
�
�

�
�

[1]

Improving HTTP Latency

Venkata N. Padmanabhan (U.C.Berkeley)

Jeffrey C. Mogul (DEC Western Research Lab.)

The Second International WWW Conference, Chicago

October 17-20, 1994



�
�

�
�

[2]

Outline
�Motivation

� Sources of Latency

� Client - Server interaction

� Performance problems

� Protocol modifications

� Results

� Conclusions



�
�

�
�

[3]

Motivation
� The Web is often slow.

Especially so when

– many inlined images

– distant servers

�Main Reason: inefficient use of the network



�
�

�
�

[4]

Sources of Latency
� Server: CPU and disk speeds

- can buy faster computers

� Client: same as above

� Network:

– Bandwidth

- can possibly buy faster links

– Round-trip time (RTT)

- Speed of light is a fundamental limit

- 70 ms RTT across US, 250 ms to Australia

To reduce latency we must avoid round-trips!



�
�

�
�

[5]

SYN

SYN

ACK
DAT

ACK

DAT
FIN

ACK
FIN

ACK SYN

SYN

ACK
DAT

DAT

Client Server

Server reads
from disk

Server reads
from disk

0 RTT

1 RTT

2 RTT

3 RTT

4 RTT

Client opens
TCP connection

Client sends
HTTP request
for HTML

Client parses
HTML
Client opens
TCP connection

Client sends
HTTP request
for image

Image begins
to arrive

ACK



�
�

�
�

[6]

Problems
� Too many connections!

– Processing overhead for each connection

If authentication is done, that’s extra overhead

– 1 RTT for each connection set-up

– TCP slowstart � few connections reach full-steam

– PCB table fills up with TIME-WAIT entries

On a coast-to-coast T1 line: sending 20000 bytes achieves a throughput

of only 0.6Mbps

� No pipelining

� each inlined image requires atleast an additional roundtrip



�
�

�
�

[7]

1000 1e+07
Connection length (bytes)

10000 100000 1e+06
0

1.4e+06

200000

400000

600000

800000

1e+06

1.2e+06

T
h
ro

u
g

h
p

u
t 

(b
it

s/
se

co
n

d
)

Win=32K, MSS=536

Win=8K

Win=32K, MSS=1460

Mean size

Median size



�
�

�
�

[8]

Persistent Connections
� Client tells server to keep connection open

– uses HTRQ (HT Request) headers, so interoperates fully

– future versions of HTTP can define a hold-connection pragma

� server process loops waiting for requests

� client or server can close connections to conserve resources



�
�

�
�

[9]

Marking the end of data

HTTP gives server 3 ways to mark end of data:

� Content-length field

� Content-type field (MIME delimiter)

� Close connection

– current implementations do this

We chose the first alternative.

When data comes from a subprocess (script)

� Server doesn’t know where data ends

� Simple way out: close the connection



�
�

�
�

[9]

Some alternatives:
� a separate control connection

� block-by-block transfer



�
�

�
�

[10]

DAT

ACK

DAT

ACK

DAT

DAT

Client Server

Server reads
from disk

Server reads
from disk

0 RTT

1 RTT

2 RTT

Client sends
HTTP request
for HTML

Client parses
HTML
Client sends
HTTP request
for image

Image begins
to arrive

ACK



�
�

�
�

[11]

Pipelining requests

Even with persistent connections, still takes 1 RTT per inlined image

Client knows what images are needed after parsing HTML

� could request all needed images at once

� Best case: 2 RTTs per document

Server could know what images are needed when HTML request arrives

� could return all images immediately

� Best case: 1 RTT per document



�
�

�
�

[12]

GETALL
� GET � HTML document �

� server sends back only the document

We define:

� GETALL � HTML document �

Server sends back document and all inlined images

� can be implemented as a GET with a pragma

Potential problems:

� Server has to parse the HTML.

– can be done once, and the results cached

� Server could return image already cached by client



�
�

�
�

[13]

GETLIST

Another primitive:

� GETLIST � URL list �

� Server sends back all the requested documents

� can be implemented as a bunch of GETs

Overall scheme:

The client

� uses GETALL for the first access

� keeps cache of image URLs of recently accessed pages

� uses GETLIST for subsequent accesses to request only images required



�
�

�
�

[14]

Results: Remote server

0 102 4 6 8
Number of inlined images

0

10

2

4

6

8

N
et

w
or

k 
la

te
nc

y 
(s

ec
on

ds
)

Old protocol

Long-lived connections

New protocol with pipelining

Image size: 2544 bytes



�
�

�
�

[15]

Results: Remote server

0 102 4 6 8
Number of inlined images

0

35

5

10

15

20

25

30

N
et

w
or

k 
la

te
nc

y 
(s

ec
on

ds
)

Old protocol

Long-lived connections

New protocol with pipelining

Image size: 45566 bytes



�
�

�
�

[16]

Summary: Remote server

0 122 4 6 8 10
Number of inlined images

0

1

0.2

0.4

0.6

0.8

R
at

io
 o

f n
et

w
or

k 
la

te
nc

y

45566 bytes

7588 bytes

2544 bytes

12188 bytes

25751 bytes



�
�

�
�

[17]

Summary: Local server

0 122 4 6 8 10
Number of inlined images

0

1

0.2

0.4

0.6

0.8

R
at

io
 o

f n
et

w
or

k 
la

te
nc

y 45566 bytes

7588 bytes

2544 bytes

12188 bytes

25751 bytes



�
�

�
�

[18]

Conclusions
�With a slightly modified protocol, there is a substantial reduction in

latency

� Improvement depends on size and number of images

– 20-60% for remote server

– 15-50% for local server

� Full interoperability


