
TIPSTER III Final Report (SUMMAC) 1998 

Hovy & Lin Page 1 4/19/01 

AUTOMATED TEXT SUMMARIZATION  
AND THE SUMMARIST SYSTEM 

 
Eduard Hovy and Chin-Yew Lin 

Information Sciences Institute  
  of the University of Southern California  

  4676 Admiralty Way  
  Marina del Rey, CA 90292-6695  

 email: {hovy,cyl}@isi.edu  
tel: 310-822-1511  

 
  
 

Abstract 

This paper consists of three parts: a preliminary typology 
of summaries in general; a description of the current and 
planned modules and performance of the SUMMARIST 
automated multilingual text summarization system being 
built sat ISI, and a discussion of three methods to evaluate 
summaries.   

1.  THE NATURE OF SUMMARIES 

Early experimentation in the late 1950’s and early 60’s 
suggested that text summarization by computer was 
feasible though not straightforward (Luhn, 59; 
Edmundson, 68).  The methods developed then were 
fairly unsophisticated, relying primarily on surface level 
phenomena such as sentence position and word frequency 
counts, and focused on producing extracts (passages 
selected from the text, reproduced verbatim) rather than 
abstracts (interpreted portions of the text, newly 
generated).   

After a hiatus of some decades, the growing presence of 
large amounts of online text —in corpora and especially 
on the Web—renewed the interest in automated text 
summarization.  During these intervening decades, 
progress in Natural Language Processing (NLP), coupled 
with great increases of computer memory and speed, 
made possible more sophisticated techniques, with very 
encouraging results. In the late 1990’s, some relatively 
small research investments in the US (not more than 10 
projects, including commercial efforts at Microsoft, 
Lexis-Nexis, Oracle, SRA, and TextWise, and university 
efforts at CMU, NMSU, UPenn, and USC/ISI) over three 
or four years have produced several systems that exhibit 
potential marketability, as well as several innovations that 
promise continued improvement.  In addition, several 
recent workshops, a book collection, and several tutorials 

testify that automated text summarization has become a 
hot area.   

However, when one takes a moment to study the various 
systems and to consider what has really been achieved, 
one cannot help being struck by their underlying 
similarity, by the narrowness of their focus, and by the 
large numbers of unknown factors that surround the 
problem.  For example, what precisely is a summary?  
No-one seems to know exactly.  In our work, we use 
summary as the generic term and define it as follows:  

A summary is a text that is produced out of one or 
more (possibly multimedia) texts, that contains 
(some of) the same information of the original 
text(s), and that is no longer than half of the 
original text(s).   

To clarify the picture a little, we follow and extend 
(Spärck Jones, 97) by identifying the following aspects of 
variation.  Any summary can be characterized by (at least) 
three major classes of characteristics:  

Input: characteristics of the source text(s)  

Source size: single-document vs. multi-docu-
ment: A single-document summary derives from a 
single input text (though the summarization process 
itself may employ information compiled earlier from 
other texts).  A multi-document summary is one text 
that covers the content of more than one input text, 
and is usually used only when the input texts are 
thematically related.   

Specificity: domain-specific vs. general: When 
the input texts all pertain to a single domain, it may 
be appropriate to apply domain-specific 
summarization techniques, focus on specific content, 
and output specific formats, compared to the general 
case.  A domain-specific summary derives from input 
text(s) whose theme(s) pertain to a single restricted 
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domain.  As such, it can assume less term ambiguity, 
idiosyncratic word and grammar usage, specialized 
formatting, etc., and can reflect them in the summary.  
A general-domain summary derives from input 
text(s) in any domain, and can make no such 
assumptions.   

Genre and scale: Typical input genres include 
newspaper articles, newspaper editorials or opinion 
pieces, novels, short stories, non-fiction books, 
progress reports, business reports, and so on.  The 
scale may vary from book-length to paragraph-
length.  Different summarization techniques may 
apply to some genres and scales and not others.   

Output: characteristics of the summary as a text  

Derivation: Extract vs. abstract: An extract is a 
collection of passages (ranging from single words to 
whole paragraphs) extracted from the input text(s) 
and produced verbatim as the summary.  An abstract 
is a newly generated text, produced from some 
computer-internal representation that results after 
analysis of the input.   

Coherence: fluent vs. disfluent: A fluent 
summary is written in full, grammatical sentences, 
and the sentences are related and follow one another 
according to the rules of coherent discourse structure.  
A disfluent summary is fragmented, consisting of 
individual words or text portions that are either not 
composed into grammatical sentences or not 
composed into coherent paragraphs.   

Partiality: neutral vs. evaluative : This 
characteristic applies principally when the input 
material is subject to opinion or bias.  A neutral 
summary reflects the content of the input text(s), 
partial or impartial as it may be.  An evaluative 
summary includes some of the system’s own bias, 
whether explicitly (using statements of opinion) or 
implicitly (through inclusion of material with one 
bias and omission of material with another).   

Conventionality: fixed vs. floating: A fixed-
situation summary is created for a specific use, reader 
(or class of reader), and situation.  As such, it can 
conform to appropriate in-house conventions of 
highlighting, formatting, and so on.  A floating-
situation summary cannot assume fixed conventions, 
but is created and displayed in a variety of settings to 
a variety of readers for a variety of purposes.   

Purpose: characteristics of the summary usage  

Audience: Generic vs. query-oriented: A generic 
summary provides the author’s point of view of the 
input text(s), giving equal import to all major themes 
in it.  A query-oriented (or user-oriented) summary 
favors specific themes or aspect(s) of the text, in 

response to a user’s desire to learn about just those 
themes in particular.  It may do so explicitly, by 
highlighting pertinent themes, or implicitly, by 
omitting themes that do not match the user’s 
interests.   

Usage: Indicative  vs. informative : An indicative 
summary provides merely an indication of the 
principal subject matter or domain of the input text(s) 
without including its contents.  After reading an 
informative summary, one can explain what the input 
text was about, but not necessarily what was 
contained in it.  An informative summary reflects 
(some of) the content, and allows one to describe 
(parts of) what was in the input text.  

Expansiveness: Background vs. just-the-news : A 
background summary assumes the reader’s prior 
knowledge of the general setting of the input text(s) 
content is poor, and hence includes explanatory 
material, such as circumstances of place, time, and 
actors.  A just-the-news summary contains just the 
new or principal themes, assuming that the reader 
knows enough background to interpret them in 
context. 

At this time, apart from early work by Spärck Jones and 
students, such as (Tait and Spärck Jones, 83), we know of 
few linguistic or computational studies of these and other 
aspects of summaries; the work by (Van Dijk and 
Kintsch, 83) and (Endres-Niggemeyer, 97) focus on the 
psycholinguistic aspects of humans when they create 
summaries.  We believe that the typology of summaries is 
a fruitful area for further study, both by linguists 
performing text analysis and by computational linguists 
trying to create techniques to create summaries 
conforming to one or more of the characteristics listed 
above.  A better understanding of the types of summary 
will facilitate the construction of techniques and systems 
that better serve the various purposes of summarization in 
general.   

Our own work is computational.  Over the past two 
years, under the TIPSTER program, we have been 
developing the text summarization system SUMMARIST 
(Hovy and Lin, 98; Lin, 98).  Our goal is to investigate 
the nature of text summarization, using SUMMARIST 
both as a research tool and as an engine to produce 
summaries for people upon demand.  

In this paper, we first describe the architecture of 
SUMMARIST and provide details on the evaluated 
results of several of its modules in Sections 3, 4, and 5.  
Finally, since the evaluation of summaries (and of 
summarization) is a little-understood business, we 
describe some preliminary experiments in this regard in 
Section 6.   
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2. SUMMARIST  

The goal of SUMMARIST is to create summaries of 
arbitrary text in English and selected other languages 
(Hovy and Lin, 98).  By eschewing language-specific 
methods for the relatively surface-level processing, it is 
possible to create a multi-lingual summarizer fairly easily.  
Eventually, however, SUMMARIST will include 
language-specific techniques of parsing and semantic 
analysis, and will combine robust NLP processing (using 
Information Retrieval and statistical techniques) with 
symbolic world knowledge (embodied in the concept 
thesaurus SENSUS (Knight and Luk, 94; Hovy, 98), 
derived from WordNet (Miller et al., 90) and augmented 
by dictionaries and similar resources) to overcome the 
problems endemic to either approach alone.  These 
problems arise because existing robust NLP methods tend 
to operate at the word level, and hence miss concept-level 
generalizations (which are provided by symbolic world 
knowledge), while on the other hand symbolic knowledge 
is too difficult to acquire in large enough scale to provide 
adequate coverage and robustness.  For high-quality yet 
robust summarization, both aspects are needed.   

In order to maintain functionality while we experiment 
with new aspects, and since not all kinds of summary 
require the same processing steps, we have adopted a very 
open, modular design.  Since it is still under development, 
not all the modules of SUMMARIST are equally mature. 

To create extracts, one needs procedures to identify the 
most important passages in the input text.  To create 
abstracts, the core procedure is a process of interpretation.  
In this step, two or more topics are fused together to form 
a third, more succinctly stated, one.  (We define topic as a 
particular subject that we write about or discuss.)  This 
step must occur after the identification step.  Finally, to 
produce the summary, a concluding step of sentence 
generation is needed.  Thus SUMMARIST is structured 
according to the following ‘equation’:  

summarization =  
    topic identification + interpretation + generation 

For identification, the goal is to filter the input to retain 
only the most important, central, topics. Once they have 
been identified, they can simply be output, to form an 
extract.  Typically, topic identification can be achieved 
using various complementary techniques.  This stage of 
SUMMARIST is by far the most developed; making it, at 
present, an extract-only summarizer. See Section 3.   

For interpretation, the goal is to perform compaction 
through re-interpreting and fusing the extracted topics 
into more succinct ones.  This is necessary because 
abstracts are usually much shorter than their equivalent 
extracts. All the variations of fusion are yet to be 
discovered, but they include at least simple concept 

generalization (he ate pears, apples, and bananas→ he 
ate fruit) and script identification (he sat down, read the 
menu, ordered, ate, and left→ he visited the restaurant).  
We discuss interpretation in Section 4.   

For generation, the goal is to produce the output 
summary.  In the case of extracts, generation is a null 
step, but in the case of abstracts, the generator has to 
reformulate the extracted and fused material into a 
coherent, densely phrased, new text.  The modules 
planned for SUMMARIST are described in Section 5.   

Prior to topic identification, the system preprocesses  
the input text.  This stage converts all inputs into a 
standard format we call SNF (Summarist Normal Form).  
Preprocessing includes tokenizing (to read non-English 
texts and output word-segmented tokens); part-of-speech 
tagging (the tagger is based on Brill’s (1992) part-of-
speech tagger); demorphing (to find root forms of each 
input token, using a modification of WordNet’s (Miller et 
al., 90) demorphing program); phrasing (to find 
collocations and multi-word phrases, as recorded in 
WordNet); token frequency counting; tf.idf weight 
calculation (to calculate the tf.idf weight (Salton, 88) for 
each input token, and rank the tokens accordingly); and 
query relevance calculation (to record with each sentence 
the number of demorphed content words in the user’s 
query that also appear in that sentence).   

An example text in Indonesian, preprocessed into SNF, 
is shown in Figures 1(a) and 1(b).  Figure 1(a) indicates 
that the text contained 1618 characters, and that it had 
been processed by the following modules: tokenization 
and part of speech tagging, title treatment, demorphing, 
WordNet categorization and common word identification, 
tf.idf computation, and OPP processing (see Section 3.1).  
It also records the top-scoring words in the text, together 
with their scores, as given by the modules computing term 
frequency (tf_keywords), tf.idf, and the OPP.  The field 
opp_rule shows the most important sentence positions as 
0 (the title); sentence 1; sentences 2 and 3 (tied), in that 
order.  Figure 1(b) contains the processed text itself, one 
word per line, with the features added to each word by 
various modules.  The features include paragraph and 
sentence number (pno and sno), part of speech (pos, 
empty for Indonesian), common word indicator (cwd), 
presence of word in title (ttl), morphology (mph), 
WordNet count (wnc), word frequency in text (frq), and 
tf.idf and OPP scores (see Sections 3.3 and 3.1 resp.).   

3. Phase 1: Topic Identification  

Summarization systems that perform topic identification 
only produce extract summaries; these include the current 
operational version of SUMMARIST, as well as the 
systems of (Aone et al., 98; Strzalkowski et al., 98; Bagga 
and Baldwin, 98; and Mitra et al., 97).   
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<*topic=#???> 
<*docno=HTML-DOC> 

<*title="Senator Dari Demokrat Sarankan ClintonMemberi Kesaksian Di DepanKongres "> 
<*token_title="sarankan|demokrat|clintonmemberi|kongres|kesaksian|senator"> 
<*pos_title="-"> 
<*char_count=2300> 

<*module=PRE|TTL|MPH|CAT|TFIDF|OPP> 
<*tf_keywords=kesaksian,6.000|kongres,6.000|lewinsky,5.000|demokrat,3.000|hadapan,3.000|video,3.000| 
   'saya,2.000|agung,2.000|digambarkan,2.000|jawaban,2.000> 
<*tfidf_keywords=lewinsky,35.088|kesaksian,32.448|kongres,27.718|video,16.894|demokrat,13.859| 

   hadapan,12.219|digambarkan,11.838|senator,11.262|pembaruan,10.451|mencakup,9.430> 
<*opp_rule=p:0,1|1,2|2,4|3,4 s:-,-> 
<*opp_keywords=kongres,26.917|kesaksian,25.667|demokrat,16.333|lewinsky,14.167|senator,12.667| 
   sarankan,10.667|video,9.333|screen,9.000|the,9.000|hadapan,8.917> 

 Figure 1(a). Indonesian text: preamble, after preprocessing. 

Dari <pno=2 sno=3 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,-> 
Demokrat <pno=2 sno=3 pos=NA cwd=0 ttl=1 mph=- wnc=- frq=3 tfidf=13.859 opp=16.333,3.667> 

Sarankan <pno=2 sno=3 pos=NA cwd=0 ttl=1 mph=- w nc=- frq=1 tfidf=5.631 opp=10.667,3.667> 
Clinton <pno=2 sno=3 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,-> 
Memberi <pno=3 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,-> 
Kesaksian<pno=3 sno=1 pos=NA cwd=0 ttl=1 mph=- wnc=- frq=6 tfidf=32.448 opp=25.667,3.250> 

Di <pno=3 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,-> 
Depan <pno=3 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,-> 
Kongres  <pno=3 sno=1 pos=NA cwd=0 ttl=1 mph=- wnc=- frq=6 tfidf=27.718 opp=26.917,3.250> 
Washington    <pno=4 sno=1 pos=NA cwd=0 ttl=0 mph=- wnc=- frq=1 tfidf=3.434 opp=2.833,2.833> 

, <pno=4 sno=1 pos=PUN cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0 opp=-,-> 
Pembaruan     <pno=4 sno=1 pos=NA cwd=0 ttl=0 mph=- wnc=- frq=2 tfidf=10.451 opp=6.500,2.833> 
Seorang <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,-> 

senator <pno=5 sno=1 pos=NA cwd=0 ttl=1 mph=- wnc=- frq=2 tfidf=11.262 opp=12.667,2.833> 
dari <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,-> 
Partai  <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,-> 
Demokrat <pno=5 sno=1 pos=NA cwd=0 ttl=1 mph=- wnc=- frq=3 tfidf=13.859 opp=16.333,2.833> 

, <pno=5 sno=1 pos=PUN cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0 opp=-,-> 
hari <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,-> 
Minggu <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,-> 
( <pno=5 sno=1 pos=PUN cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0 opp=-,-> 

20 <pno=5 sno=1 pos=CD cwd=1 ttl=0 mph=- w nc=- frq=0 tfidf=0 opp=-,-> 
/ <pno=5 sno=1 pos=PUN cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0 opp=-,-> 
9 <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0 opp=-,-> 
) <pno=5 sno=1 pos=PUN cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0 opp=-,-> 

, <pno=5 sno=1 pos=PUN cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0 opp=-,-> 
menyarankan     <pno=5 sno=1 pos=NA cwd=0 ttl=0 mph=- wnc=- frq=1 tfidf=3.759 opp=2.833,2.833> 
agar <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,-> 
Presiden <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,-> 

Clinton <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,-> 
secara <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,-> 
sukarela <pno=5 sno=1 pos=NA cwd=0 ttl=0 mph=- wnc=- frq=1 tfidf=5.226 opp=2.833,2.833> 

…continued… 

Figure 1(b). Indonesian text: words plus their attributes, after preprocessing. 
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We assume that a text can have many (sub)-topics, and 
that the topic extraction process can be parameterized in 
at least two ways: first, to include more or fewer topics to 
produce longer or shorter summaries, and second, to 
include only topics relating to the user’s expressed 
interests.   

Typically, topic identification can be achieved using 
various complementary techniques, including those based 
on stereotypical text structure, cue words, high-frequency 
indicator phrases, and discourse structure. Modules for all 
of these have been completed or are under construction 
for SUMMARIST.  In processing, each module assigns a 
numeric score to each sentence.  When all modules are 
done, the Topic Id Integration Module combines their 
scores to produce the overall ranking.  The final result is 
the top-ranked n% of sentences as its final result, where n 
is specified by the user. 

3.1 Position Module 

The Position Module is based on the well-known fact 
that certain genres exhibit such structural and expositional 
regularity that one can reliably locate important sentences 
in certain fixed positions in the text.  In early studies, 
Luhn (1959) and Edmu ndson (1968) identified several 
privileged positions, such as first and last sentences.   

We generalized their results (Lin and Hovy, 97), 
developing a method for automatically identifying the 
sentence positions most likely to yield good summary 
sentences.  The training phase of this method calculates 
the yield of each sentence position by comparing the 
similarity between human-created abstracts and the 
contents of the sentence in each ordinal position in the 
corresponding texts.  By summing over a large collection 
of text -abstract pairs from the same corpus and 
appropriately normalizing, we create the Optimal Position 
Policy (OPP), a ranked list that indicates in what ordinal 
positions in the text the high-topic-bearing sentences tend 
to occur.  We tested this method on two corpora: the Ziff-
Davis texts (13,000 newspaper articles announcing 
computer products) and a set of several thousand Wall 
Street Journal newspaper articles.  For the Ziff-Davis 
corpus we found the OPP to be  

[T1, P2S1, P3S1, P4S1, P1S1, P2S2,  
 {P3S2, P4S2, P5S1, P1S2}, P6S1, ...]  

i.e., the title (T1) is the most likely to bear topics, 
followed by the first sentence of paragraph 2, the first 
sentence of paragraph 3, etc.  (Paragraph 1 is invariably a 
teaser sentence in this corpus.)  In contrast, for the Wall 
Street Journal, we found the OPP to be  

[T1, P1S1, P1S2, ...]   

We evaluated the OPP method in various ways.   One 
measured coverage, the fraction of the (human-supplied) 
keywords that are included verbatim in the sentences 
selected under the policy.  (A random selection policy 
would extract sentences with a random distribution of 
topics; a good position policy would extract rich topic-
bearing sentences.) We measured the effectiveness of an 
OPP by taking cumulatively more of its sentences: first 
just the title, then the title plus P2S1, and so on.  
Summing together the multi-word contributions in the top 
ten sentence positions, 10-sentence extracts (approx. 15% 
of a typical Ziff-Davis text) intersected with 95% of the 
corresponding human abstracts.    

In addition to the OPP itself, we created OPP keywords, 
by counting the number of times each open-class word 
appeared in an OPP-selected sentence, and sorting them 
by frequency.  Any other sentence with a high number of 
these keywords can also be rewarded with an appropriate 
score.   

In operation, the Position Module simply selects an 
appropriate OPP for the input text, assigns a score to each 
sentence in order of the OPP, and then computes the OPP 
keyword list for the text.  It then assigns additional scores 
to sentences according to how many OPP keywords they 
contain.  These scores can be seen in Figure 1(b), in the 
item opp=x,y on each line. The first number provides the 
global OPP score (the score of this word, summed over 
the whole text) and the second score the local OPP (the 
score of this sentence in the OPP).   

3.2 Cue Phrase Module  

In pioneering work, Baxendale (1958) identified two 
sets of phrases—bonus phrases and stigma  phrases—that 
tend to signal when a sentence is a likely candidate for 
inclusion in a summary and when it is definitely not a 
candidate, respectively.  Bonus phrases such as “in 
summary”, “in conclusion”, and superlatives such as “the 
best”, “the most important” can be good indicators of 
important content.  During processing, the Cue Phrase 
Module simply rewards each sentence containing a cue 
phrase with an appropriate score (constant per cue phrase) 
and penalizes those containing stigma phrases.  

Unfortunately, cue phrases are genre dependent.  For 
example, “Abstract” and “in conclusion” are more likely 
to occur in scientific literature than in newspaper articles.  
Given this genre-dependence, the major problem with cue 
phrases is identifying them. A natural method is to 
identify high-yield sentences in texts (compared to their 
human-made abstracts) and then to identify common 
phrases in those sentences.  A careful study on the 
automated collection of cue phrases is reported in (Teufel 
and Moens, 98).   
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In the context of SUMMARIST, we have tried several 
methods of acquiring cue phrases.  In one experiment, we 
manually compiled a list of cue phrases from a training 
corpus of paragraphs that themselves were summaries of 
texts. In this corpus, sentences containing phrases such as 
“this paper”, “this article”, “this document”, and “we 
conclude” fairly reliably reflected the major content of the 
paragraphs.  This indicated to us the possibility of 
summarizing a summary.  

In another experiment, we examined methods to 
automatically generate cue phrases (Liu and Hovy, in 
prep.). We examined various counting methods, all of 
them comparing the ratios of occurrence densities of 
words in summaries (wds) and in the corresponding texts 
(wdt) in various ways, and then extracted the words 
showing the highest increase in occurrence density 
between text and associated abstract.  Finally, we 
searched for frequent concatenations of such privileged 
words into phrases.  While we found no useful phrases in 
a corpus of 1,000 newspaper articles, we found the 
following in 87 articles on Computational Linguistics:   

        Method 1     Method 2 

   S1 phrase   S2 phrase 

 11.50 multiling. natural lang.  3.304 in this paper 
 8.500 paper presents the  2.907 this paper we  
 7.500 paper gives  2.723 base on the  

 6.000 paper presents  2.221 a set of  
 6.000 now present 2.192 the result of  
 5.199 this paper presents  2.000 the number of  

 4.555 paper describes 1.896 in order to  

In method 1, S1 = wds / wdt, the ratio of occurrence 
densities of words in the training summaries and their 
corresponding texts.  In method 2, S2 = W / ws * df / D, 
where W is a weighting factor, D is the total number of 
training documents, ws is  the word frequency in the 
summary, and df is the number of documents in which the 
word being counted appears.   

The Cue Phrase Module was not applied in the example 
in Figure 1(b), since we have no cue phrases for 
Indonesian.   

3.3 Topic Signature Module  

In a straightforward application of word counting, one 
might surmise that words that occur most frequently in 
the text may possibly indicate important material.  
Naturally, one has to rule out closed-class words such as 
“the” and “in”.  A common method is to create a list of 
words using tf.idf, a measure that rewards words for being 
relatively frequent—much more frequent in one text than 
on average, across the corpus.  This method, pioneered a 

decade ago (Salton, 88), is used in IR systems to achieve 
query term expansion.   

The same idea can be used in topic identification.  On 
the assumption that semantically related words tend to co-
occur, one can construct word families and then count the 
frequency of word families instead of individual words.  
A frequent word family will indicate the importance of its 
common semantic notion(s) in the text.  To implement 
this idea, we define a Topic Signature as a topic word (the 
head) together with a list of associated (keyword weight) 
pairs.  Each topic signature represents a semantic concept 
using word co-occurrence patterns.  We describe in 
Section 4.2 how we automatically build Topic Signatures 
and plan to use them for topic interpretation.   

For use in topic identification, we created a Topic 
Signature for each of five groups of 200 documents, 
drawn from five domains. When performing topic 
identification for a document, the Topic Id Signature 
Module scanned each sentence, assigning to each word 
that occurred in a signature the weight of that keyword in 
the signature.  Each sentence then received a signature 
score equal to the total of all signature word scores it 
contained, normalized by sentence length.  This score 
indicated the relevance of the sentence to the signature 
topic.  

Since we have no signatures for Indonesian word 
families, no signature score appears in Figure 1(b).  
However, the tf.idf score of each word (comparing the 
frequencies of each term in the text and across a 
collection of Indonesian texts) appears in the item tfidf=x.   

3.4 Discourse Structure Module  

A new module that uses discourse structure is under 
construction for SUMMARIST.  This module, being built 
by Daniel Marcu, is an extension of his Ph.D. work 
(Marcu, 97).  It is based on the fact that texts are not 
simply flat lists of sentences; they have a hierarchical 
structure, one in which certain clauses are more important 
than others.  After parsing the hierarchical structure of an 
input text and then identifying the important clauses in 
this structure, Marcu discards unimportant clauses and 
retains only the most important ones, still bound together 
within the discourse structure, and hence still forming a 
coherent text.   

To produce the text’s discourse structure, Marcu 
adapted Rhetorical Structure Theory (Mann and 
Thompson, 88), which postulates approximately 25 
relations that bind clauses (or groups of clauses) together 
if they exhibit certain semantic and pragmatic properties.  
These relations are signaled by so-called cue phrases such 
as  “but” and “however” (for the relation Contrast), “in 
order to” and “because” (for the relation Cause), “then” 
and “next” (for Sequence), and so on.  Most relations are 
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binary, having a principal component (the Nucleus) and a 
subsidiary one (the Satellite).  Relations can be nested 
recursively; a text is only coherent if all its clauses can be 
linked together, first in local subtrees and then in 
progressively larger ones, under a single overarching 
relation.  Marcu uses a constraint satisfaction algorithm to 
assemble all the trees that legally organize the input text, 
and then employs several heuristics to prefer one tree over 
the others.   

To produce an extract summary of the input text, Marcu 
simply discards the least salient material, in order, by 
traversing the discourse structure top-down, following 
Satellite links only.   

Marcu’s subsequent this work combines the discourse 
structure paradigm with several other surface-based 
methods, including cue phrases, the discourse tree shape, 
title words, position, and so on (Marcu, 98a).  Using an 
automated coefficient learning method, he finds that the 
best linear combination of values for all these methods.  
Evaluation shows that the resulting extracts approximate 
human performance on both newspaper articles and 
Scientific American texts:  

        Extract            F-score 
  10% (clauses)  news Sci. Am. 
    Human 79.41%  71.27% 
    System 68.86%  70.42% 

 

3.5 Topic Identification Integration Module  

After SUMMARIST applies some or all the above 
modules, each sentence has been assigned several 
different scores.   Some method is required to combine 
these scores into a single score, so that the most important 
topic-bearing sentence can be ranked first.   However, it is 
not immediately clear how the various scores should be 
combined for the best result.  Various approaches have 
been described in the literature.  Most of them employ 
some sort of combination function, in which coefficients 
assign various weights  to the individual scores, which are 
then summed.  (Kupiec et al., 95) and (Aone et al., 97) 
employ the Expectation Maximization algorithm to derive 
coefficients for their systems.    

Initially, we implemented for SUMMARIST a 
straightforward linear combination function, in which we 
specified the coefficients manually, by experimentation. 
This hand tuning method is good for getting a feeling of 
how various modules can affect the SUMMARIST 
output, but it does not guarantee consistent performance 
over a large collection. As we found in the formal 
TIPSTER-SUMMAC evaluation of various 
summarization systems (Firmin Hand and Sundheim, 98), 
the results of this function were decidedly non-optimal, 
and did not show the potential and power of the system! 

Since consistent performance and graceful degradation 
are very important for SUMMARIST, alternative 
combination functions were needed.  

In subsequent work, we tested two automated methods 
of creating better combination functions.   These methods 
assumed that a set of texts with their ideal summaries are 
available, and that information contained in the ideal 
summaries can be reliably recovered from their 
corresponding original texts. The sentences in the original 
texts that were also included in the summaries we called 
target sentences.  

Unfortunately, we know of no large corpus of texts with 
truly ideal summaries. Therefore, as training data, we 
used a portion of the results of the TIPSTER-SUMMAC 
summarization evaluation dry run, annotated to indicate 
the relevance and popularity of each sentence, as 
aggregated over the ratings of several systems (Baldwin, 
98).  This collection contains 403 summaries containing 
4,830 training instances/sentences, which are judged as 
relevant to TREC topics 110, 132, 138, 141, and 151.  
(Note that contributions from topics are not uniform. 
Specific (topic/contribution) numbers are 110/226, 
132/122, 138/50, 141/42, and 151/63.)  Since the sentence 
scores are based on the consensus votes of the summaries 
resulting from six different experimental summarization 
systems participating in the dry run, no single sentence 
relevance judgement is available to construct a truly ideal 
summary set.  Thus the consensus selected target 
sentences should be called ‘pseudo-ideal sentences’.  
Please refer to (Firmin Hand and Sundheim, 98) for a 
more detail description of the TIPSTER-SUMMAC dry 
run evaluation procedure and setup. 

We then employed two methods to automatically learn 
the combination function(s) that identified in each 
training text the most target sentences.  

The first method is a decision tree learning algorithm 
based on C4.5 (Quinlan, 86).  Each module’s outcome is 
used as a feature in the learning space. The normalized 
score (from 0 to 1 inclusive) of each module for each 
sentence is used as its feature value.  A feature vector is a 
six-tuple:  (TTL: v1, TF: v2, TFIDF: v3, SIG: v4, OPP: 
v5, QRY: v6).  TTL indicates the score from the title 
module; TF, the term frequency module; TFIDF, the tf.idf 
module; SIG, the topic signature module; OPP, the 
position module; and QRY, the query signature module. 
All sentences included in the ideal summary of a text are 
positive examples, all others are negative examples.  

To fully utilize limited training data, we followed the 
standard decision tree training and validation procedure 
and conducted a 5-way cross-validation test. The 
algorithm generated a tree of 1,611 nodes, of which the 
top  (most informative) questions pertain to the query 
signature, term frequency, overlap with title, and OPP.  
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Compared with the manually built function, the decision 
tree is considerably better. With the linear combination 
function, SUMMARIST used to score 33.02% (Recall 
and Precision) on an unseen test set of 82 dry-run texts. 
On the same data, SUMMARIST now scores 58.07% 
(Recall and Precision) in the 5-way cross-validation test.  
This represents an improvement of 25%. It is important to 
understand that this 58.07% score should not be 
interpreted as how frequently SUMMARIST produces 
and recovers relevant summaries. This figure is obtained 
by evaluating against every sentence contained in the 
pseudo-ideal summaries. Thus it is simply a measure of 
how well SUMMARIST correctly recovers the pseudo-
ideal sentences. The final judgement has to be made by 
human analysts who judge the sentences extracted by 
SUMMARIST as a whole, a judgement that unfortunately 
we cannot carry out on a large scale with our limited staff.   
However, the figure is still a valuable performance 
indicator.  No summaries can be called good summaries if 
they do not contain any summary-worthy sentences.   

For the second method, we followed the same setup as 
the decision tree training method mentioned above but 
implemented a 6-node perceptron as the learning engine.   
Training it on the same data produced results within 1% 
of the decision tree.  

When measuring overall summarization performance, 
we conjecture that the performance of SUMMARIST 
with the decision tree, evaluated in a relevance judgement 

setting such as the TIPSTER-SUMMAC evaluation, 
should be in the 70% range.  The reason is that since 
SUMMARIST without an learned combination function 
scored about 49% in the Ad Hoc normalized best 
summary category (Firmin Hand and Sundheim, 98); a 
25% increase on top of 49% would locate the enhanced 
SUMMARIST performance in the 70% range.   

The most recent combination function used in 
SUMMARIST is still a decision tree, but has been trained 
on different data.  An example extract summary of the 
Indonesian text in Figure 1, using the latest decision tree 
as combination function, appears in Figure 2.  The new 
training data derives from the Question and Answer 
summary evaluation data provided by TIPSTER-
SUMMAC. The principal difference between the 
(Baldwin, 98) data and the new Q&A data is that the latter 
contains essential text fragments  (phrases, clauses, and 
sentences) which must be included in summaries to 
answer some TREC topics. These fragments are judged 
by two human judges and are thus much more accurate 
training data. SUMMARIST trained on the Q&A data 
should therefore perform better than the version trained 
on the older data.   

A detailed description of the aforementioned training 
experiments and the improved combination function 
appears in (Lin, in prep.). 

 

 <DOC> 

 <SUMMARIZER>ISI</SUMMARIZER> 

 <TASKTYPE>qanda</TASKTYPE> 

 <SUMMARYTYPE>15%</SUMMARYTYPE> 

 <QNUM> ???</QNUM> 

 <DOCNO>HTML-DOC</DOCNO> 

 <TITLE>  Senator Dari Demokrat Sarankan Clinton Memberi Kesaksian Di DepanKongres  

 </TITLE> 

 <TEXT> 

Seorang senator dari Partai Demokrat , hari Minggu ( 20 / 9 ) , menyarankan agar Presiden  
Clinton secara sukarela memberikan kesaksian di hadapan Kongres guna menghentikan " 
siksaan politik " yang memanas Senin pagi ketika rakyat AS menyaksikan testimoni Clinton di 
hadapan juri agung menyangkut Monica Lewinsky . Senator John Kerry , anggota Demokrat dari 
Massachusetts mengusulkan Clinton bersaksi menjawab pertanyaan Komite Hukum Kongres . 
Dengan menyiarkan video kesaksian Clinton , Kongres sebetulnya menghadapi pukulan balik .. 

 </TEXT> 

 </DOC> 

Figure 2.  Summary of Indonesian text in Figure 1. 
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4. Phase 2: Topic Interpretation  

The second phase of summarization—going from 
extract to abstract—is considerably more complex than 
the first, for it requires that the system have recourse to 
world knowledge.  Without knowledge of the world, no 
system can fuse together the topics extracted to produce a 
smaller number of topics to form an abstract.  Yet one 
cannot simply ignore abstraction: extracts are not 
adequate for many tasks.  In one study, (Marcu, 98b) 
counted how many clauses had to be extracted from a text 
in order to fully contain all the material included in a 
human abstract of that text. Working with a newspaper 
corpus of 10 texts and 14 judges, he found a compression 
factor of 2.76—in that genre, extracts are almost three 
times as long (counting words) as their corresponding 
abstracts!  Results of this kind indicate the need for 
summarization systems to further process extracted 
material: to remove redundancies, rephrase sentences to 
pack material more densely, and, importantly, to merge or 
fuse related topics into more ‘general’ ones using world 
knowledge. 

The major problem encountered in the abstraction 
process is the acquisition of such world knowledge.  In 
this section we describe two experiments performed in the 
context of SUMMARIST that investigate topic 
interpretation.   

4.1. Concept Counting and the Wavefront 

One of the most straightforward examples of topic 
fusion is concept generalization:  

John bought some apples, pears, and oranges. 
 →  John bought some fruit.  

Using a concept generalization taxonomy called 
WordNet (Miller et al., 90), we have developed a method 
to recognize that apple, pear, etc., can be summarized as 
fruit. The idea is simple.  We first identify the WordNet 
equivalent of each topic word in the text, and then locate 
an appropriate generalization concept.   

To identify an appropriate generalization concept, we 
need to count frequencies of occurrence of concepts (after 
all, apple and pear can equally well be generalized as 
plant-product or physical-object).  Our algorithm (Lin 95) 
first counts the number of occurrences of each content 
word in the text, and assigns that number to the word’s 
associated concept in WordNet.  It then propagates all 
these weights upward, assigning to each node the sum of 
its weight plus all its childrens’ weights.  Next, it 
proceeds back down, deciding at each node whether to 
stop or to continue downward.  The algorithm stops when 
the node is an appropriate generalization of its children; 
that is, when its weight derives so equally from two or 

more of its children that no child is the clear majority 
contributor to its weight. To find the wavefront, we define 
a concept’s weight to be the sum of the frequency of 
occurrence of the concept C plus the weights of all its 
subconcepts.  We then define the concept frequency ratio 
between a concept and its subconcepts: 

 

This criterion selects the most specific generalization of a 
set of concepts as their fuser.   

This algorithm can be extended to identify successive 
layers of fuser concepts.  As described in (Lin 95), the 
first set of fuser concepts the algorithm locates need not 
be the last; one can continue downward, in order to locate 
more specific generalizations.  Each stopping frontier we 
call an interesting wavefront. By repeating the wavefront 
location process until it reaches the leaf concepts of the 
hierarchy, the algorithm derives a set of interesting 
wavefronts.  From all the interesting wavefronts, one can 
choose the most general one below a certain depth D to 
ensure a good balance of generality and specificity.  For 
WordNet, we found D=6, by experimentation.   

To evaluate the results of this type of fusion, we 
selected 26 articles about new computer products from 
BusinessWeek  (1993–94) of average 750 words each.  For 
each text we extracted the eight sentences containing the 
most interesting concepts using the wavefront technique, 
and compared them to the contents of a professional’s 
abstracts of these 26 texts from an online service. We 
developed several weighting and scoring variations and 
tried various ratio and depth parameter settings for the 
algorithm. We also implemented a random sentence 
selection algorithm as a baseline comparison.   

The results were promising, though not startling. 
Average recall (R) and precis ion (P) values over the three 
scoring variations were R=0.32 and P=0.35, when the 
system produces extracts of 8 sentences.  In comparison, 
the random selection method scored R=0.18 and P=0.22 
in the same experimental setting.  These values show that 
semantic knowledge can help enable improvements over 
traditional IR word-based techniques.   However, the 
limitations of WordNet are serious drawbacks: it contains 
almost no domain-specific knowledge.  

4.2 Interpretation using Topic Signatures 

Before addressing the problem of world knowledge 
acquisition head-on, we decided to investigate what type 
of knowledge would be useful for topic interpretation.  
After all, one can spend a lifetime acquiring knowledge in 
just a small domain.  How little knowledge does one need 
to enable effective concept fusion?   
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Our idea, again, was simple.  We would collect a set of 
words that were typically associated with a target word, 
and then, during interpretation, replace the occurrence of 
the related words by the target word.  For example, we 
would replace joint instances of table, menu, waiter, 
order, eat, pay, tip, and so on, by the single phrase 
restaurant-visit, in producing an indicative summary.  We 
thus defined a topic signature as a family of related 
words, as follows:  

TS = {head, (w1 s1), (w2 s2), (w3 s3),…} 

where head is the target word and each wi is an related 
word with association strength si.   

As described in (Lin 97), we constructed signatures 
automatically from a set of 30,000 texts from the 1987 
Wall Street Journal (WSJ) corpus.  The paper’s editors 
have classified each text into one of 32 classes.  Within 
the texts of each class, we counted the occurrences of 
each content word (demorphed to remove plurals, etc.), 
relative to the number of times they occur in the whole 
corpus, using the standard tf.idf method.  We then selected 
the top-scoring 300 terms for each category and created a 
signature with the category name as its head.  The top 
terms of four example signatures are shown in Figure 3.  
It is quite easy to determine the identity of the signature 
head just by inspecting the top few signature words.  

In order to evaluate the quality of the signatures formed 
by the algorithm, we evaluated the effectiveness of each 
signature by seeing how well it served as a selection 
criterion on texts.  While this is not our intended use of 
signatures, document categorization is a well-known task 
with enough results in the literature to give us a sense of 
the performance of our methods. As data we used a set of 
2,204 previously unseen WSJ news articles from 1988.  
For each test text, we created a single-text ‘document 
signature’, again using tf.idf, and then matched this 
document signature against the category signatures.  The 
closest match provided the class into which the text was 
categorized.  We tested several matching functions, 
including a simple binary match (count 1 if a term match 
occurs; 0 otherwise); curve-fit match (minimize the 
difference in occurrence frequency of each term between 
document and concept signatures), and cosine match 
(minimize the cosine angle in the hyperspace formed 
when each signature is viewed as a vector and each word 
frequency specifies the distance along the dimension for 
that word).  These matching functions all provided 
approximately the same results.  The values for Recall 
and Precision (R=0.7566 and P=0.6931) are encouraging 
and compare well with recent IR results (TREC, 95).  
Current experiments are investigating the use of contexts 
smaller than a full text to create more accurate signatures.   

 
RANK Aerospace Banking Environment Telecomm. 

1 contract bank epa at&t 

2 air_force thrift waste network 

3 aircraft banking environmental fcc 

4 navy loan water cbs 

5 army mr. ozone cable 

6 space deposit state bell 

7 missile board incinerator long-distance 

8 equipment fslic agency telephone 

9 mcdonnell fed clean telecomm. 

10 northrop institution landfill mci 

11 nasa federal hazardous mr. 

12 pentagon fdic acid_rain doctrine 

13 defense volcker standard service 

14 receive henkel federal news 

15 boeing banker lake turner 
 

Figure 3. Portions of the topic signatures of several concepts. 
 

These results are encouraging enough to allow 
us to continue with topic signatures as the 
vehicle for a first approximation to world 

knowledge, as useful for topic interpretation.  
Considerable subsequent experimentation (Hovy 
and Junk, in prep.) with a variety of methods, 
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including Latent Semantic Analysis, pairwise 
signatures, etc., indicates that the most promising 
method of creating signatures is χ2.  We are now 
busy creating a large number of signatures in an 
attempt to overcome the world knowledge 
acquisition problem.   

5. Phase 3: Summary Generation  

We have devoted no effort to adapting an 
existing language generator or developing a new 
one for SUMMARIST.  It has scarcely been 
necessary, since SUMMARIST is principally an 
extract-only system at present.  However, we 
envisage the language generation needs of 
summarization systems in general, and 
SUMMARIST in particular, to require two major 
steps.   

The microplanner: The task of a 
microplanner, in general, is to convert a 
discourse-level specification of a sequence of 
topics into a list of specifications at the level of 
one or a few clauses at a time.  This involves 
making choices for several semi-independent 
aspects, including sentence length, internal 
sentence organization (order of preposition 
phrases, active or passive mood, etc.), 
identification of the principal theme and focus 
units, selection of the main verb and other 
important words, and so on.  In the context of 
summarization, the microplanner’s task is to 
ensure that the information selected by the topic 
identification module and (possibly) fused by the 
topic interpretation module is phrased compactly 
and as briefly as possible though still in a 
grammatical sentence.   

The microplanner can be built to perform its 
work at two levels: the textual level, in which its 
input is a list of sentences or sentence fragments, 
and its output is a compacted list of sentences, 
and the representational level, in which its input 
is couched in an abstract notation (whether more 
or less explicitly syntactic depends on the 
implementation), and its output is a fairly 
syntactic abstract specification of each sentence.  
In the former case, the output is more or less 
directly readable by a human, while in the latter, 
the output has to be converted into grammatical 
sentences by the sentence generator.   

Microplanning is an area still largely 
unexplored by computational linguists. The work 
that has been done, including some of the major 
systems (Nirenburg et al., 89; Rambow and 
Korelsky, 92; Hovy and Wanner, 96), is not 

really appropriate to the specific compaction-
related needs of summarization.  The most 
relevant study on microplanning for 
summarization is (McKeown and Radev, 95).    

The sentence generator: The task of a 
sentence generator (often called realizer) is to 
convert a fairly detailed specification of one or a 
few clause-sized units into a grammatical 
sentence.  A number of relatively easy to use 
sentence generators is  available to the research 
community, including Penman (Penman, 88), 
FUF/SURGE (Elhadad, 92), RealPro (Lavoie 
and Rambow, 97), and NITROGEN (Langkilde 
and Knight, 98).  We plan to employ one or more 
of these in SUMMARIST.  

6. Summary Evaluation  

6.1 Two Basic Measures 

How can you evaluate the quality of a 
summary?  We have found no literature on this 
fascinating question.  Indeed, many anecdotes 
and experiences lead one to believe that the uses 
of summaries are so task-specific and user-
oriented that no objective measurement is 
possible.  When the inter-judge scoring 
variability is higher than half the average score, 
as small tests relating to summaries occasionally 
have suggested, then perhaps there is no hope for 
it.   

However, it is possible to develop some 
general guidelines and approaches, and from 
them to develop some approximations to 
summarization evaluation.  We give a very rough 
sketch here of some work performed in the 
context of SUMMARIST in early 1997; more 
details are in (Hovy, in prep.).   

It is obvious that to be a summary, the summary 
must obey two requirements:  

• it must be shorter than the original input 
text;  

• it must contain (some of) the same 
information as the original, and not other, 
new, information.  

One can then define two measures to capture the 
extent to which a summary S conforms to these 
requirements with regard to a text T:  
 Compression Ratio:   
  CR  =  (length S) / (length T)  

 Retention Ratio:   
  RR  =  (info in S) / (info in T)  
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However we choose to measure the length and 
the information content, we can say that a good 
summary is one in which CR is small (tending to 
zero) while RR is large (tending to unity).  We 
can characterize summarization systems and/or 
text types by plotting the ratios of the summaries 
produced under varying conditions.  For 
example, Figure 4(a) shows a fairly normal 
growth curve: as the summary gets longer 
(grows along the x axis, which measures CR), it 
contains more information (grows also along the 

y axis, which measures RR), until it is just as 
long at the original text and contains the same 
information.  In contrast, Figure 4(b) shows a 
curve with a very desirable bend: at some special 
point, the addition of just a little more material to 
the summary adds a disproportionately large 
amount more of information. Figure 4(c) shows 
another desirable behavior: initially, all the 
important material is included in the summary; 
as it grows,  the new material is less interesting.   

 

 

 

 

 

 

Figure 4(a). Compression Ratio (CR) vs. Retention Ratio (RR) for normal summary growth. 

 

 

 

 

 

 

 

Figure 4(b). Compression Ratio (CR) vs. Retention Ratio (RR) for desirable summary growth. 

 

 

 

 

 

 

 

 

Figure 4(c). Compression Ratio (CR) vs. Retention Ratio (RR) for desirable summary growth. 

Measuring length: Measuring length is 
relatively straightforward; one can choose as 
metric the number of words, of letters, of 
sentences, and so on.  For a given genre and 

register level, there is a fairly fixed correlation 
between these metrics, in most cases.   

Measuring information content: Ideally, one 
wants to measure not information content, but 
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interesting information content only.  The 
problem is that it is very hard to measure 
information content and almost impossible to 
define even what interesting information content 
may be.  However, it is possible to approximate 
measures of information content in several ways.  
We describe three here.  

The Shannon Game: This measure derives 
from a variant of a parlor game invented by 
Claude Shannon, when he was developing 
Information Theory (Shannon, 51).  In this 
theory, the amount of information contained in a 
message is measured by –p log p, where p is, 
roughly speaking, the probability of the reader 
guessing the message (or each piece thereof, 
individually).  To test his theory, Shannon asked 
his wife and several helpers to receive and write 
down a message, by guessing one letter at a time, 
and being answered simply yes or no.  Naturally, 
their knowledge of the typical letter frequencies 
in English (e being most frequent, then t, a, o, i, 
n, and so forth), coupled with their knowledge of 
English words and word endings (after satisfac- 
the chances for –tion are very high) helped them 
make informed guesses.  And as soon as they 
started to make out the meaning of the 
transmitted message, their guesses got even 
better.  Shannon’s argument went as follows: the 
more the receiver could guess the message 
without any help, the less novel (and hence the 
less informative) it was to the receiver; and 
contrarily, the more guesses the receiver needed, 
the more informative the message was.   

One can use this technique to measure the 
information content of a summary S relative to 
that of its corresponding text T as follows.  
Assemble three sets of testers.  One set first 
reads T, slowly, and must then try to re-create it, 
letter by letter, without any longer seeing T.  
When they guess a wrong letter, they must guess 
again; when they guess a correct one, they 
simply proceed to the next letter.  The number of 
wrong guesses gwrong and the total number of 
guesses gtotal they make are recorded, and their 
score is computed as the ratio RT = gwrong   /   gtotal .  
The second set of testers first reads S, slowly, 
and then, without any further recourse to S, 
proceeds to try to create T, letter by letter.  They 
know that S is only a summary of their goal.  As 
with the first set, the number of guesses, wrong 
and total, are recorded, and the ratio RS is 
computed.  The third set of testers reads nothing 
first, but starts immediately to create T, without 
knowing what it might be about.  Also for them, 
the ratio RN is computed.   

The quality of S can be computed by 
comparing the three ratios, where RN and RT 
define the end points of a scale; the former 
quantifies how much a tester could guess from 
default world knowledge (and should hence not 
be attributed to the summary), and the latter 
quantifies how much a tester still has to guess, 
even with `perfect’ prior knowledge.  The closer 
RS is to RT, the better the summary.   

Section 6.2 describes a small experiment.   

The Question Game: This measure 
approximates the information content of S by 
determining how many questions drawn up about 
T can be answered.   Before starting, one or more 
people create a set of questions based on what 
they consider the principal content of T.  These 
questions can be neutral (author’s point of view) 
or query-oriented, as required.  Then the testers 
are brought in, and asked to answer these 
questions three times in succession.  In the first 
round, the testers are simply asked the questions 
without having read either S or T, and their 
answers are scored.  In the second round, they 
are given S to read, and are asked to answer the 
same questions again.  In the third round, they 
are given T, and asked to answer the questions a 
third time.  After each round, the number of 
questions answered correctly is tallied.   

The quality of S can be computed by 
comparing the three tallies, where the first and 
last tallies provide baselines—respectively, how 
many questions the testers would be able to 
answer from default world knowledge, and how 
many they would not be able to answer even 
when given the whole text T.  The closer the 
testers’ answer tally for the summary to the tally 
the full text, the better the summary.   

The formal SUMMAC summarization 
evaluation (Firmin Hand and Sundheim, 98) 
contained a pilot test of the Question Game.  A 
small experiment is described in Section 6.2.  

The Classification Game: This measure 
approximates information content by testing how 
well people can perform a classification task on a 
collection of summaries Si and on full texts Ti.  A 
set of texts is drawn from a few different topics, 
several texts per topic.  For each text, a summary 
is created.  Some testers are then asked to 
classify either a text or its corresponding 
summary (but not both) into one of the topic 
classes; other testers are given the converse sets 
(a summary or its corresponding text) to classify.  
After classification, the correspondence between 
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the classifications of full texts and their 
corresponding summaries is measured; the 
greater the agreement, the better the summary is 
at capturing that which causes the full text to be 
classified as it is.   

Many variants of this game are possible.  One 
may ask the testers to classify all summaries first 
and then all the full texts, as long as one takes 
care to test for prior classification distortion.  Or, 
instead of asking testers to classify texts, one 
may ask them to rate the summaries and texts for 
relevance to the topic classes.  In this case, the 
game reduces to classification into two piles: 
Relevant and Not Relevant.   

The formal SUMMAC summarization 
evaluation (Firmin Hand and Sundheim, 98) 
contained tests for two variants of the 
Classification Game.   

6.2 Some Evaluation Experiments 

Experiment 1: In a small pilot test at ISI, we 
performed a test of the Shannon Game.  We 
manually created two paragraph-length 
summaries of two 300-word newspaper articles 
for the LA Times, and had 3 groups of graduate 
students (native or near-native speakers of 
English) recreate the full text, as outlined above.  
The results were astounding: the students who 
had seen the full text required on average 11 
additional letter guesses (i.e., they made on 
average only 11 errors); those who had seen the 
summaries required approximately 150 
additional guesses each; and those who had seen 
no text at all required over 1,100 guesses each 
and in some cases did not complete the test, after 
3 hours!  It is seldom that one finds a 
phenomenon yielding an order of magnitude 
difference between contrast sets; we were quite 
pleased at the result.   

Experiment 2: Taking advantage of the 
presence of a larger number of enthusiastic and 
able participants at the 1997 AAAI Fall 
Symposium on Text Summarization, we did a 
second evaluation study, focusing on the 
following questions:  

1. How do different evaluation methods 
compare for each type of summary?  

2. How do different summary types fare 
under different evaluation methods?  

3. How much does the evaluator affect 
scores?  

4. Is there a preferred evaluation method? 

Preparation: We selected two newspaper 
articles, one about an art theft and one about a 
housing development, and created the following 
types of summary for each domain: 
• Human abstract, full background 
• Human abstract, just-the-news  
• SUMMARIST extract 
• SUMMARIST keywords-only 
• Random sentence extract  
We then created the materials for three 
evaluations: a Shannon Game, a Question Game, 
and a Classification Game.  The Shannon and 
Question Games followed quite closely the setup 
outlined above.  The Classification Game asked 
for an initial classification into some very 
distinct possible categories and then a sub-
sequent one into some much closer categories.   

Execution: At the Symposium, we had the 
participants double up into pairs.  We then 
conducted each evaluation with at least four 
pairs.  Each pair of people performed two 
different evaluations, seeing different texts each 
time.  The whole exercise required one session of 
approx-imately three hours.   

Results: Since the number of subjects was too 
small to support statistically meaningful scores, 
we provide in Figure 5 the relative order of 
magnitude results instead of the actual scores.  
The percentage difference between score 
categories is listed in the columns below the 
scores (for example, scores marked “1” in the 
Shannon Game column were 50% better than 
scores marked “2” in that column).   

Most surprising was the lack of difference in 
the Classification Game: despite the difference in 
distinctiveness of the classification categories, 
the two categories were different enough to pose 
no challenges. Surprising in the Shannon Game 
was the result that the Full Text, Abstract, and 
SUMMARIST Extract were all equally good in 
providing information content.  Finally, the 
relative ranking of results in the Question Game 
deserves some discussion.  As expected, the Full 
Text provides the most information and No Text 
the least.  However, the SUMMARIST Extract 
provided approx. 30% higher scores on average 
than either type of (human-made) Abstract, and 
the Random sentence selection was just as good 
as the Abstracts!  A larger study is required to 
determine whether this result is simply a result of 
the texts selected or whether something more 
unsuspected is going on.    
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While not large enough to warrant any 
conclusive statements, these evaluation trials 
make clear that different evaluation methods rate 
summaries differently (compare the 
Classification Game to the others, even though 
some correlations can be seen between scores in 
the Shannon and Question Games).  It is very 

clear that different summary types give different 
evaluation results, especially within the class of 
Extracts.  More studies of this type will help us 
learn which kinds of evaluations are good for 
which kinds of text and summary types, 
domains, and uses.     

 

  Shannon Questions Classification 

Full Text  1 1 1 

Abstract Background 1 3 1 

 Just-the-News * 3 1 

 Regular 1 2 1 

Extract Keywords 2 4 1 

 Random * 3 1 

No Text  3 5  

  1–2: 50% diff. 1–2:  30% diff.  

  2–3: 50% diff. 2–3:  20% diff.  

  *: not performed 3–4:  20% diff.  

   4–5: 100% diff.  

Figure 5. Results of evaluation experiments at AAAI Spring Symposium.  

7. Conclusion 

The study of automated text summarization 
still has a long way to go before we can really 
claim to understand the nature of summaries.  
That does not mean, however, that the results 
obtained over the past few years are not useful.  
Even fairly surface-oriented systems such as 
SUMMARIST and the other ones built under the 
TIPSTER program already exhibit some 
commercial potential.  The kinds of techniques 
outlined in Sections 4 and 5, to move from 
extracts to abstracts and all the other types of 
summary, will require some careful and large-
scale work over the next years.  The potential 
payoff is enormous, however, and growing, as 
the amount of text available in corpora and on 
the web keeps growing.   

Several bottlenecks impede current 
development of summarization systems.  The 
primary bottleneck is the shortage of good 
training data in a variety of domains and genres, 
and for a variety of summary types.  What is 
required is triples—full text, human abstract, and 

corresponding extract—from which it will be 
possible to empirically determine answers to 
open questions in all three phases of 
summarization.  A second bottleneck is the 
shortage of world knowledge, as required to 
perform topic interpretation.  A third bottleneck 
is the lack of resources and funding to focus on 
microplanning in summary generation.    

In some sense, one might say that text 
summarization is one of the most difficult tasks 
of natural language processing.  True abstracting 
requires true text understanding and true 
generation; it may quite possibly prove more 
difficult to find effective shortcuts than in 
machine translation or information extraction.  
But given how directly system improvements 
translate into useful results, text summarization 
is an exciting and very rewarding area in which 
to work.   
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