
Online Minimum Matching in Real-Time Spatial Data:
Experiments and Analysis

Yongxin Tong † Jieying She § Bolin Ding ‡ Lei Chen § Tianyu Wo † Ke Xu †

†SKLSDE Lab, NSTR, and IRI, Beihang University, China
§The Hong Kong University of Science and Technology, Hong Kong SAR, China

‡Microsoft Research, Redmond, WA, USA
†{yxtong,woty,kexu}@buaa.edu.cn, §{jshe,leichen}@cse.ust.hk, ‡bolind@microsoft.com

ABSTRACT
Recently, with the development of mobile Internet and smartphones,
the online minimum bipartite matching in real time spatial data
(OMBM) problem becomes popular. Specifically, given a set of
service providers with specific locations and a set of users who
dynamically appear one by one, the OMBM problem is to find a
maximum-cardinality matching with minimum total distance fol-
lowing that once a user appears, s/he must be immediately matched
to an unmatched service provider, which cannot be revoked, before
subsequent users arrive. To address this problem, existing studies
mainly focus on analyzing the worst-case competitive ratios of the
proposed online algorithms, but study on the performance of the
algorithms in practice is absent. In this paper, we present a compre-
hensive experimental comparison of the representative algorithms
of the OMBM problem. Particularly, we observe a surprising result
that the simple and efficient greedy algorithm, which has been con-
sidered as the worst due to its exponential worst-case competitive
ratio, is significantly more effective than other algorithms. We in-
vestigate the results and further show that the competitive ratio of
the worst case of the greedy algorithm is actually just a constan-
t, 3.195, in the average-case analysis. We try to clarify a 25-year
misunderstanding towards the greedy algorithm and justify that the
greedy algorithm is not bad at all. Finally, we provide a uniform
implementation for all the algorithms of the OMBM problem and
clarify their strengths and weaknesses, which can guide practition-
ers to select appropriate algorithms for various scenarios.

1. INTRODUCTION
Given a set of service providers and a set of users in a 2D space,

the minimum bipartite matching in spatial data (MBM) problem
aims to find a maximum-cardinality matching with minimum total
distance between the matched pairs and has attracted much atten-
tion from the database communities in the last decade [31, 28, 32].
With the unprecedented development of mobile Internet and smart-
phone techniques in recent years, many applications of the MBM
problem on real-time spatial data become popular, such as the real-
time taxi-calling service Uber [5], the on-wheel meal-ordering ser-
vice GrubHub [2], and the product placement checking service of

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 12
Copyright 2016 VLDB Endowment 2150-8097/16/08.

stores Gigwalk [1]. To deal with the minimum bipartite matching
in real-time dynamic spatial environments, a natural way is to mod-
el it as the online minimum bipartite matching in real time spatial
data (OMBM) problem [16, 17].

Though with the same objective function, the traditional MBM
problem and the OMBM problem address different scenarios and
constraints. Specifically, traditional MBM addresses the offline s-
cenario, where full information of service providers and users is
known before matching is conducted, while OMBM addresses the
online scenario, where (1) each service provider has an initial lo-
cation, but users dynamically arrive one by one; (2) before a user
appears, his/her location is unknown; (3) once a user appears, s/he
must be matched to one unmatched service provider immediately
before subsequent users arrive. Particularly, there are a wide range
of real applications of the OMBM problem, and several represen-
tative examples are shown as follows:

• Task Assignment in Spatial Crowdsourcing [7]: Task as-
signment is one of the most foundational issues in spatial
crowdsourcing[11, 18, 28, 24, 25, 26, 27, 29, 30]. In real-
time spatial crowdsourcing, a task can be considered as a user
and a crowd worker can be considered as a service provider.
The goal of task assignment in spatial crowdsourcing is usu-
ally to minimize the total travel distance of workers. In par-
ticular, in real applications, each task request not only dy-
namically appears but also needs to be assigned to a crowd
worker as quickly as possible. Thus, task assignment in real-
time spatial crowdsourcing can be addressed by the OMBM
problem.

• Taxi Dispatching [20, 23]: Taxi dispatching systems are
very popular in current daily life. One representative com-
mercial application is Uber [5]. A taxi and a calling-taxi
request can be considered as a service provider and a us-
er, respectively. The taxi dispatching system usually tries to
minimize the total waiting time of users or the total driving
distance for the taxies to pick up their passengers. Note that
each dynamically appearing calling-taxi request should be
immediately responded once it appears. Therefore, OMBM
is suitable for handling such real-time allocation in the taxi
dispatching systems.

• Wireless Network Connection Management [31]: In wire-
less network connection management, WiFi receivers and
wireless access points (APs) can be regarded as users and
service providers in the OMBM problem, respectively, where
each WiFi receiver is only allocated a nearby AP immediate-
ly once it requests for WiFi service, each AP can provide
WiFi service for multiple WiFi receivers, and the overall dis-
tances between WiFi receivers and APs should be minimized

to provide high-quality network service. Although each s-
ingle AP has a capacity, which is the maximum number of
WiFi receivers it can support, the AP can be considered as
multiple APs with capacity of one, each of which can sup-
port only one WiFi receiver. This multiple (WiFi receivers)-
to-single (AP) assignment problem can be reduced to a one-
to-one assignment problem. Therefore, OMBM can be natu-
rally applied to handling such applications.

With its wide applications, the OMBM problem has been exten-
sively studied, and some of the most notable algorithms include
Greedy [16, 17], Permutation [16, 17, 19], HST-Greedy [22], and
HST-Reassignment [8, 9]. However, study on the performance of
the algorithms in practice is still absent. This paper is the first work
to evaluate the performance of these algorithms through a compre-
hensive experimental study with additional theoretical analysis.

1.1 Motivation
1. Is Greedy really the worst? Greedy [16, 17] is the most sim-

ple and efficient solution for the OMBM problem. The basic idea
of Greedy is to allocate each new arrival user to the currently near-
est unmatched service provider. Because existing studies mainly
focus on theoretically analyzing the worst-case competitive ratio of
an online algorithm, which is the worst-case ratio of the total dis-
tance of the matching returned by the online algorithm to that of
the optimal matching (which can be obtained in the offline scenari-
o), Greedy has been considered as the worst algorithm due to its
exponential worst-case competitive ratio. However, a comprehen-
sive experimental comparison of the proposed algorithms for the
OMBM problem is still absent so far. Therefore, whether Greedy
is really ineffective in practice is unknown.

2. Is the worst-case analysis appropriate for the OMBM
problem in practice? As discussed above, most existing studies
use the worst-case competitive ratio to evaluate the effectiveness
of their proposed algorithms. However, through extensive experi-
ments on real and synthetic datasets, we observe some contradic-
tions between the performance of the proposed algorithms and their
theoretical results. For example, according to [8, 9, 14], both HST-
Greedy [22] and HST-Reassignment [8, 9] have better worst-case
competitive ratios than that of Greedy. However, according to our
experiment results, Greedy is significantly superior to both HST-
Greedy and HST-Reassignment with more than 50,000 tests on re-
al and synthetic datasets. Therefore, these contradictions raise the
question that whether the worst-case analysis is appropriate for the
OMBM problem in practice.

3. Are implementations and experimental evaluation unifor-
m? To avoid that different implementation details result in incon-
sistent performance evaluation of the algorithms, it is necessary to
provide a fair experimental comparison for the existing algorithms
and report their real contributions. For instance, comparing HST-
Greedy and HST-Reassignment requires uniform implementation
of the hierarchically separated tree (HST) structure [12]. In addi-
tion, since there is no previous experimental study for the OMBM
problem, the selection of datasets and the experimental design are
also important.

1.2 Contributions
1. Good performance of Greedy: We explore the performance

of Greedy with more than 50,000 tests on real and synthetic dataset-
s following four different representative location distributions. Sur-
prisingly, we observe that the simple and efficient greedy algorith-
m, which has been considered as the worst in theoretical analysis, is
actually more effective than other existing algorithms in almost all
the tests. Furthermore, Greedy not only has outstanding scalability

but also has comparative ratio as low as 5, and usually lower than 2,
in all different cases. In particular, the strategy adopted by Greedy
is equivalent to conducting a nearest neighbour query for each us-
er, which has been widely studied and can be easily extended into
many applications in the database community. Thus, the outstand-
ing performance of Greedy also provides hints to other applications
in the database community.

2. Worst-case vs. Average-case analysis: Inspired by the big
gap between the experimental results and the existing theoretical
analysis of Greedy, we discover that the worst case of Greedy rarely
occurs in practice. Thus, we believe that the worst-case analysis
may be not appropriate for the OMBM problem in real applications
and the average-case analysis should be more suitable. We intro-
duce the average-case analysis model of online algorithms, called
the random order model, and revisit that the competitive ratio of
the worst case of Greedy in the worst-case analysis is actually just
a constant, 3.195, in the average-case analysis in Section 4.

3. Uniform implementations and experiments: We present
efficient implementation for the four representative algorithms, in-
cluding Greedy, Permutation, HST-Greedy, and HST-Reassignment.
These implementations adopt common basic operations (e.g. the
construction of the HST structure) and offer a base for compari-
son with future work in this area. Moreover, the source code and
datasets used in the experiments are available in [4]. In addition
to uniform implementations, we also study on a large real dataset,
which consists of real-time taxi-calling data in more than half year,
and five synthetic datasets, where locations of service providers and
users are randomly generated following different commonly used
distributions (i.e. normal distribution, uniform distribution, power
law distribution and exponential distribution) to eliminate the bias
of a particular dataset towards the algorithms.

4. Potential open questions: Although we still cannot prove
that the competitive ratio of Greedy in the average-case analysis is a
constant, the aforementioned extensive random experiment results
motivate us to propose the following hypothesis as a open question:
the average-case competitive ratio under the random order model
of Greedy for the OMBM problem should be constant, which can
provide a theoretical explanation for the outstanding performance
of Greedy in practice if the hypothesis holds.

2. PRELIMINARIES

2.1 Problem Definition
We formally define the online minimum bipartite matching in

real time spatial data (OMBM) problem as follows.

DEFINITION 1 (OMBM PROBLEM). Given a set of service
providers W with specific locations, a set of users T whose s-
patial information is unknown before they appear, and a metric
distance function dis(., .) in 2D space, the OMBM problem is to
find a matching M to minimize the total distance Cost(M) =∑
t∈T,w∈W dis(t, w) between the matched pairs such that the fol-

lowing constraints are satisfied:

• Real-time constraint: once a user appears, a service provider
must be immediately allocated to her/him before the next us-
er appears.
• Invariable constraint: once a service provider is allocated to

a user, the allocation cannot be revoked.
• Cardinality constraint: k = |M | = min{|T |, |W |}, where
|.| is the size of a given set.

The OMBM problem is illustrated by the following example.

Figure 1: Locations of service providers (taxis) and users (tasks)

Table 1: Arrival order of four taxi-calling tasks
Arrival Order 1st 2nd 3rd 4th

1st Order t1 t2 t3 t4
2nd Order t3 t4 t2 t1

EXAMPLE 1. Suppose a taxi dispatching platform has four ser-
vice providers (taxis) (w1−w4) and four taxi-calling task (t1− t4)
from four users. The locations of the taxis and users (revealed as
they arrive) are labeled in a 2D space (X,Y) in Figure 1. The
platform wants to minimize the overall travel distance cost, e.g.
Euclidean distance, for the assigned taxis to pick up the users. The
taxis are assumed to be relatively static in a time interval (e.g. 10
minutes) and their locations are known in advance, and the users
dynamically appear.

Table 1 shows two different arrival orders of the users. In the
offline scenario, where the locations of users are known, the offline
optimal matching is (t1, w1), (t2, w2),(t3, w4), (t4, w3) with cost
2
√

2 +
√

5 ≈ 5.06. Notice that a taxi should be immediately allo-
cated to each new-arriving user in the online scenarios. The simple
greedy strategy, Greedy, is to allocate each new-arriving user to its
currently nearest unmatched taxi. For the “2nd order”, the match-
ing returned by Greedy is the same as the offline optimal matching.
However, for the “1st order”, the cost of Greedy is 6.43, which is
worse than that of the offline optimal matching. It indicates that the
arrival orders of users usually affect the effectiveness of an online
algorithm.

2.2 Competitive Analysis Models
In this subsection, we formally introduce the evaluation standard

competitive ratio (CR) for online algorithms, which is the ratio of
the result of an online algorithm to the optimal result, which can
be obtained in the offline scenario. Since the arrival orders of ob-
jects significantly affect the performance of an online algorithm,
different evaluation approaches of competitive ratios take different
assumptions on the online arrival orders of the dynamically arrived
objects. In the following, we introduce two representative compet-
itive ratios under two kinds of online arrival order assumptions, the
adversarial model (the worst-case analysis) and the random order
model (the average-case analysis), for the OMBM problem.

DEFINITION 2 (CR IN THE ADVERSARIAL MODEL). The com-
petitive ratio of an online algorithm in the adversarial model for the
OMBM problem is as follows:

CRA = max∀G(T,W) and ∀σ of T
Cost(M)

Cost(OPT)
(1)

where G(T,W) is an arbitrary metric bipartite graph of service
providers and users, where the weight of an edge in the G(T,W)
corresponds to the distance between the two objects in T and W
respectively, σ is an arbitrary arrival order of the users in the T ,
Cost(M) is the total distance cost generated by the online algo-
rithm, and Cost(OPT) is the offline optimal total distance cost.

Note that the aforementioned Cost(OPT) can be calculated by
classical offline MBM algorithms, e.g. the successive shortest path
algorithm (SSPA) [6] or the Hungarian algorithm [10] given full in-
formation of service providers and users in advance. In a word, the
competitive ratio in the adversarial model is the worst-case analysis
and always considers the worst-case ratio over all possible inputs
and all possible arrival orders.

DEFINITION 3 (CR IN THE RANDOM ORDER MODEL). The
competitive ratio of an online algorithm in the random order model
for the OMBM problem is as follows:

CRRO = max∀G(T,W)
E[Cost(M)]

Cost(OPT)
(2)

whereG(T,W) is the same as that in the adversarial model, E[Cost(M)]
is the linear expectation of the total distance cost of the online algo-
rithm over all possible arrival orders of T in the specificG(T,W),
and Cost(OPT) is the offline optimal total distance cost.

The random order model adopts the average-case analysis and
measures the worst average performance of an online algorithm. In
other words, among all the average ratios of an online algorithm
over all possible metric bipartite graphs, where each average ratio
is the expected performance of the algorithm over all possible ar-
rival orders for a specific graph instance, the random order model
focuses on the worst average one. On the contrary, the competi-
tive ratio under the adversarial model is to bound the worst-case
performance of an online algorithm over all possible cases, i.e. ar-
rival orders. All existing studies for the OMBM problem focus on
the adversarial model but ignore the average performance of the
algorithms. However, as discussed later, we discover that the com-
petitive ratio analysis under the random order model may be more
suitable for evaluating the performance of the online algorithms for
the OMBM problem in practice because the special worst cases,
which will be introduced in Section 4, rarely occur in real applica-
tions.

3. ONLINE ALGORITHMS
In this section, we describe the main ideas of each online al-

gorithm compared by our experimental study. We categorize the
four online algorithms into two groups, deterministic algorithms
and randomized algorithms, respectively.

3.1 Deterministic Algorithms

3.1.1 Greedy Algorithm
We first introduce the online greedy algorithm, Greedy, which

was presented by [16]. The main idea of Greedy is to match each
new arrival user to its currently nearest unmatched service provider.
For example, based on our running example in Example 1, the re-
sult of Greedy is (t1, w1), (t2, w2), (t3, w4), (t4, w3) if users ap-
pear following the “1st order”. Although Greedy is very efficient,
its competitive ratio in the adversarial model is proven to be 2k−1,
where k = |M | = min{|T |, |W |} is the maximum cardinality of
the matching. Hence, Greedy is always considered as the worst so-
lution for the OMBM problem. The worst case of Greedy is further
studied in Section 4.

Algorithm 1: 2-HST Construction Algorithm
Input: metric {V, d}
Output: an HST metric {V ′, dT }

1 Choose a random permutation π of V ;
2 Choose β in [1,2] randomly from the distribution
p(x) = 1

x ln 2
;

3 ∆← maxu,v∈V d(u, v);
4 δ ← dlog2 ∆e;
5 Dδ ← {V };
6 i← δ − 1;
7 while Di+1 is not a singleton cluster do
8 βi ← 2i−1β;
9 for l← 1, 2...k do

10 foreach clusters S in Di+1 do
11 Create a new cluster consisting of all unassigned

vertices in S closer than βi to π(l);
12 Mark the vertices in the new cluster assigned;
13 Join the new cluster with S by edge of length

2i+1;

14 i← i− 1;

15 return an HST

3.1.2 Permutation Algorithm
Let Ti denote the set of users arriving before the i-th user ti ar-

rives. The Permutation algorithm mainly includes the following
four steps. (1) After ti appears, Permutation conducts the classi-
cal offline minimum weighted matching algorithm, e.g. Hungari-
an algorithm, on the bipartite graph G(Ti,W) and gets a minimal
weighted partial matching [16], denoted by Mi. (2) If the service
provider wi matched to ti in Mi is unmatched in the online match-
ing result, the pair (ti, wi) is matched in the final online matching
result. (3) Otherwise, it is guaranteed that there exists exactly one
service provider wj that does not appear in Mi−1, and Permuta-
tion matches wj to ti, namely adding (ti, wj) to the final result.
The algorithm is named as Permutation due to its aforementioned
permutation property. Since the upper bound on the cost of the per-
mutation in this algorithm can be proven to be 2i − 1 when the
i-th user appears, the competitive ratio of Permutation is 2k − 1
with i = k = |M | = min{|T |, |W |}. To further illustrate the
Permutation algorithm, we go through the following example.

EXAMPLE 2. Taking our running example in Example 1, when
the first user t1 appears, Permutation gets its minimal weight par-
tial matching (t1, w2). Then when t2 arrives, the minimal weight-
ed partial matching is (t1, w1), (t2, w2). However, t1 is already
matched to w2 which cannot be revoked, and thus t2 is matched to
the currently unmatched service provider w1 in M2. Similarly, t3
and t4 are allocated tow4 andw3, respectively. The final matching
result is (t1, w2), (t2, w1),(t3, w4), (t4, w3) with cost 6.81.

3.2 Randomized Algorithms
In this subsection, we mainly introduce two randomized online

algorithms, HST-Greedy and HST-Reassignment, for the OMBM
problem. Since both algorithms utilize a structure, called hierar-
chically separated tree (HST), we first introduce the HST structure
and then review the two algorithms.

3.2.1 Hierarchically Separated Tree (HST)
Since the HST structure can only be applied to a metric space,

we first introduce the concept of metric space. A metric space
is denoted as a pair (V, d) where V is a set of objects and d :

V × V → [0, ∞) is a metric, satisfying the following three ax-
ioms: (1) d(u, v) = 0 if and only if u = v (u, v ∈ V), (2)
d(u, v) = d(v, u), and (3) d(u, v) + d(v, w) ≤ d(u,w), i.e. the
triangle inequality. For example, a 2D space R2 with Euclidean
distance d is a metric space. An arbitrary given metric space can
be projected to a hierarchically separated tree (HST) metric space,
which not only has several sound properties but also provides theo-
retical bound on the distortion between the two metric spaces. The
HST is defined as follows.
α-Hierarchically Separated Tree (α-HST). Given a metric (V, d),

we say the HST metric (V ′, dT) approximates the original metric
in two ways. First, it needs to dominate the original metric (V, d).
Here “dominate” means that for all u,v ∈ V , dT (u, v) > d(u, v).
Also, it guarantees that E[dT (u, v)] ≤ O(α log |V |)d(u, v). Let
dT (., .) be the length of the unique shortest path between two ver-
tices. In other words, given two arbitrary vertices in the HST, the
distance between them, dT (u, v), is the sum of the distances along
the shortest paths from u, v to their lowest common ancestor in
the HST. Then, the HST has the following four properties on the
distance metric[12]:

• It is a rooted tree. The root vertex contains the whole set
V , and each leaf vertex corresponds to an unique object in
the set V . Each of the other vertices contains a subset of
V , which is the union of the sets of objects contained in its
children.

• For an arbitrary vertex s ∈ V ′, if c1(s) and c2(s) are the
children of s in the HST, dT (s, c1(s)) = dT (s, c2(s)).

• For an arbitrary vertex s ∈ V ′, let p(s) be the parent of s and
c(s) be a child of s, then dT (s, p(s)) = αdT (s, c(s)).

• All the leaf vertices are at the same level of the HST. For
an arbitrary vertex s ∈ V ′, let λ1(s) and λ2(s) be the leaf
vertices that are the descendants of s, then dT (s, λ1(s)) =
dT (s, λ2(s)).

Note that theα-HST provides theoretical guarantee regarding the
expected value of the distance E[dT (u, v)] for two arbitrary given
vertices in the HST. The bound is for the expected value because
the HST construction algorithm is a randomized algorithm, more
details of which will be introduced later. Furthermore, the param-
eter α of an α-HST is the unit distance and is usually set as 2 in
practice. In the remaining parts of this paper, we set α = 2 and use
2-HST as an example to illustrate the concept of HST.

In general, HST is usually used as a tool to approximate some
metrics. e.g. Euclidean metric. When we transform the problem
from the original metric into a tree metric, we can utilize the sound
properties of the tree metric, such as recursiveness and symmetry.
Thus, efficient online algorithms can be designed and implement-
ed. In the following, we will introduce the 2-HST construction
algorithm.

The main idea of the 2-HST construction algorithm is to first
randomly generate a global permutation of all the given objects as
an order, and then performs a hierarchical decomposition following
the randomly generated order level by level. Finally, the hierarchi-
cal decomposition of the original set of objects results in a rooted
tree as follows. Each vertex in the tree contains a decomposed set of
objects while the root contains the whole set V , and the leaves are
singletons. Particularly, the distance between a pair of parent-child
vertices in the (i+1)-th and the i-th levels respectively is exactly
2(i+1).

The procedure of the 2-HST construction process is illustrated
in Algorithm 1. In lines 1-2, the algorithm randomly generates a

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

Figure 2: The Open Balls in Each Decomposition Step.

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

Figure 3: A 2-HST Construction Process based on The Open Balls.

global permutation order for all the objects and a random param-
eter β. In lines 3-6, ∆ is set as the diameter of all the objects in
the original metric space, the height of the HST is δ = dlog2 ∆e,
and the root vertex Dδ in the 2-HST contains the whole set of ob-
jects. Lines 7-14 perform a top-down hierarchical decomposition.
For the (i+1)-th level in the 2-HST, as long as a vertex in this level
contains more than one object, i.e. a non-singleton vertex, the al-
gorithm iteratively processes each object according to the random
global permutation order and finds the objects locating in the open
ball centered at the location of the currently iterated object with the
radius of βi. Such objects are grouped to generate a new vertex in
the i-th level, whose parent is the original vertex in the (i+1)-th lev-
el. More specifically, the object located in the open ball of radius
βi centered at the location of object u is defined as a set of objects
such that b(u, βi) = {v ∈ V |d(u, v) < βi}. The whole algorithm
terminates until all vertices are singleton.

As mentioned above, as the HST construction algorithm (Algo-
rithm 1) is a randomized algorithm, it can only provide theoretical
guarantee for E[dT (u, v)]. Specifically, there are two reasons. On
one hand, the HST construction algorithm first generates a random
permutation of all the objects (all service providers in our paper) for
the remaining partitions. Even though for the same set of objects,
the HST construction algorithm may build different HST structures
due to different random permutations of the objects. On the other
hand, for the partition in the i-th level in a 2-HST, the radius of the
open ball is βi = 2i−1β, where β is a global parameter generated
randomly from the interval [1, 2] with distribution p(x) = 1

x ln 2
.

Since both the permutation order of all the objects and the param-
eter to calculate the radius of open balls are generated randomly,
HST can only provide theoretical guarantee for the expected value
of dT (u, v). We further illustrate the HST construction algorithm
by the following example.

EXAMPLE 3. Back to our running example in Example 1, V
is the set of four service providers (taxis) in the 2D metric space
shown in Figure 2a. Suppose we choose β = 1.2 and the global
permutation is< w1, w2, w3, w4 >. ∆ = maxwi,wj∈W d(wi, wj) =√

29 and δ = dlog
√

29e = 4. The root vertex in the 2-HST con-
tains four taxis, which is shown in Figure 3a. Then, the algorithm
partitions the root vertex into disjoint subsets of objects in level 3,
where β3 = 23−1 × 1.2 = 4.8. Based on the global permutation,
the algorithm first finds the open ball with radius 4.8 and the center
of w1, which is shown as the red circle B1 in Figure 2b. Similarly,
the open balls of w1, w2, w3 are empty, empty and {w4}, respec-
tively. Thus, we only show the open ball of w4 as the green circle
B2 in Figure 2b. With open balls B1 = b(t1, β3) = {w1, w2, w3}
and B2 = b(t4, β3) = {w4}, the HST decomposes the root vertex
into two vertices in the 3rd level in the HST, which are shown in
Figure 3b. Similarly, for the 2nd level, the radius of the open balls
is β2 = 2.4, and there are three open balls, B3 = w1 (the blue
circle), B4 = w2, w3 (the yellow circle), and B3 = w4 (the purple
circle), in Figure 2c. And the corresponding decomposition in the
2nd level of the 2-HST is shown in Figure 3c. In the 1st level, the
radius of the open balls is β1 = 1.2, and there are four open balls,
each of which is singleton as shown in Figure 2d. And the corre-
sponding decomposition in the 1st level of the 2-HST is shown in
Figure 3d. The algorithm terminates in level 0. As HST requires
that every two vertices are at least 1 unit away and the vertices in
level 0 have radius at most 1.

3.2.2 HST-Greedy Algorithm
HST-Greedy [22] first builds an α-HST structure for the service

providers, where all the service providers are projected onto a tree
metric. HST-Greedy includes the following two main steps to pro-
cess each new arrival user ti: (1) HST-Greedy first finds the service

Table 2: Four evaluated algorithms of the OMBM problem in this paper

Algorithms Input Data Time Complexity per Randomization Data Competitive Ratio
Each Arrival Vertex Structure (Adversary Model)

Greedy [16] Metric space data O(k) Deterministic - O(2k − 1)
Permutation [16] Metric space data O(k3) Deterministic - O(2k − 1)
HST-Greedy [22] Metric space data O(k) Randomized HST O(log3k)

HST-Reassignment [9] Metric space data O(k2) Randomized HST O(log2k)

provider vi currently nearest to ti in the original 2D space. (2)
HST-Greedy then chooses an unmatched service provider wi near-
est to vi on the tree metric. If there are multiple service providers
that have the same distance to vi on the tree metric, the algorithm
randomly chooses one as wi. If vi is also an unmatched service
provider, wi is replaced by vi to be matched to ti. Otherwise, wi
is directly matched to ti. Thus, the pair (ti, wi) is added to the fi-
nal online matching. With the α-HST structure, the total cost of
HST-Greedy on the tree metric is O(log k) when α > 2 ln k + 1.
In addition, α-HST can also guarantee that the expectation of the
distance of two vertices on the tree is no greater than α log k times
the original distance. Therefore, the final competitive ratio of HST-
Greedy is O(log3 k).

3.2.3 HST-Reassignment Algorithm
Different from HST-Greedy that adopts anα-HST structure (α >

2 ln k+1), HST-Reassignment [9] only uses 2-HST structure, name-
ly α = 2. The main idea of HST-Reassignment is similar to HST-
Greedy. When a new user t appears, HST-Reassignment also first
finds the service provider vi currently nearest to ti in the original
2D space. The main difference between HST-Greedy and HST-
Reassignment is their second step. HST-Greedy directly finds the
nearest unmatched service provider wi for vi, but it is likely that
HST-Greedy is trapped into the local optimal solution such that
the total distance cost of the final matching is very expensive. To
avoid the local optimal traps, HST-Reassignment designs a reas-
signment approach, whose basic idea is to iteratively change wi
from the previously matched pairs until it finds an unmatched ser-
vice provider who is a sight farther unmatched service provider of
vi on the tree metric. In the competitive analysis, a Restricted Re-
assignment Model is proposed that guarantees HST-Reassignment
to have competitive ratio of O(log2 k) in the adversarial model.
Note that even though HST-Reassignment obtains a better compet-
itive ratio, its effectiveness is worse than that of HST-Greedy and
Greedy in practice according to our experiments. More experimen-
tal results will be discussed in Section 5.

3.2.4 Summary
Table 2 summarizes all the aforementioned algorithms that we

review and evaluate in this paper.

4. GREEDY REVISITED
[16] indicates that the worst case of Greedy under the adversar-

ial model is when all the vertices lie on a line. In this section, we
inspect the properties of such worst case of the adversarial model
under the random order model. Particularly, we show that the com-
petitive ratio of this worst case under the random order model is
3.195, which is a constant. We next review this “bad” example and
analyze that the worst case w.r.t. Greedy in this example only ap-
pears with very low probability of 1

k!
, where k = min{|T |, |W |}.

A “Bad” Example [14, 16]. Consider k service providers, w1−
wk, located at points {−ε, 2, 22, · · · , 2k−1} on a line respectively,

Figure 4: Offline OPT v.s. Worst-case of Greedy

where all the coordinates are integers and ε is an arbitrarily smal-
l positive number. Moreover, k users, t1 − tn, appear at points
{1, 2, 22, 23, · · · , 2k−1} on the same line respectively. Figure 4
shows the “bad” example instance, which consists of four service
providers and four users. Figure 4(a) shows the locations of the
service providers at points {−ε, 2, 4, 8} and those of the users at
points {1, 2, 4, 8} on the line, respectively. The matching result of
offline OPT is shown in Figure 4(b), and its cost, the total distance,
is 1 + ε + 0 + 0 + 0 = 1 + ε. As for Greedy, the worst-case ar-
rival order of the users in the bad example is < t1, t2, · · · , tn >,
which results in the matching with cost 2k − 1. Figure 4(c) shows
the matching result of Greedy for the worst-case arrival order <
t1, t2, t3, t4 >, which has cost of 1 + 2 + 4 + 8 = 16.

LEMMA 1. Given the aforementioned “bad” example, where k
service providers and k users lie on a line with integer coordinates,
the worst-case matching result of Greedy only appears with proba-
bility 1

k!
.

PROOF. In the “bad” example, each user ti (i ≥ 2) has a nearest
service provider at the same location with it except t1. If such near-
est service provider for ti (i ≥ 2) is available (unmatched when ti
arrives), the cost between such pair is zero. Hence, for an arbitrary
arrival order of users, the cost of its corresponding matching is low-
er than that of the worst-case matching as long as at least one user
ti (i ≥ 2) arrives before t1 arrives and thus the corresponding zero-
cost service provider of ti (i ≥ 2) will not be occupied before ti
arrives. In other words, only the arrival order of< t1, t2, · · · , tn >
results in the worst matching cost. Therefore, the worst case only
appears with the probability of 1

k!
.

THEOREM 1. Given the aforementioned “bad” example with
k service providers and k users lying on a line with integer coor-
dinates, the competitive ratio of Greedy under the random order
model is 3.195.

PROOF. According to the definition of the “bad” example, Greedy
always assigns the nearest service provider available to a new-arrival
user. Thus, for each user ti (i ∈ {1, · · · , k}), its cost is only one
of the following two possible values,

Cost(ti) =

{
0 with probability 1− 1

i!

2i−1 with probability 1
i!

(3)

Furthermore, for each user ti, its cost is 2i−1 if and only if all
the users tj(j < i) appear before ti arrive. Otherwise, its cost is
zero. Therefore, the expected cost of each user ti is

E[Cost(ti)] =
2i−1

i!
(4)

Since there are k users, the expectation of the total distance is

E[Cost(M)] =

k∑
i=1

2i−1

i!
(5)

Based on Equation (5), we prove that the expectation of the total
distance is 3.195 as follows.

Since the series
∑∞
i=1

2i−1

i!
must be an upper bound of the ex-

pectation of the total distance, we analyze the bound of this se-
ries. We define the remainder term of the series

∑∞
i=1

2i−1

i!
as

RN =
∑∞
i≤N+1

2i−1

i!
. Based on the inequation n! > (n

e
)n (n =

1, 2, · · ·), when i ≤ N + 1

2i−1

i!
< 2i−1

(e
i

)k
=

1

i

(
2e

i

)i−1

=
1

N + 1

(
2e

N + 1

)i−1

=
1

2e

(
2e

N + 1

)N+1 (2e

N + 1

)i−(N+1)

(6)

Thus, the remainder term RN can be bounded

RN <
1

2e

(
2e

N + 1

)N+1 ∞∑
i=N+1

(
2e

N + 1

)i−(N+1)

=
1

2e

(
2e

N + 1

)N+1 ∞∑
l=0

(
2e

N + 1

)l
(7)

when N ≤ 4, 2e
N+1

< 1. Hence, we have the upper bound of the

remainder term RN , RN < 1
2e

(
2e
N+1

)N+1
1

1− 2e
N+1

. Let N = 12,

we have

R12 =
1

2e

(
2e

13

)13
1

1− 2e
13

≤ 13

15.126e

(
2e

13

)
13 < 10−5 (8)

Since we know
∑11
i=1

2i−1

i!
< 3.19453 and R12 < 10−5, the

series
∑∞
i=1

2i−1

i!
< 3.195. Therefore, the expectation of the total

distance
∑n
i=1

2i−1

i!
< 3.195 as well.

To sum up, although the worst-case competitive ratio of Greedy
is exponential, the worst matching cost appears with an extremely
low probability, 1

k!
. In particular, for the “bad” example, we prove

that the competitive ratio of Greedy under the random order model
is 3.195. In other words, the average performance of Greedy is
quite good in the “bad” example, which also motivates us to guess
that the competitive ratio of Greedy on the OMBM problem under
the random order model is a constant.

5. EXPERIMENTAL STUDY
In this section, we study the performance of four representative

algorithms for the OMBM problem in practice. Particularly, we
aim to provide uniform implementations for the algorithms and
compare the real-world performance of the algorithms in a com-
prehensive way. Also, as the extensive experiment results indicate,
we verify that the average performance of Greedy is not bad and it
is very likely to have constant competitive ratio under the random
order model.

Table 3: Synthetic dataset

Factor Setting
µLW (Mean of locations of service providers 50, 75, 100, 125, 150following normal distribution)

σLW (Variance of locations of service providers) 5, 10, 15, 20, 25following normal distribution)
αLW (Shape of locations of service providers) 2, 2.5, 3, 3.5, 4following power-law distribution)
λLW (Scale of locations of service providers) 0.5, 0.75, 1, 1.25, 1.5following exponential distribution)

Scalability |T | = |W | = 10K - 100K

5.1 Experiment Setup
Datasets. We first introduce the real and synthetic datasets as

follows.
Real Dataset. We use the taxi-calling data on the ShenZhou real-

time taxi-calling platform [3] in four weeks in May 2015 in Beijing
as the real dataset. Particularly, there were on average 15082 taxi-
calling requests, which corresponds to a set of users, and 1263 pri-
vate taxies, which corresponds to a set of service providers, each
day. Notice that once a taxi was assigned to a task, both the tax-
i and the task would disappear from the platform and thus when
the taxi finished its task and re-appeared on the platform, it can be
taken as a new taxi instance/worker. Since each taxi serviced 10-
15 tasks each day, there were on average 15364 workers each day
in the dataset, which indicates that there were more workers than
tasks. In Figure 5, we plot the average number of taxi-calling tasks
in each five-minute time interval in a day. It shows that the tasks ap-
pear dynamically, and the numbers of tasks are particularly large in
rushing hours around 8AM, 12PM, 6PM, and 10PM, respectively,
indicating that it is necessary to apply online assignment algorithm-
s in order to respond to the task requests in real-time. In addition,
we randomly choose one day’s data and present the location distri-
bution of the task requests (users) and taxi instance/worker (service
providers) in Figure 6. We observe that most tasks (blue markers)
and workers (yellow markers) appeared in the central area of Bei-
jing and only a small part of them appeared in the suburban district.

Synthetic Datasets. We generate 5000 users and 5000 service
providers on a 200×200 2D grid, and randomly generate the loca-
tions of users and service providers following the commonly used
Uniform and Normal distributions [13], and also Power Law and
Exponential distributions. The similar approach of randomly gen-
erating test instances was used in previous artificial intelligence re-
search [33]. Notice that Power Law and Exponential distributions
are used since recent studies [21, 15] show that the movement of
people and taxies usually follow these two distributions in cities.
The statistics and configuration of synthetic data are illustrated in
TABLE 3, where we mark our default settings in bold font. Notice
that for the scalability test, we generate users and service providers
on a 500×500 2D grid so that the 100K users and service providers
will not overlap too much in location.

Time
12AM 4AM 8AM 12PM 4PM 8PM 12AM

N
um

be
r

of
 A

rr
iv

al
 T

as
ks

0

20

40

60

80

100

120

140

160

180

Figure 5: Average number of tasks of taxi-calling per day

Figure 6: Location distribution of the users and service providers
at the ShenZhou taxi-calling platform on one day in Beijing

Compared Algorithms and Experiment Environments. We
study the performance of the algorithms in 2D space. Particular-
ly, we compare the state-of-the-art online algorithms in 2D space,
Greedy, Permutation, HST-Greedy and HST-Reassignment. We s-
tudy the effect of varying parameters on the performance of the
algorithms in terms of total distance, running time and memory
cost. In particular, since the Permutation algorithm is very ineffi-
cient, we separately compare Permutation and Greedy in a small
synthetic dataset. In each experiment, we repeatedly test 1000 dif-
ferent online arrival orders of users and report the average results.
The algorithms are implemented in Visual C++ 2010, and the ex-
periments were performed on a machine with Intel(R) Core(TM) i5
2.40GHz CPU and 4GB main memory.

5.2 Experiment Results
Effect of Locations of users following Normal distribution.

Figure 7 shows the results when the locations of users follow Nor-
mal distribution and the locations of service providers follow three
different distributions, respectively.

For total distance results, we can observe that Greedy is always
better than HST-Greedy and HST-Reassignment and is nearly as
good as the offline optimal algorithm. Particularly, Greedy is al-
most 2 times better than HST-Greedy and HST-Reassignment when
the locations of service providers also follow the Normal distri-
bution (Figures 7a and 7b), where the users and service providers
are more concentrated and overlap more in locations. Notice that
though the users and service providers are less concentrated as the
standard deviation become larger (Figure 7b), Greedy is still much
better. HST-Greedy is the runner-up. Also, the total distance of all
the algorithms increases as σLW increases in overall, which is be-
cause the average distance between a user and a service provider
becomes larger as the locations of the service providers become
less concentrated. However, the gap between the algorithms be-
comes narrower when the locations of service providers follow the
Power Law and Exponential distributions (Figures 7c and 7d). The
reason is that users and service providers have very small overlap
in locations and a user is relatively far away from a service provider
in these two cases, and thus the total distance generated by an ar-
bitrary algorithm is mainly dominated by the distance between the
set of users and the set of service providers.

The results of time and memory consumptions are presented in
the last two rows in Figure 7. We can observe that Greedy is always
more efficient in both time and space than the other two online
algorithms since it only takes O(|W |) time to process each user
and does not need any extra space for storage of HST as the other
two do. Since HST-Reassignment takes O(|W |2) time to process
each user, it is the least inefficient algorithm among the three.

Effect of Locations of users following Exponential distribu-
tion. Figure 8 shows the results when the locations of users follow
Exponential distribution and the locations of service providers fol-
low three different distributions, respectively.

For total distance, we can again see that Greedy performs the
best while HST-Greedy is better than HST-Reassignment for most
of the time and Greedy is again nearly as good as the offline opti-
mal algorithm. We can observe that all the algorithms have similar
performance when the locations of service providers follow Nor-
mal distribution (Figures 8a and 8b). The reason is similar to that
of Figure 7c and 7d where the set of users and the set of service
providers do not overlap too much and are far away from each oth-
er and thus the total distance generated by an arbitrary algorithm is
mainly dominated by the distance between the two sets. Howev-
er, when users and service providers are mixed and overlapped in
a concentrated area, i.e. locations of both sets follow similar dis-
tributions, Greedy performs much better than the two HST-based
online algorithms (Figure 8c and 8d). Since in real applications,
users and service providers usually overlap in locations and cannot
be separated into two disjoint sets, the results indicate that Greedy
can outperform other online algorithms. As for time and memory
results, which are shown in the last two rows in Figure 8, we can
again observe that Greedy is the most efficient in both time and
space while HST-Reassignment is the most inefficient.

Effect of Locations of users following Uniform distribution.
The total distance results when the locations of users follow U-
niform distribution and the locations of service providers follow
three different distributions, respectively, are presented in Figure 9.
Since the time and space results are similar to the results in Figures
7 and 8, we omit them here for brevity.

We can again observe that Greedy performs the best in overall.
Particularly, when the locations of service providers follow Normal
distribution and we vary the mean of the distribution (Figure 9a),
we can observe that the total distance of all the algorithms is quite
low when the mean is at the center of the grid, i.e. point (100, 100),
but is much larger when the mean is far away from the center of the
grid. The reason is that the average distance between a user and a
service provider becomes lower when the mean of Normal distri-
bution is at the center of the grid and thus the service providers are
concentrated around the center as the users are uniformly distribut-
ed across the grid. And when the mean of the Normal distribution
is far away from the center of the grid, users are more far away from
the service providers on average and thus the total distance is large.
When the standard deviation of Normal distribution increases, the
total distance decreases for all the algorithms (Figure 9b) because
the locations of service providers are less concentrated.

Effect of Locations of users following Power-law distribution.
Figure 10 shows the results when the locations of users follow
Power-law distribution and the locations of service providers fol-
low three different distributions, respectively. Again, we omit the
time and space results as they are similar to previous results.

Again, we can see that Greedy generates lower total distance
than the other two online algorithms in general. Also, similar to
the previous results, all the algorithms have similar performance
when the locations of users and service providers are distributed
differently as Figures 10a and 10b show. However, the advantage
of Greedy is more obvious when the locations of users and service
providers are overlapped as Figures 10c and 10d show.

Scalability. We study the scalability of the algorithms in the
first three columns of Figure 11, where the size of T /W is varied
and the locations of users and service providers are generated fol-
lowing three different distributions, respectively. Notice that in our
experiments, we terminate an algorithm if its running time is over

µ
W
L

50

75

10
0

12
5

15
0

C
os

t

×104

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

OPT
Greedy
HST-Greedy
HST-Reassignment

(a) Cost of varied Normal µLW

σ
W
L

5 10 15 20 25

C
os

t

×104

0

0.5

1

1.5

2

2.5

3

3.5

4

OPT
Greedy
HST-Greedy
HST-Reassignment

(b) Cost of varied Normal σLW

α
W
L

2

2.
5 3

3.
5 4

C
os

t

×105

7.03

7.04

7.05

7.06

7.07

7.08

7.09

7.1

OPT
Greedy
HST-Greedy
HST-Reassignment

(c) Cost of varied Power αLW

λ
W
L

0.
5

0.
75 1

1.
25 1.
5

C
os

t

×105

6.96

6.98

7

7.02

7.04

7.06

7.08

7.1

OPT
Greedy
HST-Greedy
HST-Reassignment

(d) Cost of varied Exp λLW

µ
W
L

50

75

10
0

12
5

15
0

T
im

e
(s

ec
s)

0

0.5

1

1.5

2

2.5

3

3.5

Greedy
HST-Greedy
HST-Reassignment

(e) Time of varied Normal µLW

σ
W
L

5 10 15 20 25

T
im

e
(s

ec
s)

0

0.5

1

1.5

2

2.5

3

3.5

Greedy
HST-Greedy
HST-Reassignment

(f) Time of varied Normal σLW

α
W
L

2

2.
5 3

3.
5 4

T
im

e
(s

ec
s)

0

2

4

6

8

10

12

Greedy
HST-Greedy
HST-Reassignment

(g) Time of varied Power αLW

λ
W
L

0.
5

0.
75 1

1.
25 1.
5

T
im

e
(s

ec
s)

0

2

4

6

8

10

12

Greedy
HST-Greedy
HST-Reassignment

(h) Time of varied Exp λLW

µ
W
L

50

75

10
0

12
5

15
0

M
em

or
y

(M
B

)

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Greedy
HST-Greedy
HST-Reassignment

(i) Memory of varied NormalµLW

σ
W
L

5 10 15 20 25

M
em

or
y

(M
B

)

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Greedy
HST-Greedy
HST-Reassignment

(j) Memory of varied Normal σLW

α
W
L

2

2.
5 3

3.
5 4

M
em

or
y

(M
B

)

2

3

4

5

6

7

8

9

Greedy
HST-Greedy
HST-Reassignment

(k) Memory of varied Power αLW

λ
W
L

0.
5

0.
75 1

1.
25 1.
5

M
em

or
y

(M
B

)

2

3

4

5

6

7

8

9

Greedy
HST-Greedy
HST-Reassignment

(l) Memory of varied Exp λLW

Figure 7: Results that the locations of service providers in W follow Normal, Power-law, and Exponential distributions while the locations
of users in T follow Normal distribution.

Table 4: Comparison of Permutation, Greedy, HST-Greedy and OPT

Cost Time(seconds) Memory(MB)
T (Normal) T (Uniform) T (Exp.) T (Normal) T (Uniform) T (Exp.) T (Normal) T (Uniform) T (Exp.)
W (Normal) W (Uniform) W (Power) W (Normal) W (Uniform) W (Power) W (Normal) W (Uniform) W (Power)

OPT 2066.38 6222.60 903.84 0.25 0.22 1.89 6.79 6.80 6.79
Greedy 3144.86 9607.34 936.51 0.03 0.03 0.03 2.60 2.61 2.61

Permutation 3846.52 13104.90 1041.31 194.18 203.81 692.77 7.043 7.047 7.03
HST-Greedy 5161.48 15883.1 1118.43 0.051 0.05 0.06 2.73 2.83 2.71

HST-Reassignment 7906.96 21120.00 1218.39 0.17 0.22 0.15 6.76 6.76 6.71

1800 seconds, and thus the results of the offline optimal algorith-
m are only available when |T |(|W |) = 10K and 20K. For total
distance, we can observe that Greedy is again the best among all
the online algorithms and is quite close to the offline optimal re-
sults when |T |(|W) = 10K and 20K. As for running time, we can
see that Greedy is the most efficient and HST-Greedy is nearly as
good as Greedy as both algorithms take O(|W |) time to process
each new-coming user. However, HST-Reassignment is highly in-
efficient due to is O(|W |2) time complexity. As for memory con-
sumption, Greedy is again the most efficient since no extra storage
for the HST structure is needed. In overall, we can see that Greedy
is much more efficient and scalable in both time and space than the
other state-of-art online algorithms.

Comparisons with Permutation. The results of the comparison
with Permutation on a smaller dataset are presented in Table 4. We
also show the results of the other algorithms. For total distance, we
can observe that Permutation is always worse than Greedy but is
better than the other two online algorithms. However, according to

the competitive analysis under the adversarial model, the ranking
of the algorithms in descending order of their competitive ratios is
that Greedy� Permutation > HST-Greedy > HST-Reassignment.
It indicates that the competitive ratio under the adversarial model
can no way reflect the real performance of an algorithm in practice.
As for running time, Permutation is highly inefficient as it took
hundreds of seconds to return an assignment while all the other
algorithms return results in less than a second. Permutation is also
less efficient in space than the other algorithms.

Real dataset. The results on real dataset are presented in the
last column of Figure 11. For total distance, we can again similar
results that Greedy performs better than the other two online algo-
rithms and is only slightly worse than the offline optimal algorithm.
Particularly, Greedy is almost 2 times better than the other two on-
line algorithms. Also, an interesting observation is that the total
distances generated by all the algorithms are quite large around 12-
18PM, and are lowest around 0-6AM, conforming to the statistics
of the dataset that there are more taxi-calling tasks from 12-18PM

µ
W
L

50

75

10
0

12
5

15
0

C
os

t

×105

3

4

5

6

7

8

9

10

11

OPT
Greedy
HST-Greedy
HST-Reassignment

(a) Cost of varied Normal µLW

σ
W
L

5 10 15 20 25

C
os

t

×105

7

7.01

7.02

7.03

7.04

7.05

7.06

7.07

7.08

7.09

7.1

OPT
Greedy
HST-Greedy
HST-Reassignment

(b) Cost of varied Normal σLW

α
W
L

2

2.
5 3

3.
5 4

C
os

t

3000

3500

4000

4500

5000

5500

6000

6500

OPT
Greedy
HST-Greedy
HST-Reassignment

(c) Cost of varied Power αLW

λ
W
L

0.
5

0.
75 1

1.
25 1.
5

C
os

t

0

500

1000

1500

2000

2500

3000

3500

4000

OPT
Greedy
HST-Greedy
HST-Reassignment

(d) Cost of varied Exp λLW

µ
W
L

50

75

10
0

12
5

15
0

T
im

e
(s

ec
s)

0

2

4

6

8

10

12

Greedy
HST-Greedy
HST-Reassignment

(e) Time of varied Normal µLW

σ
W
L

5 10 15 20 25

T
im

e
(s

ec
s)

0

2

4

6

8

10

12

Greedy
HST-Greedy
HST-Reassignment

(f) Time of varied Normal σLW

α
W
L

2

2.
5 3

3.
5 4

T
im

e
(s

ec
s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Greedy
HST-Greedy
HST-Reassignment

(g) Time of varied Power αLW

λ
W
L

0.
5

0.
75 1

1.
25 1.
5

T
im

e
(s

ec
s)

0

0.5

1

1.5

2

2.5

3

Greedy
HST-Greedy
HST-Reassignment

(h) Time of varied Exp λLW

µ
W
L

50

75

10
0

12
5

15
0

M
em

or
y

(M
B

)

2

3

4

5

6

7

8

Greedy
HST-Greedy
HST-Reassignment

(i) Memory of varied NormalµLW

σ
W
L

5 10 15 20 25

M
em

or
y

(M
B

)

2

3

4

5

6

7

8

Greedy
HST-Greedy
HST-Reassignment

(j) Memory of varied Normal σLW

α
W
L

2

2.
5 3

3.
5 4

M
em

or
y

(M
B

)

2

3

4

5

6

7

8

9

Greedy
HST-Greedy
HST-Reassignment

(k) Memory of varied Power αLW

λ
W
L

0.
5

0.
75 1

1.
25 1.
5

M
em

or
y

(M
B

)

2

3

4

5

6

7

8

Greedy
HST-Greedy
HST-Reassignment

(l) Memory of varied Exp λLW

Figure 8: Results that the locations of service providers in W follow Normal, Power-law, and Exponential distributions while the locations
of users T follow Exponential distribution.

µ
W
L

50

75

10
0

12
5

15
0

C
os

t

×105

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

OPT
Greedy
HST-Greedy
HST-Reassignment

(a) Cost of varied Normal µLW

σ
W
L

5 10 15 20 25

C
os

t

×105

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

OPT
Greedy
HST-Greedy
HST-Reassignment

(b) Cost of varied Normal σLW

α
W
L

2

2.
5 3

3.
5 4

C
os

t

×105

7.56

7.57

7.58

7.59

7.6

7.61

7.62

7.63

7.64

7.65

OPT
Greedy
HST-Greedy
HST-Reassignment

(c) Cost of varied Power αLW

λ
W
L

0.
5

0.
75 1

1.
25 1.
5

C
os

t

×105

7.52

7.54

7.56

7.58

7.6

7.62

7.64

7.66

7.68

OPT
Greedy
HST-Greedy
HST-Reassignment

(d) Cost of varied Exp λLW

Figure 9: Results that the locations of service providers in W follow Normal, Power-law, and Exponential distributions while the locations
of users in T follow Uniform distribution.

than from 0-6AM. As for running time and memory results, we can
see that Greedy is still the most efficient in both time and space,
and HST-Reassignment is the most inefficient.

5.3 Summary
• Greedy generates total distance that is at most two times of

offline optimal algorithm in all the experiments on real data
and all different distributions of synthetic data. Therefore,
we propose the hypothesis that Greedy has constant compet-
itive ratio under the random order model when locations of
users and service providers follow any combination of the
Uniform, Normal, Power-law and Exponential distributions.
We further hypothesize that Greedy has constant competitive
ratio under the random order model in general.

• According to the competitive analysis of the algorithms un-
der the adversarial model, the ranking of the algorithms in
descending order of their competitive ratios is that Greedy�
Permutation > HST-Greedy > HST-Reassignment. Howev-
er, the extensive experiments show that Greedy is the best in
practice while HST-Reassignment is the worst. It indicates
that the competitive ratio of an algorithm under the adversar-
ial model cannot reflect the real performance of the algorithm
in practice, and we should not only focus on improving the
worst-case performance of an online algorithm.

• Greedy performs the best. Particularly, Greedy is sometimes
at least two times better than the other online algorithms
when the size of data is smaller, and is even several times

µ
W
L

50

75

10
0

12
5

15
0

C
os

t

×105

3

4

5

6

7

8

9

10

11

OPT
Greedy
HST-Greedy
HST-Reassignment

(a) Cost of varied Normal µLW

σ
W
L

5 10 15 20 25

C
os

t

×105

7.02

7.04

7.06

7.08

7.1

7.12

7.14

7.16

OPT
Greedy
HST-Greedy
HST-Reassignment

(b) Cost of varied Normal σLW

α
W
L

2

2.
5 3

3.
5 4

C
os

t

0

500

1000

1500

2000

2500

3000

3500

OPT
Greedy
HST-Greedy
HST-Reassignment

(c) Cost of varied Power αLW

λ
W
L

0.
5

0.
75 1

1.
25 1.
5

C
os

t

0

2000

4000

6000

8000

10000

12000

14000

OPT
Greedy
HST-Greedy
HST-Reassignment

(d) Cost of varied Exp λLW

Figure 10: Results that the locations of service providers in W follow Normal, Power-law, and Exponential distributions while the locations
of users in T follow Power-law distribution.

|T| (|W|)

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0
10

00
00

C
os

t

×104

0

2

4

6

8

10

12

14

16

18

OPT
Greedy
HST-Greedy
HST-Reassignment

(a) Cost of Scalability (Normal)

|T| (|W|)

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0
10

00
00

C
os

t

×105

0

1

2

3

4

5

6

7

8

OPT
Greedy
HST-Greedy
HST-Reassignment

(b) Cost of Scalability (Uniform)

|T| (|W|)

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0
10

00
00

C
os

t

×104

0

2

4

6

8

10

12

OPT
Greedy
HST-Greedy
HST-Reassignment

(c) Cost of Scalability (Exp.)

Time
0AM~6AM 6AM~12PM 12PM~18PM 18PM~0AM

C
os

t

×104

0

1

2

3

4

5

6

7

8

OPT
Greedy
HST-Greedy
HST-Reassignment

(d) Cost of Real Data

|T| (|W|)

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0
10

00
00

T
im

e
(s

ec
s)

0

200

400

600

800

1000

1200

Greedy
HST-Greedy
HST-Reassignment

(e) Time of Scalability (Normal)

|T| (|W|)

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0
10

00
00

T
im

e
(s

ec
s)

0

50

100

150

200

250

300

350

400

Greedy
HST-Greedy
HST-Reassignment

(f) Time of Scalability (Uniform)

|T| (|W|)

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0
10

00
00

T
im

e
(s

ec
s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Greedy
HST-Greedy
HST-Reassignment

(g) Time of Scalability (Exp.)

Time
0AM~6AM 6AM~12PM 12PM~18PM 18PM~0AM

T
im

e
(s

ec
s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Greedy
HST-Greedy
HST-Reassignment

(h) Time of of Real Data

|T| (|W|)

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0
10

00
00

M
em

or
y

(M
B

)

0

5

10

15

20

25

30

35

Greedy
HST-Greedy
HST-Reassignment

(i) Memory of Scalability (Normal)

|T| (|W|)

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0
10

00
00

M
em

or
y

(M
B

)

0

5

10

15

20

25

30

35

40
Greedy
HST-Greedy
HST-Reassignment

(j) Memory of Scalability (Uniform)

|T| (|W|)

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0
10

00
00

M
em

or
y

(M
B

)

0

5

10

15

20

25

30

35

40

Greedy
HST-Greedy
HST-Reassignment

(k) Memory of Scalability (Exp.)

Time
0AM~6AM 6AM~12PM 12PM~18PM 18PM~0AM

M
em

or
y

(M
B

)

2

3

4

5

6

7

8

Greedy
HST-Greedy
HST-Reassignment

(l) Memory of of Real Data

Figure 11: Results on scalability test and real dataset

better when the size of data scales as the scalability test indi-
cates.
• Greedy is more efficient in time than other the online algo-

rithms and consumes least space among all the online algo-
rithms, and HST-Greedy is slightly inefficient than Greedy in
terms of running time.

6. CONCLUSION AND OPEN QUESTION
In this paper, we conduct a comprehensive experimental study

for the online minimum bipartite matching in real time spatial da-
ta (OMBM) problem through evaluating four representative online
algorithms, i.e. Greedy, Permutation, HST-Greedy, and HST- Reas-
signment, on five real and synthetic datasets with different charac-
teristics. We provide efficient and uniform implementations of four

existing representative algorithms, and obtain the following three
experimental findings and propose an open question.

First, our most important experimental finding is that both the ef-
ficiency and the effectiveness of Greedy significantly outperforms
the other algorithms in almost all practical cases though Greedy
has been always considered as the worst algorithm in past 25 years
due to its exponential competitive ratio under the adversarial model
(the worst-case analysis). In particular, the worst case in the adver-
sarial model of Greedy has constant competitive ratio, 3.195, in the
random order model (the average-case analysis). In summary, we
try to clarify the 25-year misunderstanding towards Greedy for the
OMBM problem through the experimental study.

Second, existing studies for the OMBM problem believe that on-
line algorithms with smaller competitives ratio have the better per-

formance. Then according to the ascending order of the competi-
tive ratios of the algorithms compared under the adversarial mod-
el, we have HST-Reassignment < HST-Greedy < Permutation�
Greedy. However, the extensive experiments show that the rank-
ing of these algorithms in terms of effectiveness is quite different
in practice - Greedy performs the best. It indicates that the com-
petitive analysis under the adversarial model cannot reflect the real
performance of an online algorithm in practice. Therefore, it sug-
gests that we should not only focus on improving the worst-case
performance of an online algorithm but should pay more attention
to its average-case performance.

Third, HST-Greedy is the runner-up. Particularly, since HST-
Greedy relies on the HST structure, which introduces extra pro-
jection errors, HST-Greedy performs worse than Greedy in overall.
However, as HST-Greedy adopts the greedy strategy, it is still much
more effective than HST-Reassignment though HST-Reassignment
has better competitive ratio under the adversarial model in theory.

Finally, though we still cannot prove that the competitive ratio
of Greedy in the average-case analysis is a constant, the afore-
mentioned extensive random experiment results motivate us to pro-
pose the following hypothesis as a open question: the average-case
competitive ratio under the random order model of Greedy for the
OMBM problem should be constant, which can provide a theoreti-
cal explanation for the outstanding performance of Greedy in prac-
tice if the hypothesis holds.

Acknowledgment
We are grateful to anonymous reviewers for their constructive com-
ments on this work. This work is supported in part by the National
Science Foundation of China (NSFC) under Grant No. 61502021,
61328202, 71531001, National Grand Fundamental Research 973
Program of China under Grant 2014CB340300, the Hong Kong
RGC Project N HKUST637/13, NSFC Guang Dong Grant No.
U1301253, Microsoft Research Asia Collaboration Research Grant,
Google Faculty Award 2013, and Microsoft Research Asia Fellow-
ship 2012.

7. REFERENCES
[1] Gigwalk. http://www.gigwalk.com.
[2] Grubhub. https://www.grubhub.com/.
[3] Shenzhou private cars. http://zhuanche.zuche.com/.
[4] Source code and datasets.

https://www.cse.ust.hk/ jshe/OMBM.zip.
[5] Uber. https://www.uber.com/.
[6] R. Ahuya, T. Magnanti, and J. Orlin. Network Flows:

Theory, Algorithms, and Applications. Prentice Hall, 1993.
[7] A. Alfarrarjeh, T. Emrich, and C. Shahabi. Scalable spatial

crowdsourcing: A study of distributed algorithms. In MDM
2015.

[8] N. Bansal, N. Buchbinder, A. Gupta, and J. S. Naor. An o
(log2k)-competitive algorithm for metric bipartite matching.
In ESA 2007.

[9] N. Bansal, N. Buchbinder, A. Gupta, and J. S. Naor. A
randomized o (log2k)-competitive algorithm for metric
bipartite matching. Algorithmica, 2014.

[10] R. E. Burkard, M. Dell’Amico, and S. Martello. Assignment
Problems, Revised Reprint. 2009.

[11] Z. Chen, R. Fu, Z. Zhao, Z. Liu, L. Xia, L. Chen, P. Cheng,
C. C. Cao, Y. Tong, and C. J. Zhang. gmission: A general
spatial crowdsourcing platform. PVLDB 2014.

[12] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on
approximating arbitrary metrics by tree metrics. In STOC
2003.

[13] J. Gao, L. Guibas, N. Milosavljevic, and D. Zhou.
Distributed resource management and matching in sensor
networks. In IPSN 2009.

[14] A. Gupta and K. Lewi. The online metric matching problem
for doubling metrics. In ICALP 2012.

[15] Z. Jiang, W. Xie, M. Li, B. Podobnik, W. Zhou, and H. E.
Stanley. Calling patterns in human communication dynamics.
Proceedings of the National Academy of Sciences, 2013.

[16] B. Kalyanasundaram and K. Pruhs. On-line weighted
matching. In SODA 1991.

[17] B. Kalyanasundaram and K. Pruhs. Online weighted
matching. Journal of Algorithms, 1993.

[18] L. Kazemi and C. Shahabi. Geocrowd: enabling query
answering with spatial crowdsourcing. In GIS 2012.

[19] S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line
algorithms for weighted bipartite matching and stable
marriages. Theoretical Computer Science, 1994.

[20] D.-H. Lee, H. Wang, R. Cheu, and S. Teo. Taxi dispatch
system based on current demands and real-time traffic
conditions. Transportation Research Record: Journal of the
Transportation Research Board, 2004.

[21] X. Liang, J. Zhao, L. Dong, and K. Xu. Unraveling the origin
of exponential law in intra-urban human mobility. Scientific
reports, 2013.

[22] A. Meyerson, A. Nanavati, and L. Poplawski. Randomized
online algorithms for minimum metric bipartite matching. In
SODA 2006.

[23] K. T. Seow, N. H. Dang, and D.-H. Lee. A collaborative
multiagent taxi-dispatch system. IEEE Transactions on
Automation Science and Engineering, 2010.

[24] J. She, Y. Tong, and L. Chen. Utility-aware social
event-participant planning. In SIGMOD 2015.

[25] J. She, Y. Tong, L. Chen, and C. C. Cao. Conflict-aware
event-participant arrangement. In ICDE 2015.

[26] J. She, Y. Tong, L. Chen, and C. C. Cao. Conflict-aware
event-participant arrangement and its variant for online
setting. IEEE Transactions on Knowledge and Data
Engineering, 2016.

[27] H. To, G. Ghinita, and C. Shahabi. A framework for
protecting worker location privacy in spatial crowdsourcing.
PVLDB 2014.

[28] H. To, C. Shahabi, and L. Kazemi. A server-assigned spatial
crowdsourcing framework. ACM Transactions on Spatial
Algorithms and Systems, 2015.

[29] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen. Online
mobile micro-task allocation in spatial crowdsourcing. In
ICDE 2016.

[30] Y. Tong, J. She, and R. Meng. Bottleneck-aware arrangement
over event-based social networks: the max-min approach.
World Wide Web Journal, 2016.

[31] L. H. U, M. L. Yiu, K. Mouratidis, and N. Mamoulis.
Capacity constrained assignment in spatial databases. In
SIGMOD 2008.

[32] R. C.-W. Wong, Y. Tao, A. W.-C. Fu, and X. Xiao. On
efficient spatial matching. In VLDB 2007.

[33] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. Random
constraint satisfaction: Easy generation of hard (satisfiable)
instances. Artificial Intelligence, 2007.

