminary measure-
ments of its effectiveness. These measurements are encour-
aging, although there is still a significant amount of work
to be done in maximising the benefit to the compiler of our
analysis.

There are a number of matters remaining to be investigated.

Clearly we need a deeper formal understanding of exactly
which types and annotations are found by our algorithm.
We have some ideas as to how this might be achieved. Our
algorithm may be viewed as taking a type'” and attempting
to find an optimal description for it, given certain restric-
tions on the form of that description (namely, that it be only
simply polymorphic). Clearly we must maintain soundness
and so for closed types at least, the type we choose is (al-
most) the least type describable that is both greater than
the given type and as applicable'® as the given type, except
that in certain cases there is no such least type. We defer a
complete treatment of this to a subsequent paper discussing
the theoretical issues underlying our algorithm.

One major target we have in view is the extension of our

usage annotations from the simple two-point lattice w < 1
to the following seven-point ‘lattice’ (the apparently-missing

17We here identify a type o with the set [o] of its ground instances,
and order types by reverse set inclusion: o C o' iff [o'] C [o].

18 Applicability is a notion related to the pessimising translation
performed for exported functions; the latter simply returns the least
maximally-applicable type of the same shape as its input. Applica-
bility requires covariant annotations to lie in the inverse primitive
ordering, and ignores contravariant annotations.



top element would be meaningless). This subsumes absence,
strictness, and linearity, in addition to the present (affine
linear) usage analysis:

affine )

=0 =1 > 1

<1 #£1 >1

1

We term this the Bierman lattice, after [Bie92]; it is closely
related to the usage intervals of [Ses91, §5] and to the log-
ics of [Wri96]. We are close to completing the extension of
our monomorphic analysis to this lattice, and believe that
it should be possible to extend the usage-polymorphic infer-
ence algorithm we have presented similarly. We aim thereby

to have the compiler perform all these analyses simultane-
ously.

strict

There remains also significant implementation effort, con-
vincing GHC to make the best possible use of the informa-
tion afforded by the analysis, and ensuring that the usage
types (which are surprisingly fragile) are preserved by the
various transformations within it.
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