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Motivation
� The Web is often slow.

Especially so when

– many inlined images

– distant servers

�Main Reason: inefficient use of the network
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Sources of Latency
� Server: CPU and disk speeds

- can buy faster computers

� Client: same as above

� Network:

– Bandwidth

- can possibly buy faster links

– Round-trip time (RTT)

- Speed of light is a fundamental limit

- 70 ms RTT across US, 250 ms to Australia

To reduce latency we must avoid round-trips!
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Problems
� Too many connections!

– Processing overhead for each connection

If authentication is done, that’s extra overhead

– 1 RTT for each connection set-up

– TCP slowstart � few connections reach full-steam

– PCB table fills up with TIME-WAIT entries

On a coast-to-coast T1 line: sending 20000 bytes achieves a throughput

of only 0.6Mbps

� No pipelining

� each inlined image requires atleast an additional roundtrip
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Persistent Connections
� Client tells server to keep connection open

– uses HTRQ (HT Request) headers, so interoperates fully

– future versions of HTTP can define a hold-connection pragma

� server process loops waiting for requests

� client or server can close connections to conserve resources
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Marking the end of data

HTTP gives server 3 ways to mark end of data:

� Content-length field

� Content-type field (MIME delimiter)

� Close connection

– current implementations do this

We chose the first alternative.

When data comes from a subprocess (script)

� Server doesn’t know where data ends

� Simple way out: close the connection
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Some alternatives:
� a separate control connection

� block-by-block transfer
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Pipelining requests

Even with persistent connections, still takes 1 RTT per inlined image

Client knows what images are needed after parsing HTML

� could request all needed images at once

� Best case: 2 RTTs per document

Server could know what images are needed when HTML request arrives

� could return all images immediately

� Best case: 1 RTT per document
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GETALL
� GET � HTML document �

� server sends back only the document

We define:

� GETALL � HTML document �

Server sends back document and all inlined images

� can be implemented as a GET with a pragma

Potential problems:

� Server has to parse the HTML.

– can be done once, and the results cached

� Server could return image already cached by client
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GETLIST

Another primitive:

� GETLIST � URL list �

� Server sends back all the requested documents

� can be implemented as a bunch of GETs

Overall scheme:

The client

� uses GETALL for the first access

� keeps cache of image URLs of recently accessed pages

� uses GETLIST for subsequent accesses to request only images required
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Results: Remote server
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Results: Remote server
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Summary: Remote server
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Summary: Local server
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Conclusions
�With a slightly modified protocol, there is a substantial reduction in

latency

� Improvement depends on size and number of images

– 20-60% for remote server

– 15-50% for local server

� Full interoperability


