A Design for Warm Fusion

Ldszl6 Németh *

Simon Peyton Jones

Department of Computing Science
University of Glasgow

{laszlo,simonpj}@dcs.gla.ac.uk

Abstract

»

“Lists are often used as “glue” ... 7, “Func-
tional programs are often constructed by com-
bining smaller programs, using an intermediate
list... ”, “Intermediate lists — and, more gen-
erally, intermediate trees — are both the basis
and the bane ... ” and “Fusion is the process
” are the beginning lines of a lot of pub-
lished papers over the last three decades. The
idea of removing intermediate data structures
inspired plenty of research but rarely resulted
in working, testable implementations.
After all these papers on what to do about
intermediate data structures, we give a detailed
account of how.

1 Introduction

The history of intermediate data structure
removal is very old. Since Darlington and
Burstall showed how fold-unfold transforma-
tions could be used (with human help) to derive
a more efficient, single pass function from the
composition of two or more functions [1}, re-

*Research supported in part by the Overseas Re-
search Students Award Scheme No. ORS/96017017

331

markable progress has been made. Their tech-
nique was extended to higher-order functions
and later partially automated.

Wadler developed similar ideas in his lst-
less transformer [14], in which multi-pass al-
gorithms were converted into single loops in a
simple imperative language. Later, he recast
his work in a first-order functional language.
By defining a tree-less form for functions, func-
tions with no intermediate structures, he was
able to prove that the composition of such func-
tions can be deforested to a single tree-less
function. The proof of termination followed
later [3]. Attempts to extend the deforestation
work to the higher-order case have met with
limited success and termination proofs became

- rather involved.

The major problem of these attempts was
the presence of general recursion, which com-
bined with higher-order functions made it hard
to find where to tie the recursive knot.

By abandoning general recursion in favour
of primitive recursion, or more generally differ-
ent but ’regular’ forms of recursion, interest has
been renewed in the fusion process. Generalis-
ing the list-specific work of Bird and Meerten’s,
Malcolm explained how the promotion theo-
rems from category theory achieve the same

effect of removing intermediate structures by
fusing catamorphisms [9]. But this was only
theory.

The first attempt to turn this into practice
was by Sheard and Fegaras [13] which was lim-
ited in the sense that their language didn’t al-
low for general recursion only catamorphisms.
The real breakthrough came when Launchbury
and Sheard [8], demonstrated how to cope with
general recursion and automatically turn func-
tions written in explicit recursive form into
catamorphisms.

About the same time, Gill, Launchbury and
Peyton Jones introduced a new language con-
struct, the build, and automated the applica-
tion of a one-step fusion rule, but they made
no attempt to transform functions written us-
ing explicit recursion to the form required by
the fusion rule [5]. In order to allow the fu-
sion rule to happen, they reprogrammed most
list processing functions from the Haskell pre-
lude and from then on, combinations of these
standard functions were deforested. The ma-
jor result of this work culminated in Gill’s the-
sis [4], which proved that an implementation
of deforestation can indeed be put into a real,
fully-fledged compiler.

2 Contributions

This paper builds oy and is a logical follow-
up to these last three. It presents a complete
design for a fusion engine in the context of a
real compiler and addresses many shortcomings
of previous work.

o It is the first implementation of the pro-
cess of automatically transforming func-
tions written with explicit recursion to
catamorphic form.

332

Wi G G G G el e e e e G L G

It puts all the earlier attempts into
a proper, explicitly typed, polymorphic
framework of F. : .

Highlights numerous technical details
which needed to be solved for successful
fusion.

o Discusses various implementation trade-
offs

The design also has several limitations, includ-
ing

¢ No higher-order fusion
o No mutually recursive data types

o Fusion is restricted to polynomial and reg-
ular types

Extending our techniques to mutually recur-
sive data types is relatively straightforward, the
other two limitiations will likely to remain.

3 The language

The syntax of the language — which is the typed
intermediate language of GHC - is shown in
Fig. 1. It is essentially Fh; bound variables
are annotated with their types. Its opera-
tional interpretation has been published many
times [12, 7).

In the running example of map™e® (see
below) welll be using a Haskell like no-
tation with the exception that we make
type variables explicit and use upper
case letters to denote a variable which
is related to its lower case counterpart.

Example

map :: forall a b.(a->b)->Tree a->Tree b
map = Aab.Af.At.
case t of
Leaf 1 ->Leaf b (f 1)
Branch @ r->Branch b
(map a b £ 1)
(map a b £ r)

4 The big picture

The fusion transformation! proceeds in two
separate phases: first, individual functions are
preprocessed in an attempt to express their
definition in terms of build and cata. This
process is depicted below. Second, separate
invocations of successfully transformed func-
tions are fused, with one another using the
cata-build rule (8). This one step rewrite rule
is implemented as an extension to the simplifier
in GHC and as such doesn’t pose any serious
problem.

Our main goal here is to discuss the first
phase, which comprises of four steps.

4 .
‘ Derive cata and build (Sect.5) l

| Buildify (Sect.6) |

| ’ SAT (Sect.7.1) J

’ Cataifyt(SectJ)
l !

We will be very informal in this section, omittinig
type signatures, type variables whenever possible. The
sections which detail the different steps give F» expres-
sions in their full glory.

First, we derive the cata and build for every
fusible type. This process is performed during
type checking and is detailed in Sect. 5.

Buildify denotes the process of introducing
build’s. It’s purpose is twofold. (1) it makes
explicit that f is a good producer, that is it can
be fused with other functions. (2) it splits the
function f into a wrapper and a worker [11]
which allows the wrapper to be inlined.

f = Aa.\v.body

=> {- buildify -}
f = Aa&alvbuild (f' @)
' = Aa&.\B.Ap.)é.cata body

While this transformation is sound, in some
cases the result might be less efficient than the
original definition. To avoid this loss of effi-
ciency, we only perform it.conditionally, de-
pending on a syntactic check. The process of
buildify therefore becomes

1. Perform transformation

2. Simplify

3. If the syntactic check is satisfied, re-
turn simplified definition, otherwise dis-
card, and return the original

Cataify denotes the process of transforming
the unary function f into a catamorphism. It
makes explicit that the function is a good con-
sumer.

f = Aubody:

=> {- cataify -}
f = Aubody (catat)

Catamorphism are primitive recursive func-
tions. Therefore, not every function can be
transformed to catamorphic form. In order

Program Prog

Declarations TopDecl

Declaration TypeDecl ::

TopDecly ; ... ; TopDecl, n>1

Binding | TypeDecl

data Con & = {C; &;}1-;

Types o,7 u= TyCon [o]
| o—=d
| Vao
| a
Bindings Binding == Bind |rec Bind,...Bind,
Bind = war: o= Ezpr
Expression Ezpr u= Ezpr Atom Application
| Ezprr Type application
| Awary:or...vary i on . Ezpr Lambda abstraction
| Aty. Ezxpr Type abstraction
| case Expr of Alts Case expression
| let Binding in Ezpr Local definition
| conwvary...varn Constructor n > 0
| primowvari...var, Primitive n>0
|~ Atom
Atoms Atom u= war:o Variable
| Literal Unboxed Object
Literal values Literal == integer | float]| ...
Alternatives Alts == Calty;...; Calty; Default n>0
| Lalty; ... Lalty; Default n>0
Constr. alt Calt = Con vary...var, => Ezpr n>0
Literal alt Lalt == Literal -> Expr
Default alt Default = NoDefault | var -> Expr

Figure 1: Syntax of the Core language

w
=)
ey

i
(T,
il
frm
i)
[
it}
J———
[
i
| (H
Eire N
g
T
iorew

1

to ensure soundness of this transformation, we
need- to take the same three step approach
(transform, simplify, check) we did in the case
of buildify, sacrificing completeness.)

The word unary in the preceding paragraph
explains why we perform the static argument
transformation (SAT) before cataify. Since in
our implementation cataify is limited to first-
order fusion, that is fusion for functions with
only one argument, SAT creates a local bind-
ing for f where static arguments ~ those which
not change in recursive calls — are not passed
around. This increases the opportunities for
fusion.

F o= Aadve
=> {-SAT-}
f = AaXletf =Xz inf 2

5 Catas and Builds

Our starting point is the type declarations oc-
curring in the text of programs.

dataT{e1...am) = {Ci{oir ... o) toey . (1)

We will use the notation (... ay) (to denote
type variables), {1 ...0:%) {to denote types)
and &, 0; interchangeably. According to this
definiton data constructors of 7'G have type
C; : Yag; = Ta. Type constructors T' cor-
respond to functors (in the categorical sense) ~
in particular they are built up from functors-
so they have a natural action on functions as
well as on types. We define the action on func-
tions by induction ET%f = £T&f[5,] where

ETaflo} = Az (2
eTafiT's] = f, it Ta=T'¢
ETeFIT'5] = Az.map” ° (ET®f) z,if Ta # T'5

oW W W o b ik ol e o oo e o0 e ol ol Gl

For every such declaration (1), which declares
regular® and polynomial® type constructors, we
derive the type and definition of two functions,
the build and the cata. build expresses the
idea how data structures of the given type T&
are constructed, while cata expresses regular
consumption. Both construction and consump-
tion have to be polymorphic enough, that is,
it must proceed by using only the functions
passed to build and cata. This is guaranteed
by the “free theorem” [15]. We achieve this
by introducing a new type variable p and re-
place every occurrence of T'@ in the construc-
tors’ type by p. We will be using the notation
ATZ 1 g to denote the process of systematically
replacing occurrences of & by 7 in o.

AT%ple] = @ ®)
ATe p[T's] = p, ETa=T5
ATe p[T'5) = T (AT% p) [3], if Ta #T'G

Note that in the third line, .4 is applied to
a list of types, which is done by applying it to
each element of the list.

For example, for the type of the construc-
tors of the data type of lists Nil :: Va.[e], and
Cons :: Va.a — [o] = [a], A p gives the
type p and Al gives o — p — p.

To get the type and definition of build and
cata for type T3, after applying AT% for all

2A data type is called regular, iff recursive calls in
the body are all of the form of the head of the definition.
Otherwise the data type is non-regular.

3Sums, products, application of type constructors
which are built up from polynomial types and primi-
tive types are all polynomial.

the constructors we quantify over @ and P
build?® i Ya.(Vp.(ATE p& — p) — p)
—=Ta
build?® 5 f = f (T3) (AT® T& Constrs(Ta))
cata’® :Vap(ATe pg s p) =T a—p

Example

data Tree a = Leaf a
| Branch (Tree a) (Tree a)
For this example of map we get that build
and cata have types

builgTree @ Ya.(Vp.(a — p)
= (p—=rp—p)—p)
- Treea
cata T ¢ Vapla—p) = (0= p—p)

— Treea—p

6 Expressing functions as
build ’s (’buildify’)

‘We will be following the general procedure we
explained in Sect. 4, that is we perform the
transformation given by Eq. (4) for every func-
tion which has a fusible result type, simplify
and check whether the results are what we ex-
pect.

6.1 Introducing build

The transformation described here requires a
bit of explanation. The cata we are introduc-
ing in Eq. (4) is rather special. Its sole purpose
is to ensure abstraction over the constructors,
so at the end of 'buildify’ we expect it to disap-
pear via the new rules in Fig. 2. In particular,
it usually requires the application of rules (7)

and (9) with some inlining to bring the cata
close to the build so rule (8) applies. To make
this check simple we mark the cata — keeping
in spirit with the fusion analogy, it becomes
radioactive’.

f = VBp—>To
f = Aﬁ.)\’l') e
=> O
f & VBPoTé
f = ABXw.build™ 7 (f'f 7)
7 V.7 = (Vp.(AT7 pG — p) - p)

' = ABXB.Aprccata’®Fpce

The way build’s are introduced also incor-
porates the idea of workers and wrappers [11].
The wrapper f, including the build, is small
and can be freely inlined — even into its own
worker, which must happen to make the build-
ify process successful.

Example

map :: forall a b.(a->b)->Tree a->Tree b

map Aab.Af.At.build b (map’ a b £ t)

map’:: forall a b.(a->b)->Tree a—>
forall x.(b->x)->(x->x->x)->x

map’ = Aab.Af.At.Ax.AL.AB.
cata b x L B (
case t of
Leaf 1 ->Leaf b (£ 1)

Branch 1 r->Branch b
(map a b £ 1)
(map a b £ 1))

6.2 Simplification

Simplification is simple: we call a slightly ex-
tended version of the simplifier. The new rules
are given in Fig. 2.

394

T
3

Example

map:: forall a b.(a->b)->Tree a->Tree b
map = Aab.Af.\t.build b (map’ a b £)
map’:: forall a b.(a->b)->Tree a->
forall x.(b->x)->(x->x->x)->x
map’= Aab.Af.At.Ax.AL.)B.
case t of
Leaf 1 ->L (f 1)
. Branch 1 r->B (map’ abf 1 x LB
’ (map’ abfrxLB

6.3 Possible reasons for failure

Our definition of failure for this transformation
is that of the ’radioactive’ cata remains in the
simplified bindings. As explained earlier, leav-
ing this cata may result in less efficient code,
which we aren’t prepared to accept since we
cannot know in advance how frequently this
will occur. It would be interesting to see how
big the performance penalty really is in general
programs.

As an example for the cata to remain, con-
sider the function append = Ve.[a] — [o] —
{a]. Even though, it is a perfectly good pro-
ducer, build introduction fails because the ra-
dioactive’ cata remains on append’s second
argument. This is rather unfortunate since
append tends to occur frequently in programs.

So what solutions exist? The hackish solu-
tion to this problem is to make append special
and leave the remaining cata. This however in-
curs a performance penalty if the cata doesn’t
fuse with a build, as we unnecessarily traverse
the second list.

A more involved solution is to introduce a
function augment with type Ya.(V38.8 = (o —
B8 — B) - B) = [e] — [o] which hides the bad
properties of append [4]. The reason we don’t

follow this route is that it’s not immediately
obvious what augment’s definition would be for
data types other than list.

The Right Solution is to have Fegaras style
catas which induct over multiple arguments [2].

6.4 Check if simplification is success-
ful

By explicitly marking the 'radioactive’ cata we
made this check simple. By traversing the sim-
plified binding(s) we check whether the marked
cata is gone. If this is the case, we discard
the previous definition of f and return the new
binding(s).

7 Expressing recursive func-
tions as catamorphisms
(’cataify’)

Functions in F5 can be written using explicit
recursion. While this generality is sometimes
useful the cata~build rule (8) — which elimi-
nates intermediate data structures — applies to
functions in catamorphic form. Qur goal is to
express as many functions as possible in cata-
morphic form so they can be fused.

The method we adopt here is based on the
promotion theorem of Malcolm [9], which de-
scribes when the composition of a strict func-
tion f with a catamorphism can be expressed

583

@
m

g2 o= = (Bt (R [EB

il

as another catamorphism.*

VCT : F(CT yar -« yak)) = he (BE, £ (wir ... yi)

flcataT® ¢y ...c,) = catal® he, ... h¢, =

()

Other authors call this the fusion theorem [8].
In composing f with a catamorphism, the
choice for the later is not arbitrary. Since
we do not want to change the meaning of
f, we have to use the identity catamor-
phism at type T, which is readily ex-
pressed by using the abstracted constructors
as arguments to the catamorphism operator
catal® & (T5) (AT® (T&) Constrs(Ta)),
where this rather obscure expression denotes
replacing T'& by TG and instantiating o’s with
the corresponding ¢’s (substitution).

We are going to use a two step approach,
which greatly simplifies earlier work and allows
us to prove important properties of the second
step while leaving the (yet unproven) proper-
ties of the first step unaffected.

First, for wunary functions 'we per-
form the transformation given by (6)
and simplify the new bindings.

“A succinct form of this theorem is given, called the
fusion law in Meijer [10] as:

foled =) «= fo L= {gdo L Afop =1y

A slight variation of the fusion law is to replace the
condition fo L= (o L by fo L=1,i.e. f is strict.

Folpd = () < fo L=LAfop =11

3389

LI I

2 = omoE e (E A
;i;i-lgl-l-l-l-l-l-I-l-l-l-l-l-l-l-l—l—l—-—li

Example
hLeaf it b->x
hLeaf = Azll.map’’ (Leaf yi1)
hBranch :: x -> x -> x
hBranch = Az21.Az22.
map’’ (Branch y21 y22)

In effect, we separate the action of f into n
cases, where 7' is the number of constructors
of f’s arguments type, and denote these cases
he; reflecting which constructor they belong
to. In other words, we express the function f
out of a sum as the product of functions out of
each summand.

f = To—>r
f = e
=> (6)
f o To—>rT1
f = Xcata®™®5phg...hc, o
where .
vi € 1,...,n,Viel,....k
he; O ... S0l T

he, = Azp.. szf(C Ty = 03))
oy = A% poy

Notice, that these newly intreduced local bind-
ings have free variables y; ...y; and unused
variables z; ... z;x. The relation between 7 and
Z is that the former represents data before the
recursive call to f, while the latter represents
data after the recursive call. This is manifested
in their types. Whenever y;;, for some j, has
type TG, that is the same as the arguments
type to f, the corresponding z; has the ab-
stracted type p. Otherwise, they have the same
type.

= E

Second, .we eliminate explicit recursion
by replacing combinations of the old vari-
ables with recursive calls of f, in favour
of newly introduced variables z;;. This
rewriting process is explained in Sect. 7.2.

Example
hLeaf 1t b->x
hLeaf = Az11.L (£ yi1)

hBranch :: x -> x => X
hBranch = Az21.)z22.B (map’’ y21)
(map’’ y22)

7.1 Static parameters

The astute reader will notice the emphasis on
unary in Sect. 7 and raise the question whether
this is too restrictive. The answer is yes and no.
While it is true, that most functions in usual
programs have more than one argument, in
most cases the additional arguments are static,
i.e. they don’t change in recursive calls. A sim-
ple transformation, the static argument trans-
formation [12], will derive a new local func-
tion, where the static arguments are not passed
around. Frequently, we end up with a recur-
sive local function with one argument where
our techniques become applicable. We use the
static argument transformation to increase the
opportunity for turning functions into catamor-
phisms.

Another way around this problem, is to ex-
tend the algorithm to deal with functions with
more than one argument. This requires gen-
eralising the fusion theorem and the rewrit-
ing process. Troubles don’t end here, since
the second-order fusion theorem and thé cor-
responding rewrite rules devised by Launch-
bury and Sheard [8] can transform functions
with more than one argument to catamorphic

399

form, fusion will happen only on one argument.
So, for example zip will not get fused on both
of its arguments. If we want zip and simi-
lar functions to be fusible on all of their argu-
ments we have to look at the work of Fegaras
et al [2]. To implement this sort of fusion en-
gine we would have to give up one of our fun-
damental assumptions. As we explained ear-
lier, currently we derive the type and definition
of the catamorphism and build from the type
declaration once for all, so all functions with
the given type share these. A Fegaras style
fusion engine would require deriving the cata
and build from the definition of every function,
making the process more complicated. We feel,
that the additional machinery required to im-
plement higher-order fusion or fusion for mul-
tiple inductive arguments is not worth until it
is proven that fusion is a valuable compiler op-
timisation.

Example

map:: forall a b.(a->b)->Tree a->Tree b
map = Aab.Af.At.build b (map’ a b f t)
map’:: forall a b.(a->b)->Tree a->

forall x.(b->x)->(x->x->x)->x
map’= Aab.Af.At.Ax.AL.)B.

let
map’’ :: Tree a -> x
map’’ = At.
case t of
Leaf 1 =L (£ 1)
Branch 1 r->B (map’’ 1

(map’’ ¢
in map’’ ¢

7.2 The dynamic rewrite system

As the final step, we are going to use a simple
rewrite system to eliminate combinations of the
pre-recursion variables (7) with f, in favour of

catal® 7 p & (Cilwir - .- yix))
catal® 7 p ¢ (build™® 7 f)
catal® 7 pc(casez =TT of {C G — e})

catal® 7 p ¢ error

W W e W e ow o W W el W B e W W W e W W W

- (G (cata™ T p &) {ya ... yar)) 1G]
— fpe -(8)
— casez :uTTof {C§— cataT2 7 pze} (9)
- error (10)

Figure 2: New cata related rules

the post-recursion variables {Z). One interest-
ing property of this rewriting process is that the
rewrite rules are not fixed: we have to generate
a set unique rewrite rules for each constructor.
First we introduce some notation.

Notation 1 e lhs — rhs is a rewrite rule,
which allows us to replace (in one step) Llhs
with Ths

o lhss = rhss is the same as — ezcept
that lhss and rhss are n—tuplesf';f. We de-
fine {{z1,...,%n) = (W1,--+,Yn)} to mean
the set of rules extracted component-wise
{1 > Y1,..-sZn = Yn}

o we also extend the = notation by al-
lowing E functors over tuples. Thus:
{ECf(xly o ,(En) = (y].’ v ayn)} is equiv'
alent to the set of rules {Ecfz1 —
yh"-aEC'fzn —")yn}

Definition 1 For each constructor C; of type
Ta we define the dynamic rewrite rules to be
the set:

{Ec; f (yas-- o yi) = (210--,20)} (11)

Looking at the rewrite system one might nat-
urally ask the question, why don’t these rewrite
rules have type variables? The simple answer is
that static argument transformation has been

applied to f and it found all the type,argu-
ments to be static. The only case when a type
variable is not static in the recursive call to f
itself is the case of polymorphic recursion. Cur-
rently, we can see no easy way to incorporate
these into our fusion engine.

Theorem 1 The rewrite system generated by
(11) is confluent and terminating.

The proofs are trivial.

Example

yii -> zi1,

map’’ y21 -> z21, map’’ y22 -> 222
hLeaf i b ->x

hlLeaf = Az1l.L (f z11)

hBranch :: x -> x => x

hBranch = Az21.Az22.B z21 z22

7.3 Reasons for failure

There are various reasons for this transforma-
tion to fail:

e the inductive argument is consumed by
another function, therefore the dynamic
rewrite systems fails to replace all pre-
recursion variables with post-recursion

ones
f o ool o Int
f = Aicaseiof

Cons z zs — f zs + length zs

The dynamic rewrite system will gener-
ate (amongst others) the rule f zs — zs,
where zs is a new variable, which will
not replace length s, so the pre-recursion
variable zs remains.

o the function is not primitive recursive

In both cases, failure will show up as pre-
recursion y;; variables remaining in the simpli-
fied and rewritten bindings.

7.4 Check if simplification is success-
ful

Simplification is successful if none of the pre-
recursion variables remain after the rewriting.
We check for this by traversing the simplified
bindings. If any of y;; remain, we discard-every-
thing we’ve done in this section and continue
using the original definition of f.

Example

map :: forall a b.(a->b)->Tree a->Tree b
map Aab.Af.At.build b (map’ a b f)
map’:: forall a b.(a->b)~>Tree a->
forall x.(b->x)->(x=>x~>x)->x
Aab. Af.At.Ax.AL.AB.
cata b x (Az11.L (f z11))
(Az21.3222.B 221 z22)
t

map?’

7.5 Workers and Wrappers again

The transformations we have described so far
do present the full story of warm fusion but

371

aren’t enough to actually reap the benefits.
The success depends on bringing builds and
catas close so the cata-buildrule applies. This
bringing them close means inlining. Unfortu-
nately, inlining is a rather delicate aspect of
compilers since it can lead to code explosion,
which in our case means, that the newly gen-
erated cata with the local h¢, functions will
certainly be too big to be inlined, so no fusion
will happen.

To make the cata inlineable we perform
lambda Lifting [6], which lifts the local h¢,’s
leaving the function containing cata small.

8 The real work...

In preceding sections we have presented the full
design for a fusion engine. It takes functions
written with explicit recursion and - when-
ever possible ~ transforms them into catamor-
phisms by abstracting over the constructors.
This abstraction however has its price. Dur-
ing the first runs of the modified compiler we
noticed that in the resulting programs the to-
tal memory allocation increased considerably,
sometimes tripled. It is a rather unexpected
behaviour from an optimisation which claims to
decrease allocation by eliminating intermediate
data structures! A closer look at the resulting
code revealed what was happening. The trans-
formation splits a single function into several
smaller ones, one including the build, another
the cata plus one function for each construc-
tor the given data type has. This increases the

" number of closures and the additional variables

increases the size of these closures. Unfortu-
nately, for data types with more constructors,
this gets even worse.

t= T 1= T 1 D 1 T 14 T T 1= T 1 T 0 T =2 T =2 D = A T 1= T =2 T s R 2

9 Conclusion and future work

We presented the design of a fusion engine
for the non-strict functional language Haskell,
which simplifies earlier attempts and puts them
into practice. The design allows a neat sep-
aration of the two rewritings in the process
of transforming strict functions to catamor-
phisms. The implementation based on this de-
sign is completed, what we have left is to ensure
that the code related to fusion works smoothly
with the rest of GHC and we do get the benefits
of fusion. This part turns out to be a lot harder
and more tiresome than we initially expected.

This design, while it has its own limitations
— most notably the lack of higher-order, or mul-
tiple argument fusion — vastly extends the ap-
plicability of previous work, from the data type
of lists over a fixed set of functions to polyno-
mial, regular data types over primitive recur-
sive functions, written with explicit recursion.

It gives us deeper insight into what is neéded
for fusion to work and raises several questions:

o The key to successful fusion is precise con-
trol over inlining: we have to be able to:

— control whether inlining can, cannot
or must happen on a per function, per
simplifier pass basis,

- depending on the result of other

transformations, change inlining
properties.

How this control is best achieved?

¢ When exactly should this transformation
happen to be most beneficial for a large

“ scale of programs? Currently in GHC, the
set of available optimisations together with
the calls to the simplifier are hard-wired

into a Perl script, and the order of trans-
formations is fixed [12]. We have already
seen that fusion requires us to abandon
this model of compilation as different ac-
tions must be taken depending on the suc-
cess or failure of each pass.

¢ Transforming functions to catamorphisms
creates new functions with more argu-
ments than the original. In the case of
a set of mutually recursive data types the
number of arguments to each successfully
transformed function is one for each con-
structor for each data type. For example,
within the compiler, the Core language
(F2) is represented as a set of mutually
recursive types with 18 constructors alto-
gether. Every single function which acts
on any of these types would take 18 more
arguments, leading to larger closure sizes
and lot more allocation. It is highly un-
likely that current compilers would be able
to produce efficient code without special
care.

Our next goal is to polish the implementa-
tion, and measure benefits of this optimisation
on a large set of real programs, perhaps includ-
ing the compiler itself! Evaluating these mea-
surements will enable us to finally address the
long open question whether fusion is worthy to
be included to a optimising compiler or not.

References

1] R. M. Burstall and J. Darlington. A Sys-

[g ¥
tem which Automatically Improves Pro-
grams. Acta Informatica, 6:41-60, 1976.

[2] L. Fegaras, T. Sheard, and T. Zhou.
Improving programs which recurse over

[4

[5

multiple inductive structures. In ACM
SIGPLAN Workshop on Partial Evelua-
tion and Semantics-Based Program Ma-
nipulation, pages 21-32, Orlando, Florida,
25 June 1994. :

A. B. Ferguson-and P. Wadler. When will
deforestation stop? In Functional Pro-
gramming, Glasgow 1988. Workshops in
Computing, pages 39-56, Aug. 1988.

A. J. Gill. Cheap Deforestation for Non-
Strict Functional Languages. PhD thesis,
Department of Computing Science, Uni-
versity of Glasgow, 1996.

A. J. Gill, J. Launchbury, and S. L. Pey-
ton Jones. A Short Cut to Deforestation.
In FPCA, 1993.

T. Johnsson. Lambda Lifting: Trans-
forming Programs to Recursive Equations.
In Functional Programming Languages
and Computer Architecture, Nancy, LNCS
201, Sept. 1985.

S. L. P. Jones. Compiling Haskell by
program transformation: A report from
the trenches. In H. R. Nielson, editor,
Programming Languages and Systems—
ESQOP’96, 6th European Symposium on
Programming, volume 1058 of Lecture
Notes in Computer Science, pages 18-
44, Linkoping, Sweden, 22-24 Apr. 1996.
Springer.

J. Launchbury and T. Sheard. Warm Fu-
sion: Deriving Build-Catas from Recursive
Definitions. In Functional Programming
& Computer Architecture, pages 314-323,
San Diego, US, 1995.

393

9]

(11]

[12]

[13]

[14

i)

[15]

TR

G. R. Malcolm. Data structures and
program transformation. Science of
Computer Programming, 14(2-3):255-279,
1990.

E. Meijer, M. Fokkinga, and R. Paterson.
Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire. In
J. Hughes, editor, Proceedings of the 1991
ACM Conference on Functional Program-
ming and Computer Architecture, volume
523 of Lecture Notes in Computer Science,
pages 124-144. Springer-Verlag, 1991.

S. L. Peyton Jones and J. Launchbury.
Unboxed values as first class citizens
in a non-strict functional language. In
J. Hughes, editor, Functional Program-
ming Languages and Computer Architec-
ture, LNCS 523, pages 636-666. Springer
Verlag, June 1991.

A. Santos. Compilation by Transformation
in Non-Strict Functional Languages. PhD
thesis, Department of Computing Science,
University of Glasgow, 1995.

T. Sheard and L. Fegaras. A fold for
all seasons. In PFunctional Programming
and Computer Architecture, pages 233-
242. Association for Computing Machin-
ery, 1993.

P. Wadler. Listlessness is Better than Lazi-
ness. In ACM Symposium on Lisp and
Functional Programming, Austin, Tezas,
Aug. 1984.

P. Wadler. Theorems for free! In Func-
tional Programming Languages and Com-
puter Architecture, pages 347-359. Associ-
ation for Computing Machinery, 1989.

134

	PDFDS003
	PDFDS004
	PDFDS005
	PDFDS006
	PDFDS007
	PDFDS008
	PDFDS009

