
TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 1 4/19/01

AUTOMATED TEXT SUMMARIZATION
AND THE SUMMARIST SYSTEM

Eduard Hovy and Chin-Yew Lin

Information Sciences Institute
 of the University of Southern California

 4676 Admiralty Way
 Marina del Rey, CA 90292-6695

 email: {hovy,cyl}@isi.edu
tel: 310-822-1511

Abstract

This paper consists of three parts: a preliminary typology
of summaries in general; a description of the current and
planned modules and performance of the SUMMARIST
automated multilingual text summarization system being
built sat ISI, and a discussion of three methods to evaluate
summaries.

1. THE NATURE OF SUMMARIES

Early experimentation in the late 1950’s and early 60’s
suggested that text summarization by computer was
feasible though not straightforward (Luhn, 59;
Edmundson, 68). The methods developed then were
fairly unsophisticated, relying primarily on surface level
phenomena such as sentence position and word frequency
counts, and focused on producing extracts (passages
selected from the text, reproduced verbatim) rather than
abstracts (interpreted portions of the text, newly
generated).

After a hiatus of some decades, the growing presence of
large amounts of online text —in corpora and especially
on the Web—renewed the interest in automated text
summarization. During these intervening decades,
progress in Natural Language Processing (NLP), coupled
with great increases of computer memory and speed,
made possible more sophisticated techniques, with very
encouraging results. In the late 1990’s, some relatively
small research investments in the US (not more than 10
projects, including commercial efforts at Microsoft,
Lexis-Nexis, Oracle, SRA, and TextWise, and university
efforts at CMU, NMSU, UPenn, and USC/ISI) over three
or four years have produced several systems that exhibit
potential marketability, as well as several innovations that
promise continued improvement. In addition, several
recent workshops, a book collection, and several tutorials

testify that automated text summarization has become a
hot area.

However, when one takes a moment to study the various
systems and to consider what has really been achieved,
one cannot help being struck by their underlying
similarity, by the narrowness of their focus, and by the
large numbers of unknown factors that surround the
problem. For example, what precisely is a summary?
No-one seems to know exactly. In our work, we use
summary as the generic term and define it as follows:

A summary is a text that is produced out of one or
more (possibly multimedia) texts, that contains
(some of) the same information of the original
text(s), and that is no longer than half of the
original text(s).

To clarify the picture a little, we follow and extend
(Spärck Jones, 97) by identifying the following aspects of
variation. Any summary can be characterized by (at least)
three major classes of characteristics:

Input: characteristics of the source text(s)

Source size: single-document vs. multi-docu-
ment: A single-document summary derives from a
single input text (though the summarization process
itself may employ information compiled earlier from
other texts). A multi-document summary is one text
that covers the content of more than one input text,
and is usually used only when the input texts are
thematically related.

Specificity: domain-specific vs. general: When
the input texts all pertain to a single domain, it may
be appropriate to apply domain-specific
summarization techniques, focus on specific content,
and output specific formats, compared to the general
case. A domain-specific summary derives from input
text(s) whose theme(s) pertain to a single restricted

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 2 4/19/01

domain. As such, it can assume less term ambiguity,
idiosyncratic word and grammar usage, specialized
formatting, etc., and can reflect them in the summary.
A general-domain summary derives from input
text(s) in any domain, and can make no such
assumptions.

Genre and scale: Typical input genres include
newspaper articles, newspaper editorials or opinion
pieces, novels, short stories, non-fiction books,
progress reports, business reports, and so on. The
scale may vary from book-length to paragraph-
length. Different summarization techniques may
apply to some genres and scales and not others.

Output: characteristics of the summary as a text

Derivation: Extract vs. abstract: An extract is a
collection of passages (ranging from single words to
whole paragraphs) extracted from the input text(s)
and produced verbatim as the summary. An abstract
is a newly generated text, produced from some
computer-internal representation that results after
analysis of the input.

Coherence: fluent vs. disfluent: A fluent
summary is written in full, grammatical sentences,
and the sentences are related and follow one another
according to the rules of coherent discourse structure.
A disfluent summary is fragmented, consisting of
individual words or text portions that are either not
composed into grammatical sentences or not
composed into coherent paragraphs.

Partiality: neutral vs. evaluative : This
characteristic applies principally when the input
material is subject to opinion or bias. A neutral
summary reflects the content of the input text(s),
partial or impartial as it may be. An evaluative
summary includes some of the system’s own bias,
whether explicitly (using statements of opinion) or
implicitly (through inclusion of material with one
bias and omission of material with another).

Conventionality: fixed vs. floating: A fixed-
situation summary is created for a specific use, reader
(or class of reader), and situation. As such, it can
conform to appropriate in-house conventions of
highlighting, formatting, and so on. A floating-
situation summary cannot assume fixed conventions,
but is created and displayed in a variety of settings to
a variety of readers for a variety of purposes.

Purpose: characteristics of the summary usage

Audience: Generic vs. query-oriented: A generic
summary provides the author’s point of view of the
input text(s), giving equal import to all major themes
in it. A query-oriented (or user-oriented) summary
favors specific themes or aspect(s) of the text, in

response to a user’s desire to learn about just those
themes in particular. It may do so explicitly, by
highlighting pertinent themes, or implicitly, by
omitting themes that do not match the user’s
interests.

Usage: Indicative vs. informative : An indicative
summary provides merely an indication of the
principal subject matter or domain of the input text(s)
without including its contents. After reading an
informative summary, one can explain what the input
text was about, but not necessarily what was
contained in it. An informative summary reflects
(some of) the content, and allows one to describe
(parts of) what was in the input text.

Expansiveness: Background vs. just-the-news : A
background summary assumes the reader’s prior
knowledge of the general setting of the input text(s)
content is poor, and hence includes explanatory
material, such as circumstances of place, time, and
actors. A just-the-news summary contains just the
new or principal themes, assuming that the reader
knows enough background to interpret them in
context.

At this time, apart from early work by Spärck Jones and
students, such as (Tait and Spärck Jones, 83), we know of
few linguistic or computational studies of these and other
aspects of summaries; the work by (Van Dijk and
Kintsch, 83) and (Endres-Niggemeyer, 97) focus on the
psycholinguistic aspects of humans when they create
summaries. We believe that the typology of summaries is
a fruitful area for further study, both by linguists
performing text analysis and by computational linguists
trying to create techniques to create summaries
conforming to one or more of the characteristics listed
above. A better understanding of the types of summary
will facilitate the construction of techniques and systems
that better serve the various purposes of summarization in
general.

Our own work is computational. Over the past two
years, under the TIPSTER program, we have been
developing the text summarization system SUMMARIST
(Hovy and Lin, 98; Lin, 98). Our goal is to investigate
the nature of text summarization, using SUMMARIST
both as a research tool and as an engine to produce
summaries for people upon demand.

In this paper, we first describe the architecture of
SUMMARIST and provide details on the evaluated
results of several of its modules in Sections 3, 4, and 5.
Finally, since the evaluation of summaries (and of
summarization) is a little-understood business, we
describe some preliminary experiments in this regard in
Section 6.

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 3 4/19/01

2. SUMMARIST

The goal of SUMMARIST is to create summaries of
arbitrary text in English and selected other languages
(Hovy and Lin, 98). By eschewing language-specific
methods for the relatively surface-level processing, it is
possible to create a multi-lingual summarizer fairly easily.
Eventually, however, SUMMARIST will include
language-specific techniques of parsing and semantic
analysis, and will combine robust NLP processing (using
Information Retrieval and statistical techniques) with
symbolic world knowledge (embodied in the concept
thesaurus SENSUS (Knight and Luk, 94; Hovy, 98),
derived from WordNet (Miller et al., 90) and augmented
by dictionaries and similar resources) to overcome the
problems endemic to either approach alone. These
problems arise because existing robust NLP methods tend
to operate at the word level, and hence miss concept-level
generalizations (which are provided by symbolic world
knowledge), while on the other hand symbolic knowledge
is too difficult to acquire in large enough scale to provide
adequate coverage and robustness. For high-quality yet
robust summarization, both aspects are needed.

In order to maintain functionality while we experiment
with new aspects, and since not all kinds of summary
require the same processing steps, we have adopted a very
open, modular design. Since it is still under development,
not all the modules of SUMMARIST are equally mature.

To create extracts, one needs procedures to identify the
most important passages in the input text. To create
abstracts, the core procedure is a process of interpretation.
In this step, two or more topics are fused together to form
a third, more succinctly stated, one. (We define topic as a
particular subject that we write about or discuss.) This
step must occur after the identification step. Finally, to
produce the summary, a concluding step of sentence
generation is needed. Thus SUMMARIST is structured
according to the following ‘equation’:

summarization =
 topic identification + interpretation + generation

For identification, the goal is to filter the input to retain
only the most important, central, topics. Once they have
been identified, they can simply be output, to form an
extract. Typically, topic identification can be achieved
using various complementary techniques. This stage of
SUMMARIST is by far the most developed; making it, at
present, an extract-only summarizer. See Section 3.

For interpretation, the goal is to perform compaction
through re-interpreting and fusing the extracted topics
into more succinct ones. This is necessary because
abstracts are usually much shorter than their equivalent
extracts. All the variations of fusion are yet to be
discovered, but they include at least simple concept

generalization (he ate pears, apples, and bananas→ he
ate fruit) and script identification (he sat down, read the
menu, ordered, ate, and left→ he visited the restaurant).
We discuss interpretation in Section 4.

For generation, the goal is to produce the output
summary. In the case of extracts, generation is a null
step, but in the case of abstracts, the generator has to
reformulate the extracted and fused material into a
coherent, densely phrased, new text. The modules
planned for SUMMARIST are described in Section 5.

Prior to topic identification, the system preprocesses
the input text. This stage converts all inputs into a
standard format we call SNF (Summarist Normal Form).
Preprocessing includes tokenizing (to read non-English
texts and output word-segmented tokens); part-of-speech
tagging (the tagger is based on Brill’s (1992) part-of-
speech tagger); demorphing (to find root forms of each
input token, using a modification of WordNet’s (Miller et
al., 90) demorphing program); phrasing (to find
collocations and multi-word phrases, as recorded in
WordNet); token frequency counting; tf.idf weight
calculation (to calculate the tf.idf weight (Salton, 88) for
each input token, and rank the tokens accordingly); and
query relevance calculation (to record with each sentence
the number of demorphed content words in the user’s
query that also appear in that sentence).

An example text in Indonesian, preprocessed into SNF,
is shown in Figures 1(a) and 1(b). Figure 1(a) indicates
that the text contained 1618 characters, and that it had
been processed by the following modules: tokenization
and part of speech tagging, title treatment, demorphing,
WordNet categorization and common word identification,
tf.idf computation, and OPP processing (see Section 3.1).
It also records the top-scoring words in the text, together
with their scores, as given by the modules computing term
frequency (tf_keywords), tf.idf, and the OPP. The field
opp_rule shows the most important sentence positions as
0 (the title); sentence 1; sentences 2 and 3 (tied), in that
order. Figure 1(b) contains the processed text itself, one
word per line, with the features added to each word by
various modules. The features include paragraph and
sentence number (pno and sno), part of speech (pos,
empty for Indonesian), common word indicator (cwd),
presence of word in title (ttl), morphology (mph),
WordNet count (wnc), word frequency in text (frq), and
tf.idf and OPP scores (see Sections 3.3 and 3.1 resp.).

3. Phase 1: Topic Identification

Summarization systems that perform topic identification
only produce extract summaries; these include the current
operational version of SUMMARIST, as well as the
systems of (Aone et al., 98; Strzalkowski et al., 98; Bagga
and Baldwin, 98; and Mitra et al., 97).

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 4 4/19/01

<*topic=#???>
<*docno=HTML-DOC>

<*title="Senator Dari Demokrat Sarankan ClintonMemberi Kesaksian Di DepanKongres ">
<*token_title="sarankan|demokrat|clintonmemberi|kongres|kesaksian|senator">
<*pos_title="-">
<*char_count=2300>

<*module=PRE|TTL|MPH|CAT|TFIDF|OPP>
<*tf_keywords=kesaksian,6.000|kongres,6.000|lewinsky,5.000|demokrat,3.000|hadapan,3.000|video,3.000|
 'saya,2.000|agung,2.000|digambarkan,2.000|jawaban,2.000>
<*tfidf_keywords=lewinsky,35.088|kesaksian,32.448|kongres,27.718|video,16.894|demokrat,13.859|

 hadapan,12.219|digambarkan,11.838|senator,11.262|pembaruan,10.451|mencakup,9.430>
<*opp_rule=p:0,1|1,2|2,4|3,4 s:-,->
<*opp_keywords=kongres,26.917|kesaksian,25.667|demokrat,16.333|lewinsky,14.167|senator,12.667|
 sarankan,10.667|video,9.333|screen,9.000|the,9.000|hadapan,8.917>

 Figure 1(a). Indonesian text: preamble, after preprocessing.

Dari <pno=2 sno=3 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,->
Demokrat <pno=2 sno=3 pos=NA cwd=0 ttl=1 mph=- wnc=- frq=3 tfidf=13.859 opp=16.333,3.667>

Sarankan <pno=2 sno=3 pos=NA cwd=0 ttl=1 mph=- w nc=- frq=1 tfidf=5.631 opp=10.667,3.667>
Clinton <pno=2 sno=3 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,->
Memberi <pno=3 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,->
Kesaksian<pno=3 sno=1 pos=NA cwd=0 ttl=1 mph=- wnc=- frq=6 tfidf=32.448 opp=25.667,3.250>

Di <pno=3 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,->
Depan <pno=3 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,->
Kongres <pno=3 sno=1 pos=NA cwd=0 ttl=1 mph=- wnc=- frq=6 tfidf=27.718 opp=26.917,3.250>
Washington <pno=4 sno=1 pos=NA cwd=0 ttl=0 mph=- wnc=- frq=1 tfidf=3.434 opp=2.833,2.833>

, <pno=4 sno=1 pos=PUN cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0 opp=-,->
Pembaruan <pno=4 sno=1 pos=NA cwd=0 ttl=0 mph=- wnc=- frq=2 tfidf=10.451 opp=6.500,2.833>
Seorang <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,->

senator <pno=5 sno=1 pos=NA cwd=0 ttl=1 mph=- wnc=- frq=2 tfidf=11.262 opp=12.667,2.833>
dari <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,->
Partai <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,->
Demokrat <pno=5 sno=1 pos=NA cwd=0 ttl=1 mph=- wnc=- frq=3 tfidf=13.859 opp=16.333,2.833>

, <pno=5 sno=1 pos=PUN cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0 opp=-,->
hari <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,->
Minggu <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,->
(<pno=5 sno=1 pos=PUN cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0 opp=-,->

20 <pno=5 sno=1 pos=CD cwd=1 ttl=0 mph=- w nc=- frq=0 tfidf=0 opp=-,->
/ <pno=5 sno=1 pos=PUN cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0 opp=-,->
9 <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0 opp=-,->
) <pno=5 sno=1 pos=PUN cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0 opp=-,->

, <pno=5 sno=1 pos=PUN cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0 opp=-,->
menyarankan <pno=5 sno=1 pos=NA cwd=0 ttl=0 mph=- wnc=- frq=1 tfidf=3.759 opp=2.833,2.833>
agar <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,->
Presiden <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,->

Clinton <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,->
secara <pno=5 sno=1 pos=NA cwd=1 ttl=0 mph=- wnc=- frq=0 tfidf=0.000 opp=-,->
sukarela <pno=5 sno=1 pos=NA cwd=0 ttl=0 mph=- wnc=- frq=1 tfidf=5.226 opp=2.833,2.833>

…continued…

Figure 1(b). Indonesian text: words plus their attributes, after preprocessing.

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 5 4/19/01

We assume that a text can have many (sub)-topics, and
that the topic extraction process can be parameterized in
at least two ways: first, to include more or fewer topics to
produce longer or shorter summaries, and second, to
include only topics relating to the user’s expressed
interests.

Typically, topic identification can be achieved using
various complementary techniques, including those based
on stereotypical text structure, cue words, high-frequency
indicator phrases, and discourse structure. Modules for all
of these have been completed or are under construction
for SUMMARIST. In processing, each module assigns a
numeric score to each sentence. When all modules are
done, the Topic Id Integration Module combines their
scores to produce the overall ranking. The final result is
the top-ranked n% of sentences as its final result, where n
is specified by the user.

3.1 Position Module

The Position Module is based on the well-known fact
that certain genres exhibit such structural and expositional
regularity that one can reliably locate important sentences
in certain fixed positions in the text. In early studies,
Luhn (1959) and Edmu ndson (1968) identified several
privileged positions, such as first and last sentences.

We generalized their results (Lin and Hovy, 97),
developing a method for automatically identifying the
sentence positions most likely to yield good summary
sentences. The training phase of this method calculates
the yield of each sentence position by comparing the
similarity between human-created abstracts and the
contents of the sentence in each ordinal position in the
corresponding texts. By summing over a large collection
of text -abstract pairs from the same corpus and
appropriately normalizing, we create the Optimal Position
Policy (OPP), a ranked list that indicates in what ordinal
positions in the text the high-topic-bearing sentences tend
to occur. We tested this method on two corpora: the Ziff-
Davis texts (13,000 newspaper articles announcing
computer products) and a set of several thousand Wall
Street Journal newspaper articles. For the Ziff-Davis
corpus we found the OPP to be

[T1, P2S1, P3S1, P4S1, P1S1, P2S2,
 {P3S2, P4S2, P5S1, P1S2}, P6S1, ...]

i.e., the title (T1) is the most likely to bear topics,
followed by the first sentence of paragraph 2, the first
sentence of paragraph 3, etc. (Paragraph 1 is invariably a
teaser sentence in this corpus.) In contrast, for the Wall
Street Journal, we found the OPP to be

[T1, P1S1, P1S2, ...]

We evaluated the OPP method in various ways. One
measured coverage, the fraction of the (human-supplied)
keywords that are included verbatim in the sentences
selected under the policy. (A random selection policy
would extract sentences with a random distribution of
topics; a good position policy would extract rich topic-
bearing sentences.) We measured the effectiveness of an
OPP by taking cumulatively more of its sentences: first
just the title, then the title plus P2S1, and so on.
Summing together the multi-word contributions in the top
ten sentence positions, 10-sentence extracts (approx. 15%
of a typical Ziff-Davis text) intersected with 95% of the
corresponding human abstracts.

In addition to the OPP itself, we created OPP keywords,
by counting the number of times each open-class word
appeared in an OPP-selected sentence, and sorting them
by frequency. Any other sentence with a high number of
these keywords can also be rewarded with an appropriate
score.

In operation, the Position Module simply selects an
appropriate OPP for the input text, assigns a score to each
sentence in order of the OPP, and then computes the OPP
keyword list for the text. It then assigns additional scores
to sentences according to how many OPP keywords they
contain. These scores can be seen in Figure 1(b), in the
item opp=x,y on each line. The first number provides the
global OPP score (the score of this word, summed over
the whole text) and the second score the local OPP (the
score of this sentence in the OPP).

3.2 Cue Phrase Module

In pioneering work, Baxendale (1958) identified two
sets of phrases—bonus phrases and stigma phrases—that
tend to signal when a sentence is a likely candidate for
inclusion in a summary and when it is definitely not a
candidate, respectively. Bonus phrases such as “in
summary”, “in conclusion”, and superlatives such as “the
best”, “the most important” can be good indicators of
important content. During processing, the Cue Phrase
Module simply rewards each sentence containing a cue
phrase with an appropriate score (constant per cue phrase)
and penalizes those containing stigma phrases.

Unfortunately, cue phrases are genre dependent. For
example, “Abstract” and “in conclusion” are more likely
to occur in scientific literature than in newspaper articles.
Given this genre-dependence, the major problem with cue
phrases is identifying them. A natural method is to
identify high-yield sentences in texts (compared to their
human-made abstracts) and then to identify common
phrases in those sentences. A careful study on the
automated collection of cue phrases is reported in (Teufel
and Moens, 98).

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 6 4/19/01

In the context of SUMMARIST, we have tried several
methods of acquiring cue phrases. In one experiment, we
manually compiled a list of cue phrases from a training
corpus of paragraphs that themselves were summaries of
texts. In this corpus, sentences containing phrases such as
“this paper”, “this article”, “this document”, and “we
conclude” fairly reliably reflected the major content of the
paragraphs. This indicated to us the possibility of
summarizing a summary.

In another experiment, we examined methods to
automatically generate cue phrases (Liu and Hovy, in
prep.). We examined various counting methods, all of
them comparing the ratios of occurrence densities of
words in summaries (wds) and in the corresponding texts
(wdt) in various ways, and then extracted the words
showing the highest increase in occurrence density
between text and associated abstract. Finally, we
searched for frequent concatenations of such privileged
words into phrases. While we found no useful phrases in
a corpus of 1,000 newspaper articles, we found the
following in 87 articles on Computational Linguistics:

 Method 1 Method 2

 S1 phrase S2 phrase

 11.50 multiling. natural lang. 3.304 in this paper
 8.500 paper presents the 2.907 this paper we
 7.500 paper gives 2.723 base on the

 6.000 paper presents 2.221 a set of
 6.000 now present 2.192 the result of
 5.199 this paper presents 2.000 the number of

 4.555 paper describes 1.896 in order to

In method 1, S1 = wds / wdt, the ratio of occurrence
densities of words in the training summaries and their
corresponding texts. In method 2, S2 = W / ws * df / D,
where W is a weighting factor, D is the total number of
training documents, ws is the word frequency in the
summary, and df is the number of documents in which the
word being counted appears.

The Cue Phrase Module was not applied in the example
in Figure 1(b), since we have no cue phrases for
Indonesian.

3.3 Topic Signature Module

In a straightforward application of word counting, one
might surmise that words that occur most frequently in
the text may possibly indicate important material.
Naturally, one has to rule out closed-class words such as
“the” and “in”. A common method is to create a list of
words using tf.idf, a measure that rewards words for being
relatively frequent—much more frequent in one text than
on average, across the corpus. This method, pioneered a

decade ago (Salton, 88), is used in IR systems to achieve
query term expansion.

The same idea can be used in topic identification. On
the assumption that semantically related words tend to co-
occur, one can construct word families and then count the
frequency of word families instead of individual words.
A frequent word family will indicate the importance of its
common semantic notion(s) in the text. To implement
this idea, we define a Topic Signature as a topic word (the
head) together with a list of associated (keyword weight)
pairs. Each topic signature represents a semantic concept
using word co-occurrence patterns. We describe in
Section 4.2 how we automatically build Topic Signatures
and plan to use them for topic interpretation.

For use in topic identification, we created a Topic
Signature for each of five groups of 200 documents,
drawn from five domains. When performing topic
identification for a document, the Topic Id Signature
Module scanned each sentence, assigning to each word
that occurred in a signature the weight of that keyword in
the signature. Each sentence then received a signature
score equal to the total of all signature word scores it
contained, normalized by sentence length. This score
indicated the relevance of the sentence to the signature
topic.

Since we have no signatures for Indonesian word
families, no signature score appears in Figure 1(b).
However, the tf.idf score of each word (comparing the
frequencies of each term in the text and across a
collection of Indonesian texts) appears in the item tfidf=x.

3.4 Discourse Structure Module

A new module that uses discourse structure is under
construction for SUMMARIST. This module, being built
by Daniel Marcu, is an extension of his Ph.D. work
(Marcu, 97). It is based on the fact that texts are not
simply flat lists of sentences; they have a hierarchical
structure, one in which certain clauses are more important
than others. After parsing the hierarchical structure of an
input text and then identifying the important clauses in
this structure, Marcu discards unimportant clauses and
retains only the most important ones, still bound together
within the discourse structure, and hence still forming a
coherent text.

To produce the text’s discourse structure, Marcu
adapted Rhetorical Structure Theory (Mann and
Thompson, 88), which postulates approximately 25
relations that bind clauses (or groups of clauses) together
if they exhibit certain semantic and pragmatic properties.
These relations are signaled by so-called cue phrases such
as “but” and “however” (for the relation Contrast), “in
order to” and “because” (for the relation Cause), “then”
and “next” (for Sequence), and so on. Most relations are

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 7 4/19/01

binary, having a principal component (the Nucleus) and a
subsidiary one (the Satellite). Relations can be nested
recursively; a text is only coherent if all its clauses can be
linked together, first in local subtrees and then in
progressively larger ones, under a single overarching
relation. Marcu uses a constraint satisfaction algorithm to
assemble all the trees that legally organize the input text,
and then employs several heuristics to prefer one tree over
the others.

To produce an extract summary of the input text, Marcu
simply discards the least salient material, in order, by
traversing the discourse structure top-down, following
Satellite links only.

Marcu’s subsequent this work combines the discourse
structure paradigm with several other surface-based
methods, including cue phrases, the discourse tree shape,
title words, position, and so on (Marcu, 98a). Using an
automated coefficient learning method, he finds that the
best linear combination of values for all these methods.
Evaluation shows that the resulting extracts approximate
human performance on both newspaper articles and
Scientific American texts:

 Extract F-score
 10% (clauses) news Sci. Am.
 Human 79.41% 71.27%
 System 68.86% 70.42%

3.5 Topic Identification Integration Module

After SUMMARIST applies some or all the above
modules, each sentence has been assigned several
different scores. Some method is required to combine
these scores into a single score, so that the most important
topic-bearing sentence can be ranked first. However, it is
not immediately clear how the various scores should be
combined for the best result. Various approaches have
been described in the literature. Most of them employ
some sort of combination function, in which coefficients
assign various weights to the individual scores, which are
then summed. (Kupiec et al., 95) and (Aone et al., 97)
employ the Expectation Maximization algorithm to derive
coefficients for their systems.

Initially, we implemented for SUMMARIST a
straightforward linear combination function, in which we
specified the coefficients manually, by experimentation.
This hand tuning method is good for getting a feeling of
how various modules can affect the SUMMARIST
output, but it does not guarantee consistent performance
over a large collection. As we found in the formal
TIPSTER-SUMMAC evaluation of various
summarization systems (Firmin Hand and Sundheim, 98),
the results of this function were decidedly non-optimal,
and did not show the potential and power of the system!

Since consistent performance and graceful degradation
are very important for SUMMARIST, alternative
combination functions were needed.

In subsequent work, we tested two automated methods
of creating better combination functions. These methods
assumed that a set of texts with their ideal summaries are
available, and that information contained in the ideal
summaries can be reliably recovered from their
corresponding original texts. The sentences in the original
texts that were also included in the summaries we called
target sentences.

Unfortunately, we know of no large corpus of texts with
truly ideal summaries. Therefore, as training data, we
used a portion of the results of the TIPSTER-SUMMAC
summarization evaluation dry run, annotated to indicate
the relevance and popularity of each sentence, as
aggregated over the ratings of several systems (Baldwin,
98). This collection contains 403 summaries containing
4,830 training instances/sentences, which are judged as
relevant to TREC topics 110, 132, 138, 141, and 151.
(Note that contributions from topics are not uniform.
Specific (topic/contribution) numbers are 110/226,
132/122, 138/50, 141/42, and 151/63.) Since the sentence
scores are based on the consensus votes of the summaries
resulting from six different experimental summarization
systems participating in the dry run, no single sentence
relevance judgement is available to construct a truly ideal
summary set. Thus the consensus selected target
sentences should be called ‘pseudo-ideal sentences’.
Please refer to (Firmin Hand and Sundheim, 98) for a
more detail description of the TIPSTER-SUMMAC dry
run evaluation procedure and setup.

We then employed two methods to automatically learn
the combination function(s) that identified in each
training text the most target sentences.

The first method is a decision tree learning algorithm
based on C4.5 (Quinlan, 86). Each module’s outcome is
used as a feature in the learning space. The normalized
score (from 0 to 1 inclusive) of each module for each
sentence is used as its feature value. A feature vector is a
six-tuple: (TTL: v1, TF: v2, TFIDF: v3, SIG: v4, OPP:
v5, QRY: v6). TTL indicates the score from the title
module; TF, the term frequency module; TFIDF, the tf.idf
module; SIG, the topic signature module; OPP, the
position module; and QRY, the query signature module.
All sentences included in the ideal summary of a text are
positive examples, all others are negative examples.

To fully utilize limited training data, we followed the
standard decision tree training and validation procedure
and conducted a 5-way cross-validation test. The
algorithm generated a tree of 1,611 nodes, of which the
top (most informative) questions pertain to the query
signature, term frequency, overlap with title, and OPP.

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 8 4/19/01

Compared with the manually built function, the decision
tree is considerably better. With the linear combination
function, SUMMARIST used to score 33.02% (Recall
and Precision) on an unseen test set of 82 dry-run texts.
On the same data, SUMMARIST now scores 58.07%
(Recall and Precision) in the 5-way cross-validation test.
This represents an improvement of 25%. It is important to
understand that this 58.07% score should not be
interpreted as how frequently SUMMARIST produces
and recovers relevant summaries. This figure is obtained
by evaluating against every sentence contained in the
pseudo-ideal summaries. Thus it is simply a measure of
how well SUMMARIST correctly recovers the pseudo-
ideal sentences. The final judgement has to be made by
human analysts who judge the sentences extracted by
SUMMARIST as a whole, a judgement that unfortunately
we cannot carry out on a large scale with our limited staff.
However, the figure is still a valuable performance
indicator. No summaries can be called good summaries if
they do not contain any summary-worthy sentences.

For the second method, we followed the same setup as
the decision tree training method mentioned above but
implemented a 6-node perceptron as the learning engine.
Training it on the same data produced results within 1%
of the decision tree.

When measuring overall summarization performance,
we conjecture that the performance of SUMMARIST
with the decision tree, evaluated in a relevance judgement

setting such as the TIPSTER-SUMMAC evaluation,
should be in the 70% range. The reason is that since
SUMMARIST without an learned combination function
scored about 49% in the Ad Hoc normalized best
summary category (Firmin Hand and Sundheim, 98); a
25% increase on top of 49% would locate the enhanced
SUMMARIST performance in the 70% range.

The most recent combination function used in
SUMMARIST is still a decision tree, but has been trained
on different data. An example extract summary of the
Indonesian text in Figure 1, using the latest decision tree
as combination function, appears in Figure 2. The new
training data derives from the Question and Answer
summary evaluation data provided by TIPSTER-
SUMMAC. The principal difference between the
(Baldwin, 98) data and the new Q&A data is that the latter
contains essential text fragments (phrases, clauses, and
sentences) which must be included in summaries to
answer some TREC topics. These fragments are judged
by two human judges and are thus much more accurate
training data. SUMMARIST trained on the Q&A data
should therefore perform better than the version trained
on the older data.

A detailed description of the aforementioned training
experiments and the improved combination function
appears in (Lin, in prep.).

 <DOC>

 <SUMMARIZER>ISI</SUMMARIZER>

 <TASKTYPE>qanda</TASKTYPE>

 <SUMMARYTYPE>15%</SUMMARYTYPE>

 <QNUM> ???</QNUM>

 <DOCNO>HTML-DOC</DOCNO>

 <TITLE> Senator Dari Demokrat Sarankan Clinton Memberi Kesaksian Di DepanKongres

 </TITLE>

 <TEXT>

Seorang senator dari Partai Demokrat , hari Minggu (20 / 9) , menyarankan agar Presiden
Clinton secara sukarela memberikan kesaksian di hadapan Kongres guna menghentikan "
siksaan politik " yang memanas Senin pagi ketika rakyat AS menyaksikan testimoni Clinton di
hadapan juri agung menyangkut Monica Lewinsky . Senator John Kerry , anggota Demokrat dari
Massachusetts mengusulkan Clinton bersaksi menjawab pertanyaan Komite Hukum Kongres .
Dengan menyiarkan video kesaksian Clinton , Kongres sebetulnya menghadapi pukulan balik ..

 </TEXT>

 </DOC>

Figure 2. Summary of Indonesian text in Figure 1.

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 9 4/19/01

4. Phase 2: Topic Interpretation

The second phase of summarization—going from
extract to abstract—is considerably more complex than
the first, for it requires that the system have recourse to
world knowledge. Without knowledge of the world, no
system can fuse together the topics extracted to produce a
smaller number of topics to form an abstract. Yet one
cannot simply ignore abstraction: extracts are not
adequate for many tasks. In one study, (Marcu, 98b)
counted how many clauses had to be extracted from a text
in order to fully contain all the material included in a
human abstract of that text. Working with a newspaper
corpus of 10 texts and 14 judges, he found a compression
factor of 2.76—in that genre, extracts are almost three
times as long (counting words) as their corresponding
abstracts! Results of this kind indicate the need for
summarization systems to further process extracted
material: to remove redundancies, rephrase sentences to
pack material more densely, and, importantly, to merge or
fuse related topics into more ‘general’ ones using world
knowledge.

The major problem encountered in the abstraction
process is the acquisition of such world knowledge. In
this section we describe two experiments performed in the
context of SUMMARIST that investigate topic
interpretation.

4.1. Concept Counting and the Wavefront

One of the most straightforward examples of topic
fusion is concept generalization:

John bought some apples, pears, and oranges.
 → John bought some fruit.

Using a concept generalization taxonomy called
WordNet (Miller et al., 90), we have developed a method
to recognize that apple, pear, etc., can be summarized as
fruit. The idea is simple. We first identify the WordNet
equivalent of each topic word in the text, and then locate
an appropriate generalization concept.

To identify an appropriate generalization concept, we
need to count frequencies of occurrence of concepts (after
all, apple and pear can equally well be generalized as
plant-product or physical-object). Our algorithm (Lin 95)
first counts the number of occurrences of each content
word in the text, and assigns that number to the word’s
associated concept in WordNet. It then propagates all
these weights upward, assigning to each node the sum of
its weight plus all its childrens’ weights. Next, it
proceeds back down, deciding at each node whether to
stop or to continue downward. The algorithm stops when
the node is an appropriate generalization of its children;
that is, when its weight derives so equally from two or

more of its children that no child is the clear majority
contributor to its weight. To find the wavefront, we define
a concept’s weight to be the sum of the frequency of
occurrence of the concept C plus the weights of all its
subconcepts. We then define the concept frequency ratio
between a concept and its subconcepts:

This criterion selects the most specific generalization of a
set of concepts as their fuser.

This algorithm can be extended to identify successive
layers of fuser concepts. As described in (Lin 95), the
first set of fuser concepts the algorithm locates need not
be the last; one can continue downward, in order to locate
more specific generalizations. Each stopping frontier we
call an interesting wavefront. By repeating the wavefront
location process until it reaches the leaf concepts of the
hierarchy, the algorithm derives a set of interesting
wavefronts. From all the interesting wavefronts, one can
choose the most general one below a certain depth D to
ensure a good balance of generality and specificity. For
WordNet, we found D=6, by experimentation.

To evaluate the results of this type of fusion, we
selected 26 articles about new computer products from
BusinessWeek (1993–94) of average 750 words each. For
each text we extracted the eight sentences containing the
most interesting concepts using the wavefront technique,
and compared them to the contents of a professional’s
abstracts of these 26 texts from an online service. We
developed several weighting and scoring variations and
tried various ratio and depth parameter settings for the
algorithm. We also implemented a random sentence
selection algorithm as a baseline comparison.

The results were promising, though not startling.
Average recall (R) and precis ion (P) values over the three
scoring variations were R=0.32 and P=0.35, when the
system produces extracts of 8 sentences. In comparison,
the random selection method scored R=0.18 and P=0.22
in the same experimental setting. These values show that
semantic knowledge can help enable improvements over
traditional IR word-based techniques. However, the
limitations of WordNet are serious drawbacks: it contains
almost no domain-specific knowledge.

4.2 Interpretation using Topic Signatures

Before addressing the problem of world knowledge
acquisition head-on, we decided to investigate what type
of knowledge would be useful for topic interpretation.
After all, one can spend a lifetime acquiring knowledge in
just a small domain. How little knowledge does one need
to enable effective concept fusion?

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 10 4/19/01

Our idea, again, was simple. We would collect a set of
words that were typically associated with a target word,
and then, during interpretation, replace the occurrence of
the related words by the target word. For example, we
would replace joint instances of table, menu, waiter,
order, eat, pay, tip, and so on, by the single phrase
restaurant-visit, in producing an indicative summary. We
thus defined a topic signature as a family of related
words, as follows:

TS = {head, (w1 s1), (w2 s2), (w3 s3),…}

where head is the target word and each wi is an related
word with association strength si.

As described in (Lin 97), we constructed signatures
automatically from a set of 30,000 texts from the 1987
Wall Street Journal (WSJ) corpus. The paper’s editors
have classified each text into one of 32 classes. Within
the texts of each class, we counted the occurrences of
each content word (demorphed to remove plurals, etc.),
relative to the number of times they occur in the whole
corpus, using the standard tf.idf method. We then selected
the top-scoring 300 terms for each category and created a
signature with the category name as its head. The top
terms of four example signatures are shown in Figure 3.
It is quite easy to determine the identity of the signature
head just by inspecting the top few signature words.

In order to evaluate the quality of the signatures formed
by the algorithm, we evaluated the effectiveness of each
signature by seeing how well it served as a selection
criterion on texts. While this is not our intended use of
signatures, document categorization is a well-known task
with enough results in the literature to give us a sense of
the performance of our methods. As data we used a set of
2,204 previously unseen WSJ news articles from 1988.
For each test text, we created a single-text ‘document
signature’, again using tf.idf, and then matched this
document signature against the category signatures. The
closest match provided the class into which the text was
categorized. We tested several matching functions,
including a simple binary match (count 1 if a term match
occurs; 0 otherwise); curve-fit match (minimize the
difference in occurrence frequency of each term between
document and concept signatures), and cosine match
(minimize the cosine angle in the hyperspace formed
when each signature is viewed as a vector and each word
frequency specifies the distance along the dimension for
that word). These matching functions all provided
approximately the same results. The values for Recall
and Precision (R=0.7566 and P=0.6931) are encouraging
and compare well with recent IR results (TREC, 95).
Current experiments are investigating the use of contexts
smaller than a full text to create more accurate signatures.

RANK Aerospace Banking Environment Telecomm.

1 contract bank epa at&t

2 air_force thrift waste network

3 aircraft banking environmental fcc

4 navy loan water cbs

5 army mr. ozone cable

6 space deposit state bell

7 missile board incinerator long-distance

8 equipment fslic agency telephone

9 mcdonnell fed clean telecomm.

10 northrop institution landfill mci

11 nasa federal hazardous mr.

12 pentagon fdic acid_rain doctrine

13 defense volcker standard service

14 receive henkel federal news

15 boeing banker lake turner

Figure 3. Portions of the topic signatures of several concepts.

These results are encouraging enough to allow
us to continue with topic signatures as the
vehicle for a first approximation to world

knowledge, as useful for topic interpretation.
Considerable subsequent experimentation (Hovy
and Junk, in prep.) with a variety of methods,

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 11 4/19/01

including Latent Semantic Analysis, pairwise
signatures, etc., indicates that the most promising
method of creating signatures is χ2. We are now
busy creating a large number of signatures in an
attempt to overcome the world knowledge
acquisition problem.

5. Phase 3: Summary Generation

We have devoted no effort to adapting an
existing language generator or developing a new
one for SUMMARIST. It has scarcely been
necessary, since SUMMARIST is principally an
extract-only system at present. However, we
envisage the language generation needs of
summarization systems in general, and
SUMMARIST in particular, to require two major
steps.

The microplanner: The task of a
microplanner, in general, is to convert a
discourse-level specification of a sequence of
topics into a list of specifications at the level of
one or a few clauses at a time. This involves
making choices for several semi-independent
aspects, including sentence length, internal
sentence organization (order of preposition
phrases, active or passive mood, etc.),
identification of the principal theme and focus
units, selection of the main verb and other
important words, and so on. In the context of
summarization, the microplanner’s task is to
ensure that the information selected by the topic
identification module and (possibly) fused by the
topic interpretation module is phrased compactly
and as briefly as possible though still in a
grammatical sentence.

The microplanner can be built to perform its
work at two levels: the textual level, in which its
input is a list of sentences or sentence fragments,
and its output is a compacted list of sentences,
and the representational level, in which its input
is couched in an abstract notation (whether more
or less explicitly syntactic depends on the
implementation), and its output is a fairly
syntactic abstract specification of each sentence.
In the former case, the output is more or less
directly readable by a human, while in the latter,
the output has to be converted into grammatical
sentences by the sentence generator.

Microplanning is an area still largely
unexplored by computational linguists. The work
that has been done, including some of the major
systems (Nirenburg et al., 89; Rambow and
Korelsky, 92; Hovy and Wanner, 96), is not

really appropriate to the specific compaction-
related needs of summarization. The most
relevant study on microplanning for
summarization is (McKeown and Radev, 95).

The sentence generator: The task of a
sentence generator (often called realizer) is to
convert a fairly detailed specification of one or a
few clause-sized units into a grammatical
sentence. A number of relatively easy to use
sentence generators is available to the research
community, including Penman (Penman, 88),
FUF/SURGE (Elhadad, 92), RealPro (Lavoie
and Rambow, 97), and NITROGEN (Langkilde
and Knight, 98). We plan to employ one or more
of these in SUMMARIST.

6. Summary Evaluation

6.1 Two Basic Measures

How can you evaluate the quality of a
summary? We have found no literature on this
fascinating question. Indeed, many anecdotes
and experiences lead one to believe that the uses
of summaries are so task-specific and user-
oriented that no objective measurement is
possible. When the inter-judge scoring
variability is higher than half the average score,
as small tests relating to summaries occasionally
have suggested, then perhaps there is no hope for
it.

However, it is possible to develop some
general guidelines and approaches, and from
them to develop some approximations to
summarization evaluation. We give a very rough
sketch here of some work performed in the
context of SUMMARIST in early 1997; more
details are in (Hovy, in prep.).

It is obvious that to be a summary, the summary
must obey two requirements:

• it must be shorter than the original input
text;

• it must contain (some of) the same
information as the original, and not other,
new, information.

One can then define two measures to capture the
extent to which a summary S conforms to these
requirements with regard to a text T:
 Compression Ratio:
 CR = (length S) / (length T)

 Retention Ratio:
 RR = (info in S) / (info in T)

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 12 4/19/01

However we choose to measure the length and
the information content, we can say that a good
summary is one in which CR is small (tending to
zero) while RR is large (tending to unity). We
can characterize summarization systems and/or
text types by plotting the ratios of the summaries
produced under varying conditions. For
example, Figure 4(a) shows a fairly normal
growth curve: as the summary gets longer
(grows along the x axis, which measures CR), it
contains more information (grows also along the

y axis, which measures RR), until it is just as
long at the original text and contains the same
information. In contrast, Figure 4(b) shows a
curve with a very desirable bend: at some special
point, the addition of just a little more material to
the summary adds a disproportionately large
amount more of information. Figure 4(c) shows
another desirable behavior: initially, all the
important material is included in the summary;
as it grows, the new material is less interesting.

Figure 4(a). Compression Ratio (CR) vs. Retention Ratio (RR) for normal summary growth.

Figure 4(b). Compression Ratio (CR) vs. Retention Ratio (RR) for desirable summary growth.

Figure 4(c). Compression Ratio (CR) vs. Retention Ratio (RR) for desirable summary growth.

Measuring length: Measuring length is
relatively straightforward; one can choose as
metric the number of words, of letters, of
sentences, and so on. For a given genre and

register level, there is a fairly fixed correlation
between these metrics, in most cases.

Measuring information content: Ideally, one
wants to measure not information content, but

RR

CR

RR

CR

RR

CR

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 13 4/19/01

interesting information content only. The
problem is that it is very hard to measure
information content and almost impossible to
define even what interesting information content
may be. However, it is possible to approximate
measures of information content in several ways.
We describe three here.

The Shannon Game: This measure derives
from a variant of a parlor game invented by
Claude Shannon, when he was developing
Information Theory (Shannon, 51). In this
theory, the amount of information contained in a
message is measured by –p log p, where p is,
roughly speaking, the probability of the reader
guessing the message (or each piece thereof,
individually). To test his theory, Shannon asked
his wife and several helpers to receive and write
down a message, by guessing one letter at a time,
and being answered simply yes or no. Naturally,
their knowledge of the typical letter frequencies
in English (e being most frequent, then t, a, o, i,
n, and so forth), coupled with their knowledge of
English words and word endings (after satisfac-
the chances for –tion are very high) helped them
make informed guesses. And as soon as they
started to make out the meaning of the
transmitted message, their guesses got even
better. Shannon’s argument went as follows: the
more the receiver could guess the message
without any help, the less novel (and hence the
less informative) it was to the receiver; and
contrarily, the more guesses the receiver needed,
the more informative the message was.

One can use this technique to measure the
information content of a summary S relative to
that of its corresponding text T as follows.
Assemble three sets of testers. One set first
reads T, slowly, and must then try to re-create it,
letter by letter, without any longer seeing T.
When they guess a wrong letter, they must guess
again; when they guess a correct one, they
simply proceed to the next letter. The number of
wrong guesses gwrong and the total number of
guesses gtotal they make are recorded, and their
score is computed as the ratio RT = gwrong / gtotal .
The second set of testers first reads S, slowly,
and then, without any further recourse to S,
proceeds to try to create T, letter by letter. They
know that S is only a summary of their goal. As
with the first set, the number of guesses, wrong
and total, are recorded, and the ratio RS is
computed. The third set of testers reads nothing
first, but starts immediately to create T, without
knowing what it might be about. Also for them,
the ratio RN is computed.

The quality of S can be computed by
comparing the three ratios, where RN and RT
define the end points of a scale; the former
quantifies how much a tester could guess from
default world knowledge (and should hence not
be attributed to the summary), and the latter
quantifies how much a tester still has to guess,
even with `perfect’ prior knowledge. The closer
RS is to RT, the better the summary.

Section 6.2 describes a small experiment.

The Question Game: This measure
approximates the information content of S by
determining how many questions drawn up about
T can be answered. Before starting, one or more
people create a set of questions based on what
they consider the principal content of T. These
questions can be neutral (author’s point of view)
or query-oriented, as required. Then the testers
are brought in, and asked to answer these
questions three times in succession. In the first
round, the testers are simply asked the questions
without having read either S or T, and their
answers are scored. In the second round, they
are given S to read, and are asked to answer the
same questions again. In the third round, they
are given T, and asked to answer the questions a
third time. After each round, the number of
questions answered correctly is tallied.

The quality of S can be computed by
comparing the three tallies, where the first and
last tallies provide baselines—respectively, how
many questions the testers would be able to
answer from default world knowledge, and how
many they would not be able to answer even
when given the whole text T. The closer the
testers’ answer tally for the summary to the tally
the full text, the better the summary.

The formal SUMMAC summarization
evaluation (Firmin Hand and Sundheim, 98)
contained a pilot test of the Question Game. A
small experiment is described in Section 6.2.

The Classification Game: This measure
approximates information content by testing how
well people can perform a classification task on a
collection of summaries Si and on full texts Ti. A
set of texts is drawn from a few different topics,
several texts per topic. For each text, a summary
is created. Some testers are then asked to
classify either a text or its corresponding
summary (but not both) into one of the topic
classes; other testers are given the converse sets
(a summary or its corresponding text) to classify.
After classification, the correspondence between

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 14 4/19/01

the classifications of full texts and their
corresponding summaries is measured; the
greater the agreement, the better the summary is
at capturing that which causes the full text to be
classified as it is.

Many variants of this game are possible. One
may ask the testers to classify all summaries first
and then all the full texts, as long as one takes
care to test for prior classification distortion. Or,
instead of asking testers to classify texts, one
may ask them to rate the summaries and texts for
relevance to the topic classes. In this case, the
game reduces to classification into two piles:
Relevant and Not Relevant.

The formal SUMMAC summarization
evaluation (Firmin Hand and Sundheim, 98)
contained tests for two variants of the
Classification Game.

6.2 Some Evaluation Experiments

Experiment 1: In a small pilot test at ISI, we
performed a test of the Shannon Game. We
manually created two paragraph-length
summaries of two 300-word newspaper articles
for the LA Times, and had 3 groups of graduate
students (native or near-native speakers of
English) recreate the full text, as outlined above.
The results were astounding: the students who
had seen the full text required on average 11
additional letter guesses (i.e., they made on
average only 11 errors); those who had seen the
summaries required approximately 150
additional guesses each; and those who had seen
no text at all required over 1,100 guesses each
and in some cases did not complete the test, after
3 hours! It is seldom that one finds a
phenomenon yielding an order of magnitude
difference between contrast sets; we were quite
pleased at the result.

Experiment 2: Taking advantage of the
presence of a larger number of enthusiastic and
able participants at the 1997 AAAI Fall
Symposium on Text Summarization, we did a
second evaluation study, focusing on the
following questions:

1. How do different evaluation methods
compare for each type of summary?

2. How do different summary types fare
under different evaluation methods?

3. How much does the evaluator affect
scores?

4. Is there a preferred evaluation method?

Preparation: We selected two newspaper
articles, one about an art theft and one about a
housing development, and created the following
types of summary for each domain:
• Human abstract, full background
• Human abstract, just-the-news
• SUMMARIST extract
• SUMMARIST keywords-only
• Random sentence extract
We then created the materials for three
evaluations: a Shannon Game, a Question Game,
and a Classification Game. The Shannon and
Question Games followed quite closely the setup
outlined above. The Classification Game asked
for an initial classification into some very
distinct possible categories and then a sub-
sequent one into some much closer categories.

Execution: At the Symposium, we had the
participants double up into pairs. We then
conducted each evaluation with at least four
pairs. Each pair of people performed two
different evaluations, seeing different texts each
time. The whole exercise required one session of
approx-imately three hours.

Results: Since the number of subjects was too
small to support statistically meaningful scores,
we provide in Figure 5 the relative order of
magnitude results instead of the actual scores.
The percentage difference between score
categories is listed in the columns below the
scores (for example, scores marked “1” in the
Shannon Game column were 50% better than
scores marked “2” in that column).

Most surprising was the lack of difference in
the Classification Game: despite the difference in
distinctiveness of the classification categories,
the two categories were different enough to pose
no challenges. Surprising in the Shannon Game
was the result that the Full Text, Abstract, and
SUMMARIST Extract were all equally good in
providing information content. Finally, the
relative ranking of results in the Question Game
deserves some discussion. As expected, the Full
Text provides the most information and No Text
the least. However, the SUMMARIST Extract
provided approx. 30% higher scores on average
than either type of (human-made) Abstract, and
the Random sentence selection was just as good
as the Abstracts! A larger study is required to
determine whether this result is simply a result of
the texts selected or whether something more
unsuspected is going on.

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 15 4/19/01

While not large enough to warrant any
conclusive statements, these evaluation trials
make clear that different evaluation methods rate
summaries differently (compare the
Classification Game to the others, even though
some correlations can be seen between scores in
the Shannon and Question Games). It is very

clear that different summary types give different
evaluation results, especially within the class of
Extracts. More studies of this type will help us
learn which kinds of evaluations are good for
which kinds of text and summary types,
domains, and uses.

 Shannon Questions Classification

Full Text 1 1 1

Abstract Background 1 3 1

 Just-the-News * 3 1

 Regular 1 2 1

Extract Keywords 2 4 1

 Random * 3 1

No Text 3 5

 1–2: 50% diff. 1–2: 30% diff.

 2–3: 50% diff. 2–3: 20% diff.

 *: not performed 3–4: 20% diff.

 4–5: 100% diff.

Figure 5. Results of evaluation experiments at AAAI Spring Symposium.

7. Conclusion

The study of automated text summarization
still has a long way to go before we can really
claim to understand the nature of summaries.
That does not mean, however, that the results
obtained over the past few years are not useful.
Even fairly surface-oriented systems such as
SUMMARIST and the other ones built under the
TIPSTER program already exhibit some
commercial potential. The kinds of techniques
outlined in Sections 4 and 5, to move from
extracts to abstracts and all the other types of
summary, will require some careful and large-
scale work over the next years. The potential
payoff is enormous, however, and growing, as
the amount of text available in corpora and on
the web keeps growing.

Several bottlenecks impede current
development of summarization systems. The
primary bottleneck is the shortage of good
training data in a variety of domains and genres,
and for a variety of summary types. What is
required is triples—full text, human abstract, and

corresponding extract—from which it will be
possible to empirically determine answers to
open questions in all three phases of
summarization. A second bottleneck is the
shortage of world knowledge, as required to
perform topic interpretation. A third bottleneck
is the lack of resources and funding to focus on
microplanning in summary generation.

In some sense, one might say that text
summarization is one of the most difficult tasks
of natural language processing. True abstracting
requires true text understanding and true
generation; it may quite possibly prove more
difficult to find effective shortcuts than in
machine translation or information extraction.
But given how directly system improvements
translate into useful results, text summarization
is an exciting and very rewarding area in which
to work.

Acknowledgements

We thank Louke van Wensveen for very useful
initial discussions on evaluation, Daniel Marcu
for the discourse work, Hao Liu and Mike Junk

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 16 4/19/01

for their tireless experiments on topic signatures,
Thérèse Firmin Hand, Sara Shelton, and Beth
Sundheim for discussions about evaluation, and
especially Sara Shelton for continued
encouragement.

References

Aone, C., M.E. Okurowski, J. Gorlinsky, B.
Larsen. 1998. A Scalable Summarization
System using Robust NLP. In I. Mani and M.
Maybury (eds), Advances in Automated Text
Summarization. MIT Press.

Bagga, A. and B. Baldwin. 1998. Entity-Based
Cross-Document Cross-Referencing using the
Vector Space Model. In Proceedings of
COLING/ACL, 79–86. Montreal, Canada.

Baldwin, B. 1998. Reworking of
TIPSTER/SUMMAC Dry Run Evaluation
Results. University of Pennsylvania Report.

Baxendale, P.B. 1958. Machine-Made Index for
Technical Literature—An Experiment. IBM
Journal (October) 354–361.

Brill, E. 1992. A Corpus-Based Approach to
Language Learning. Ph.D. dissertation,
University of Pennsylvania.

Edmundson, H.P. 1968. New Methods in
Automatic Extraction. Journal of the ACM
16(2), 264–285.

Elhadad, M. 1992. Using Argumentation to
Control Lexical Choice: A Functional
Unification-Based Approach. Ph.D.
dissertation, Columbia University.

Endres-Niggemeyer, B. 1997. SimSum:
Simulation of Summatizing. In Proceedings
of the Workshop on Intelligent Scalable
Summarization at the ACL/EACL Conference,
89–96. Madrid, Spain.

Firmin Hand, T. and B. Sundheim. 1998.
TIPSTER-SUMMAC Summarization
Evaluation. Proceedings of the TIPSTER Text
Phase III Workshop. Washington.

Hovy, E.H. and L. Wanner. 1996. Managing
Sentence Planning Requirements. In
Proceedings of the Workshop on Gaps and
Bridges in NL Planning and Generation, 53–
58. ECAI Conference. Budapest, Hungary.

Hovy, E.H. 1998. Combining and Standardizing
Large-Scale, Practical Ontologies for Machine

Translation and Other Uses. In Proceedings
of the First International Conference on
Language Resources and Evaluation (LREC),
535–542. Granada, Spain.

Hovy, E.H. and M. Junk. In prep.

Hovy, E.H. and C-Y. Lin. 1998. Automating
Text Summarization in SUMMARIST. In I.
Mani and M. Maybury (eds), Advances in
Automated Text Summarization. MIT Press.

Hovy, E.H. The Evaluation of Summaries. In
prep.

Knight, K. and S.K. Luk. 1994. Building a
Large-Scale Knowledge Base for Machine
Translation. Proceedings of the Conference of
the American Association of Artificial
Intelligence (AAAI-94), 773–778. Seattle,
WA.

Kupiec, J., J. Pedersen, and F. Chen. 1995. A
Trainable Document Summarizer. In
Proceedings of the Eighteenth Annual
International ACM Conference on Research
and Development in Information Retrieval
(SIGIR), 68–73. Seattle, WA.

Langkilde, I. and K. Knight. 1998. Generation
that Exploits Corpus Knowledge. In
Proceedings of the COLING/ACL Conference,
704–709. Montreal, Canada.

Lavoie, B. and O. Rambow. 1997. A Fast and
Portable Realizer for Text Generation
Systems. In Proceedings of the Applied
Natural Language Processing Conference
(ANLP-97), 265–270. Washington, DC.

Lin, C-Y. 1995. Topic Identification by Concept
Generalization. In Proceedings of the Thirty-
third Conference of the Association of
Computational Linguistics (ACL-95), 308–
310. Boston, MA.

Lin, C-Y. 1997. Robust Automated Topic
Identification. Ph.D. dissertation, University
of Southern California.

Lin, C-Y. and E.H. Hovy. 1997. Identifying
Topics by Position. In Proceedings of the
Applied Natural Language Processing
Conference (ANLP-97), 283–290.
Washington, DC.

Lin, C-Y. and E.H. Hovy. 1998. Automatic Text
Categorization: A Concept-Based Approach.
In prep.

TIPSTER III Final Report (SUMMAC) 1998

Hovy & Lin Page 17 4/19/01

Lin, C-Y. Training a Selection Function for
Extraction in SUMMARIST. In prep.

Liu, H. and E.H. Hovy. Automated Learning of
Cue Phrases for Text Summarization. In prep.

Luhn, H.P. 1959. The Automatic Creation of
Literature Abstracts . IBM Journal of Research
and Development, 159–165.

Mann, W.C. and S.A. Thompson. 1988.
Rhetorical Structure Theory: Toward a
Functional Theory of Text Organization. Text
8(3) (243–281).

Marcu, D. 1997. The Rhetorical Parsing,
Summarization, and Generation of Natural
Language Texts. Ph.D. dissertation,
University of Toronto.

Marcu, D. 1998. The Automatic Construction of
Large-scale Corpora for Summarization
Research. Forthcoming.

Marcu, D. 1998a. Improving Summarization
through Rhetorical Parsing Tuning.
Proceedings of the COLING-ACL Workshop
on Very Large Corpora . Montreal, Canada.

Marcu, D. 1998b. Automated Creation of
Extracts from Texts and Abstracts. In prep.

McKeown, K.R. and D.R. Radev. 1995.
Generating Summaries of Multiple News
Articles. In Proceedings of the Eighteenth
Annual International ACM Conference on
Research and Development in Information
Retrieval (SIGIR), 74–82. Seattle, WA.

Miller, G., R. Beckwith, C. Fellbaum, D. Gross,
and K. Miller. 1990. Five papers on WordNet.
CSL Report 43, Cognitive Science
Laboratory, Princeton University.

Mitra, M., A. Singhal, and C. Buckley. 1997.
Automatic Text Summarization by Paragraph
Extraction. In Proceedings of the Workshop
on Intelligent Scalable Summarization at the
ACL/EACL Conference, 39–46. Madrid,
Spain.

Nirenburg, S., V. Lesser, and E. Nyberg. 1989.
Controlling a Language Generation Planner.
In Proceedings of IJCAI, 1524–1530. Detroit,
MI.

The Penman Primer, User Guide, and Reference
Manual. 1988. Unpublished documentation,
Information Sciences Institute, University of
Southern California.

Quinlan, J.R. 1986. Induction of Decision Trees.
Machine Learning 81–106.

Rambow, O. and T. Korelsky. 1992. Applied
Text Generation. In Proceedings of the
Applied Natural Language Processing
Conference (ANLP). Trento, Italy

Salton, G. 1988. Automatic Text Processing.
Reading, MA: Addison-Wesley.

Shannon, C. 1951. Prediction and Entropy of
Printed English. Bell System Technical
Journal, January 1951.

Spärck Jones, K. 1998. Introduction to Text
Summarisation. In I. Mani and M. Maybury
(eds), Advances in Automated Text
Summarization. MIT Press.

Strzalkowski, T. et al., 1998. ? In I. Mani and
M. Maybury (eds), Advances in Automated
Text Summarization. MIT Press.

Tait, J.I. and K. Spärck Jones. 1982. Automatic
Summarising of English Texts. Ph.D.
dissertation, Cambridge University.

Teufel, S. and M. Moens. 1998. Sentence
Extraction as a Classification Task. In I. Mani
and M. Maybury (eds), Advances in
Automated Text Summarization. MIT Press.

TREC. Harman, D. (ed). 1995. Proceedings of
the TREC Conference.

Van Dijk, T.A. and W. Kintsch. 1983. Strategies
of Discourse Comprehension. New York:
Academic Press.

