Precision cancer medicine in the era of genomics
Disclosures

None

Equity holder in Microsoft
Five shares for my bar-mitzvah in 1993
Thanks to the Gros family!
Definitions

Clinical computational biology: the development and application of computational algorithms to analyze and interpret ‘omic data from patient samples

Precision cancer medicine: The use of “pan-omic” technology to inform patient care and translational studies
Precision oncology: A paradigm shift

Past → Present

Cancer → Non-specific chemotherapy

Present → Future

Cancer → Test for tumor-specific genetic targets that can be “drugged” → Targeted therapy

EGFR → erlotinib
BCR-ABL → imatinib
ALK → crizotinib
HER2 → trastuzumab
...

15th Annual Microsoft Research Faculty Summit 2014
Precision oncology: A paradigm shift

Past
Dacarbazine 5% response rate

Present
BRAF^{V600E}
Vemurafenib

Wagle, Emery, et al. JCO 2011
Big question: Can prospective knowledge of all alterations in a tumor genome impact patient care?
Clinical interpretation needs

Clinical Sequencing Pipeline Development

Clinical Genomics Data Interpretation

Data Representation for Clinicians

Clinical interpretation needs

Clinical Sequencing Pipeline Development

Clinical Genomics Data Interpretation

Data Representation for Clinicians

“Big (genomic) data” in oncology

Data points per patient

Source: NHGRI
Clinical interpretation needs

Clinical Sequencing Pipeline Development

Clinical Genomics Data Interpretation

Data Representation for Clinicians

PHIAL

Precision Heuristics for Interpreting the Alteration Landscape

“May it be a light to you in dark places, when all other lights go out.”

1Galadriel, in Tolkien, The Fellowship of the Ring
PHIAL

Subclassifications per level

- Missense mutations
- Copy number directionality
 - Gain or loss

Linked pathways

- Actionable
- Unlinked
- Linked
- Wild-type

 KRAS A146V
• Rare activating alteration
• Not detected with deployed profiling technologies (at that time)

Impact on clinical decision-making
Metastatic advanced prostate cancer patient

Tumor-only variants

Inherited (“germline”) variant

PI3K inhibitor
AKT inhibitor
mTOR inhibitor

Responds to cisplatin!

PARP inhibitor
Platinum chemotherapy

BRCA2 K3326* nonsense

Five potential therapies for a patient who exhausted standard-of-care options!

PHIAL applied to diverse cancer types
Clinical interpretation needs

Clinical Sequencing Pipeline Development

Clinical Genomics Data Interpretation

Data Representation for Clinicians

The challenge of representation

Microsoft phone interview (~2002):
“Describe how you might make a mouse from scratch?

Eli: “I would start with a white-ish color, shaped around the palm of my hands...”

Did not get call back for second interview
The challenge of representation

True stories from oncology clinic (12/9/2013):

Patient’s genomic testing reveals $PIK3CA^{E545K}$ mutation
Specific inhibitors of this gene and pathway (“PI3K inhibitors”) are in clinical trials

“Why might you suggest PI3K inhibitor?” - Doc
“There is an activating PIK3CA mutation.” - Eli
“Oh, is PIK3CA part of the PI3K pathway?” – Doc
The state of clinical informatics
Digital genomics report
Digital genomics report

Somatic Analysis

This section investigates somatic mutations, insertion/deletions, and copy number alterations across...

<table>
<thead>
<tr>
<th>Gene</th>
<th>Alteration</th>
<th>Variant</th>
<th>Coverage</th>
<th>Allelic_fraction</th>
<th>UniProt_Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS</td>
<td>p.G12D</td>
<td>Mutation</td>
<td>84</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>STK11</td>
<td>p.S695fs</td>
<td>Frame_Shift_In</td>
<td>58</td>
<td>0.63</td>
<td>Protein kinase</td>
</tr>
<tr>
<td>EZH2</td>
<td>p.S277I</td>
<td>Mutation</td>
<td>288</td>
<td>0.17</td>
<td>Interaction with DNMT1, DNMT3A and DNMT3B</td>
</tr>
</tbody>
</table>

Table: Somatic Curation Team results for selected alterations

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Gene</th>
<th>Alteration</th>
<th>Variant</th>
<th>Coverage</th>
<th>Allelic_fraction</th>
<th>UniProt_Region</th>
</tr>
</thead>
</table>

Curated data

- Good coverage at KRAS and allelic fraction of 44%
- Allelic fraction is 63% suggestive of LOH

Links to focused ClinicalTrials.gov results

- Reveals IGV screenshot
- Links to MutationAssessor
- Curated data
- OMIM
- Reference table used
- dbSNP
Big question: Can prospective knowledge of all alterations in a tumor genome impact patient care?

With the right computational approaches, we can study this on growing numbers of patients.
What are we missing?

A lot.

“Clinical” computational oncology is in its infancy

Much room for improvement

Open/eager for collaboration
eliezer@broadinstitute.org
evanallen@partners.org
Acknowledgements

The patients

Garraway lab
Levi Garraway
Gregory Kryukov
Eran Hodis
Mahmoud Ghandi
Eva Goetz
Craig Bielski
Rajee Antony
Ginevra Botta
Claudine Christoforides
Frederick Wilson
Sylvan Baca
Franklin Huang
Judith Jane-Valbuena
Cory Johannessen
David Konieczkowski
Christine Kwon
Flora Luo
Sara Marlow
Chengyin Min
Jasmine Mu
Chelsea Place
Marius Pop
Nikhil Wagle

Jean-Philippe Theurillat
Daniel Treacy
Aisha Townes
Steven Whittaker
Terence Wong
Jasmine Mu
Ali Amin-Mansour

Dana-Farber/Partners
Cancer Care
Robert J. Mayer
Ann LaCasce
Jennifer Temel
Alan D’Andrea
Kent Mouw
Phil Kantoff
Mary-Ellen Taplin
Rosina Lis
Michaela Bowden
Massimo Loda
Kevin Melnick
Rana McKay

Broad Institute
Gad Getz
Scott Carter
Amaro Taylor-Weiner
Deborah Farlow
Alexis Ramos
Aaron McKenna
Adam Keizun
Pablo Tamayo
Michael Lawrence
Kristian Cibulskis
Jeffrey Gentry
Nils Gehlenborg
David DeLuca
Andrey Sivachenko
Yotam Drier
Nils Gehlenborg
Stacey Gabriel
Sheila Fisher
William Hahn
Matthew Meyerson
Todd Golub
Eric Lander

Funding
DFCI Leadership Council
Friends of DFCI
NIH/NHGRI
Starr
Prostate Cancer Foundation
American Cancer Society

CONQUER CANCER FOUNDATION of the American Society of Clinical Oncology
Save the planet and return your name badge before you leave (on Tuesday)