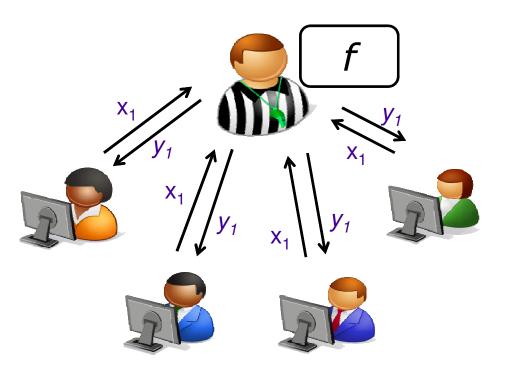
Broadcast (and Round) Efficient Secure Multiparty Computation

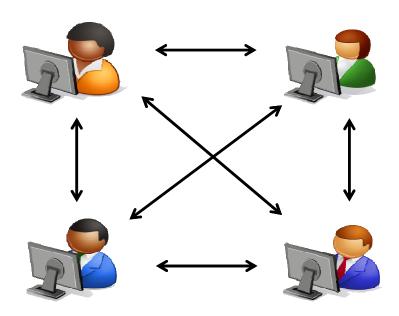
Juan Garay (Yahoo Labs)
Clint Givens (Maine School of Science and Mathematics)
Rafail Ostrovsky (UCLA)
Pavel Raykov (ETH)

Secure Multiparty Computation (MPC)

Ideal World (trusted party)

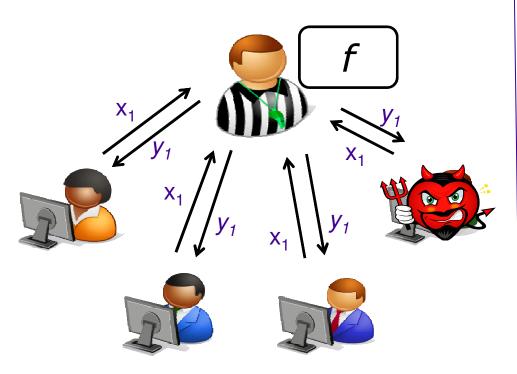


Real World (just the players)

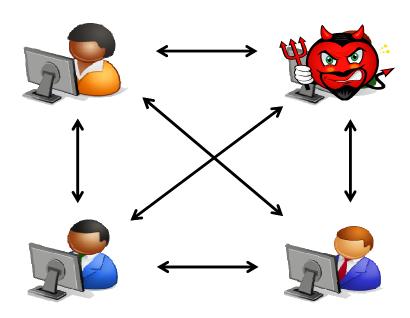


Secure Multiparty Computation (MPC)

Ideal World (trusted party)



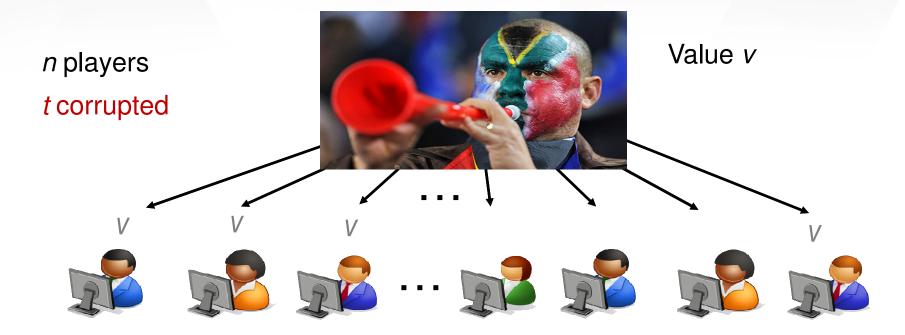
Real World (just the players)



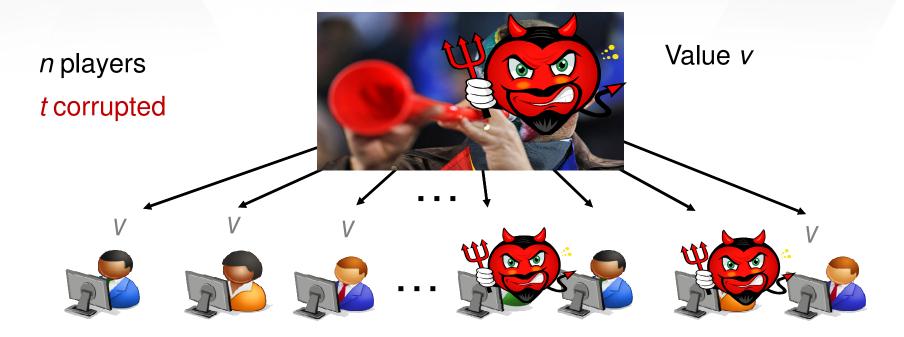
Secure Multiparty Computation (MPC)

- Secure multi-party computation (MPC) [GMW'87] :
 - n parties {P₁, P₂, ..., P_n}, t corrupted; each P_i holds a private input x_i
 - One public function $f(x_1, x_2, ..., x_n)$
 - All want to learn $y = f(x_1, x_2, ..., x_n)$ (*Correctness*)
 - Nobody wants to disclose his private input (*Privacy*)
- Secure 2-party computation (2PC) [Yao'82]: n=2
- Computationally secure MPC (2PC)

Broadcast Functionality ("Channel") [PSL'80]



Broadcast Functionality ("Channel") [PSL'80]



If source is honest, $v_i = v$ (Validity) $v_i = v_j$ (Agreement)

MPC: Model Assumptions

Unconditionally secure MPC typically assumes:

- for t < n/3 [BGW'88, CCD'88]:</p>
 - secure (private and authentic) pairwise channels
 - broadcast channel—but it may be realized by Byzantine agreement protocol
- for t < n/2 [RB'89]:
 - secure (private and authentic) pairwise channels
 - physical broadcast channel (no protocol exists!)

An MPC Protocol for f

The "share-compute-reveal" paradigm:

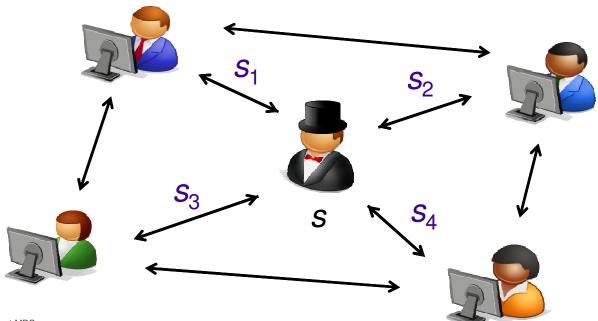
- 1. Share phase: Each P_i "commits" to his input (using Verifiable Secret Sharing [VSS] next slide).
- 2. Compute phase: Shared inputs are used to evaluate an arithmetic circuit C gate-by-gate. (Typically a *linear* VSS scheme is used.)
- 3. Reveal phase: At C 's output gate, parties possess a verifiable sharing of $f(x_1, x_2, ..., x_n)$; parties publicly reconstruct this value.
 - Multiplication gate: Most expensive part of MPC protocol typically requires broadcast channel

An MPC Protocol for f (cont'd)

- Multiplication gate: Most expensive part of MPC protocol typically require broadcast channel
- [Beaver91]: Technique for evaluating multiplication gates efficiently based on (verifiably shared) multiplication triples, vectors $(a,b,c) \in \mathbb{F}^3$ s.t. a,b random and ab = c,
 - → cost of mult. gate = cost of one VSS reconstruction phase
- The pre-processing phase of MPC

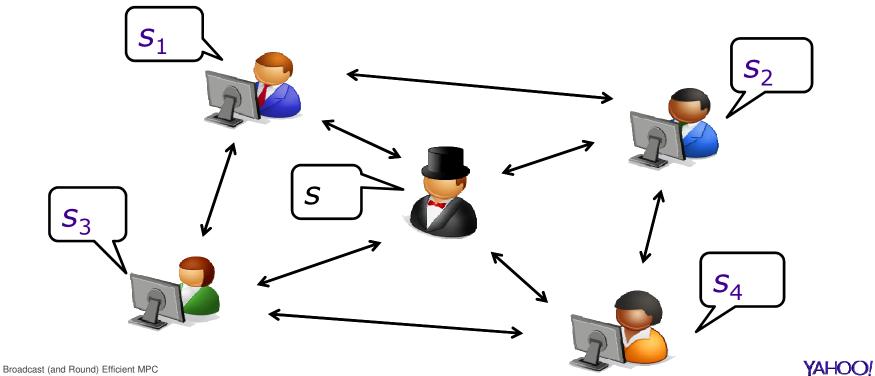
Verifiable Secret Sharing [CGMA'85]

- Phase 1: Share
 - Dealer distributes shares of a secret s
 - Players interact to verify sharing is valid



Verifiable Secret Sharing (cont'd)

- Phase 2: Reconstruct
 - Players reveal shares and use them to recover s



Verifiable Secret Sharing (cont'd)

Security Requirements:

- Even a cheating Dealer is committed to some secret after Share phase (Commitment)
- Honest Dealer committed to correct secret (Correctness)
- Prior to Reconstruct phase, cheating players have zero information on value of s (Privacy)
- If the parties verifiably share secrets {s^(k)}, then they also (w/o further interaction) verifiably share any (public) linear combination of the secrets (Linearity)

Statistical security: t < n/2: Protocols subject to some (negligibly small) error probability [CCD88, DDWY93]

MPC: Model Assumptions

Unconditionally secure MPC typically assumes:

- for t < n/3 [BGW'88, CCD'88]:</p>
 - secure (private and authentic) pairwise channels
 - broadcast channel—but it may be realized by Byzantine agreement protocol
- for t < n/2 [RB'89]:
 - secure (private and authentic) pairwise channels
 - physical broadcast channel (no protocol exists!)

MPC: Model Assumptions

Unconditionally secure MPC typically assumes:

- for t < n/3 [BGW'88, CCD'88]:</p>
 - secure (private and authentic) pairwise channels
 - broadcast channel—but it may be realized by Byzantine agreement protocol
- for t < n/2 [RB'89]:
 - secure (private and authentic) pairwise channels
 - physical broadcast channel (no protocol exists!)
 - What if the broadcast operation is expensive?

Goooaaall!!!:

To drastically reduce the number of broadcast rounds required in MPC for n > 2t (while minimizing overall no. rounds)

Our Results

- VSS with two b'cast rounds, constant overall rounds
 - First linear VSS protocol enjoying these features
 - (2,0)-bcast (20,1)-round VSS protocol
- Constant-round pseudosignatures [PW96]
 - Unconditionally secure *anonymous channel* (aka DC-nets [Chaum'88])
 - Black-box use of VSS; same b'cast complexity

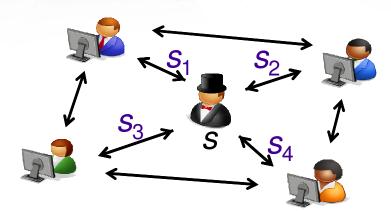
Our Results

- VSS with two b'cast rounds, constant overall rounds
 - First linear VSS protocol enjoying these features
 - (2,0)-bcast (20,1)-round VSS protocol
- Constant-round pseudosignatures [PW96]
 - Unconditionally secure anonymous channel (aka DC-nets [Chaum'88])
 - Black-box use of VSS; same b'cast complexity

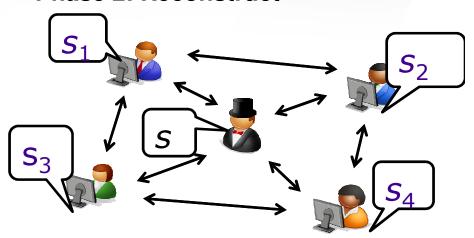
Building Blocks

Weak Secret Sharing

Phase 1: Share



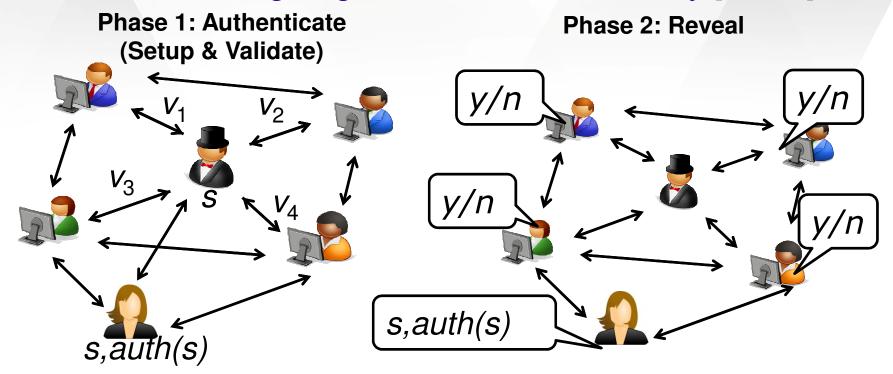
Phase 2: Reconstruct



Security Requirements:

- Even a cheating Dealer is committed to some secret $s^* \in F \cup \{\bot\}$ after Share phase (Weak Commitment [without Agreement])
- (Correctness), (Privacy), (Linearity)

Information Checking: Signature-like Functionality [RB'89]



Security Requirements:

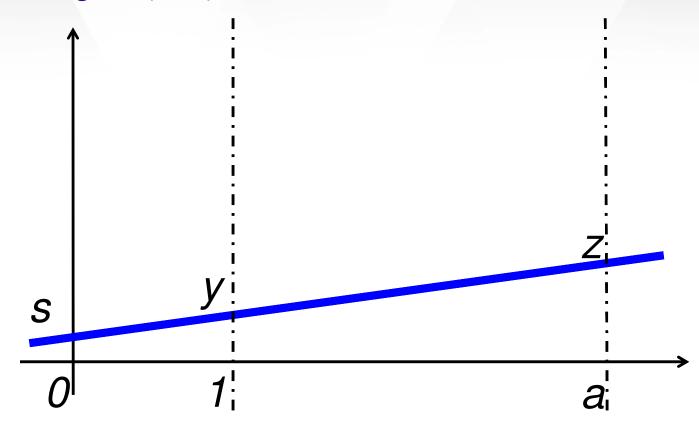
Correctness, Non-Forgery, Commitment, Privacy, Linearity

Information Checking (cont'd)

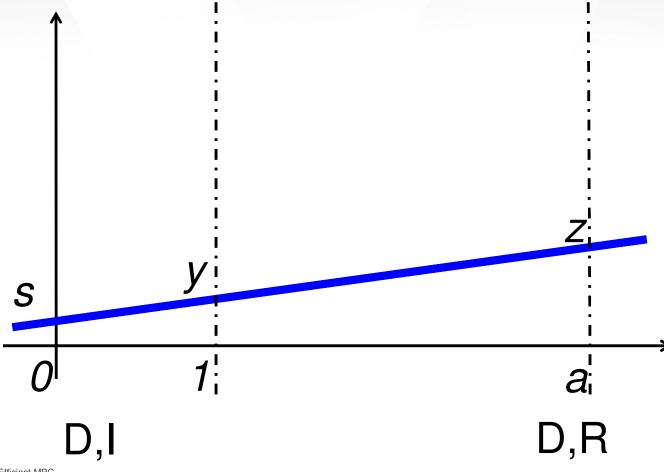
Triple of protocols (ICSetup, ICValidate, ICReveal) which achieves a signature-like functionality for three players: D, I and R

- D holds as input a secret $s \in F$, which he passes to I in ICSetup
- ICValidate ensures that even if D cheats, I knows a value which R will accept
- In ICReveal, I sends s to R plus some authentication data, based on which R accepts or rejects s as having originated from D

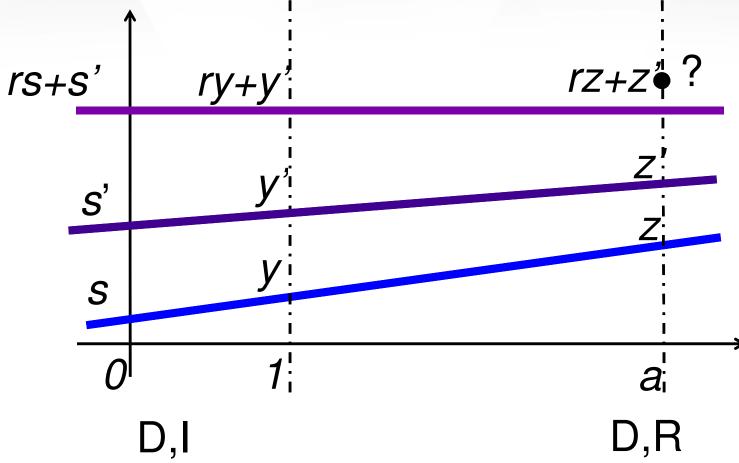
Implementing IC (n=3)



Implementing IC (n=3)

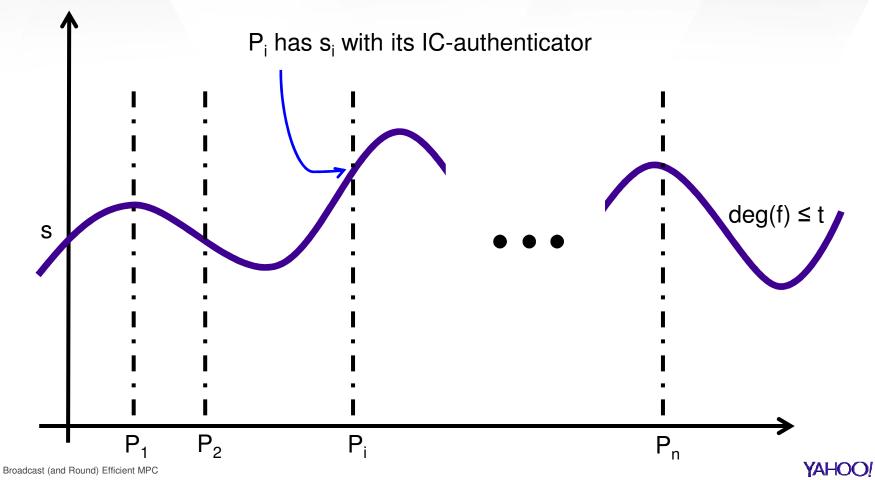


Implementing IC (n=3)

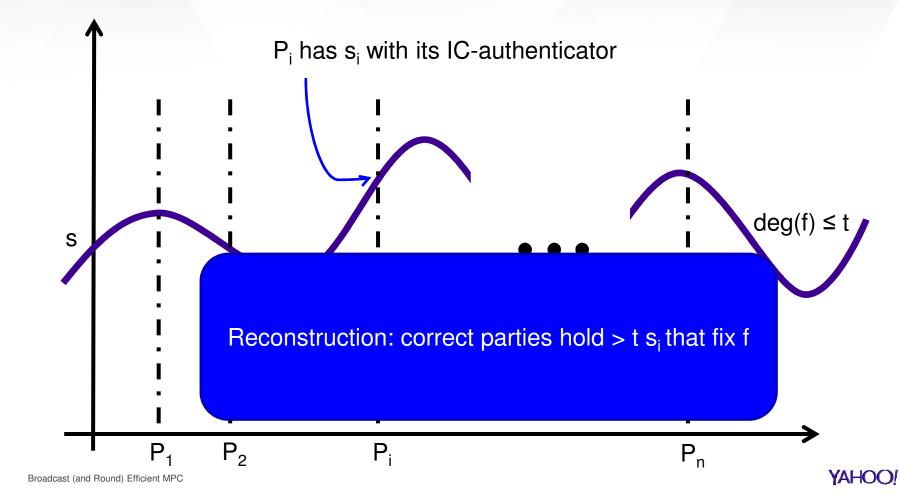


The (2,0)-bcast VSS Protocol

WSS Protocol



WSS Protocol



Weak Secret Sharing Protocol

WSS protocol uses **2 b'casts** in its sharing phase, and admits 2 different reconstruction phases (one w/o b'cast but achieves only WSS-w/o-agreement)

- Protocol WSS-Share(P,D,s)
 - 1. D chooses random polynomial f(x) of degree $\leq t$ s.t. f(0) = s, and sets $s_i = f(i)$. For each pair $P_i, P_i \in P \{D\}$, run $ICSetup(D, P_i, P_i, s_i)$
 - 2-5. **2 x BROADCAST in 4,5:** For each $P_i, P_j \in \mathbf{P} \{D\}$, run **ICValidate** (D, P_i, P_j, s_i)

Weak Secret Sharing Protocol (cont'd)

- Protocol WSS-Rec-NoBC(P,D,s)
 - 1. For each pair $P_i, P_j \in P \{D\}$, run $ICReveal(P_i, P_j, s_i)$. If P_i accepts at least n–t pieces, and all accepted pieces lie on a polynomial f(x) of degree $\leq t$, then takes s = f(0) to be the secret, otherwise \perp

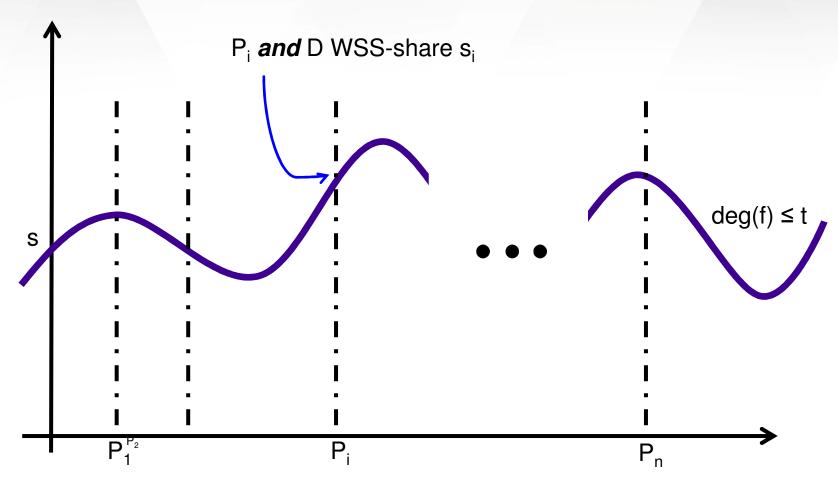
(WSS-Share, WSS-Rec-NoBC) is a linear WSS-without-agreement scheme, secure against a static, unbounded adversary who corrupts t < n/2 players.

Note: (2,0)-bcast, (6,1)-round protocol (same no. of b'casts as IC protocol)

(3,0)-bcast VSS Protocol (high level)

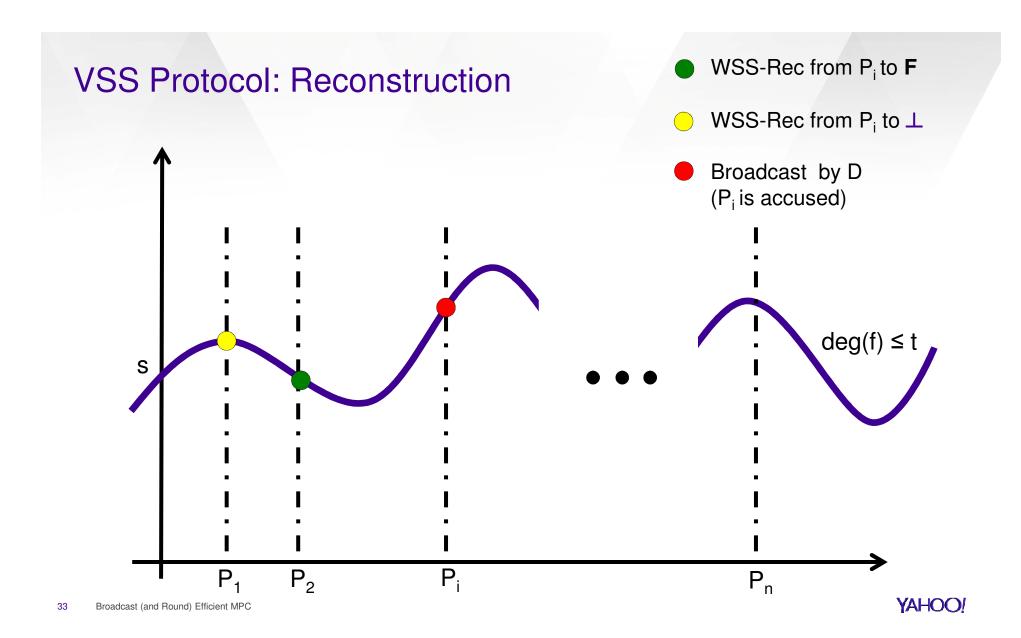
- Inspired by [RB89].
 - First, D distributes shares of t-degree polynomial f(x) s.t. f(0) = s, and of additional random t-degree polynomials $g_k(x)$ ($1 \le k \le n\lambda$)
 - Each player commits to all shares via WSS protocol
 - All players jointly carry out *cut-and-choose*, in which players are challenged to reconstruct g_k 's or $f + g_k$'s
 - Players who complain of incompatible shares, or fail to participate, have their shares broadcast (and hence fixed) by D

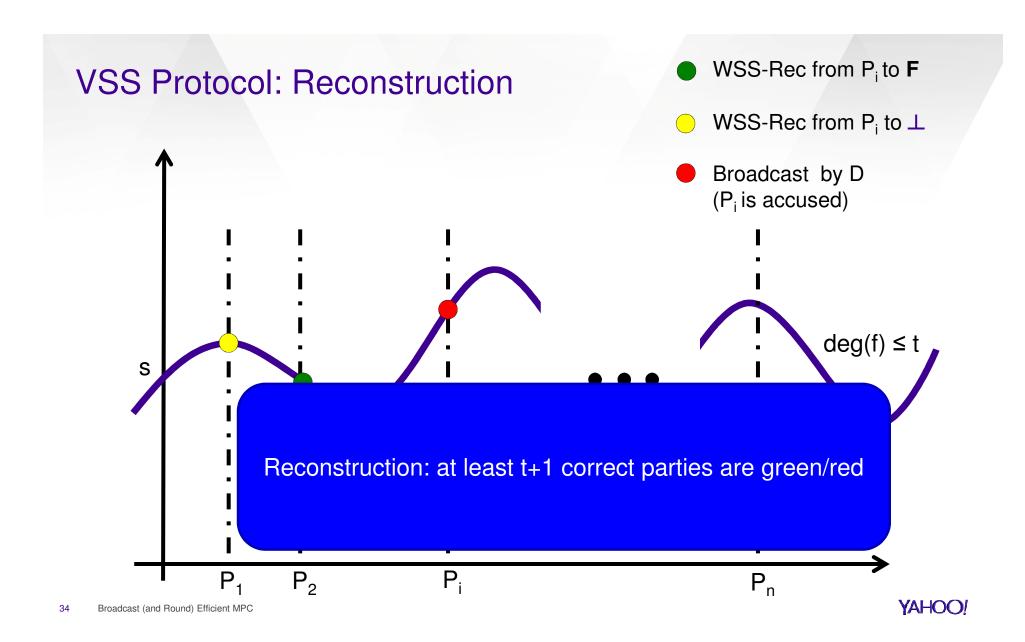
VSS Protocol: Distributing Shares



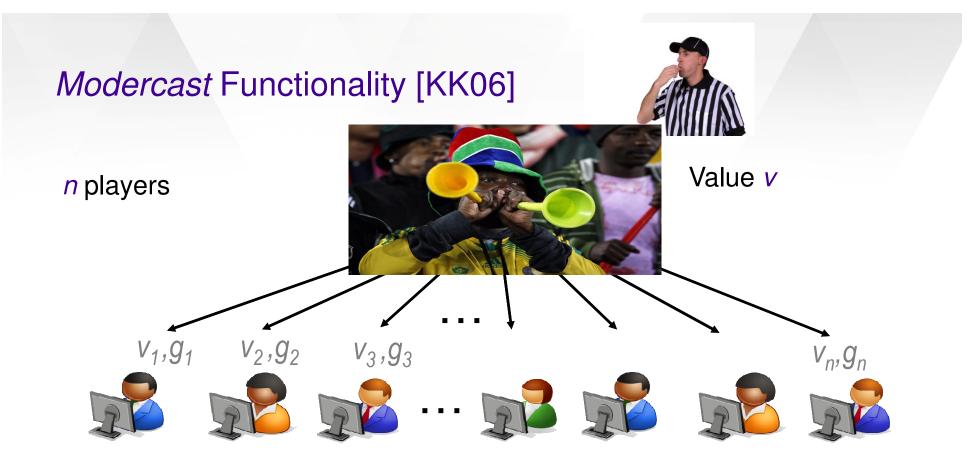
(3,0)-bcast VSS Protocol (high level – cont'd)

- [RB89]'s VSS requires 7 b'cast rounds in sharing phase. Our novelties:
 - We require the dealer D as well as the players to commit via WSS to the shares he distributed
 - After all commitments are in place, players broadcast a round of cutand-choose challenges
 - Additional trick: pre-broadcast in WSS share phase
 - Parties "semi-commit" to their intended WSS final-round broadcast, by first sending on *point-to-point* channels, which is then echoed in the next round. This allows cut-and-choose challenges in the *same round*





From (3,0)-bcast to (2,0)-bcast VSS



If the moderator is honest, $(v_i, g_i) = (v', 1)$ (Moderated Agreement) If some honest party has g=1, $(v_i, g_i) = (v', 0/1)$ (Graded Agreement) If some honest party has g=1 and the source is honest, $(v_i, g_i) = (v, 0/1)$ (Validity)

YAHOO!

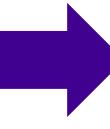
Moderated Protocols

Original protocol

- Send/Receive/Compute
- 2. Broadcast
- 3. Send/Receive/Compute
- 4. Send/Receive/Compute
- Broadcast

Each P_i starts with $f_i=1$

- Send/Receive/Compute
- 2. Modercast, update fi
- 3. Send/Receive/Compute
- 4. Send/Receive/Compute
- 5. Modercast, update fi



Moderated Protocols

Original protocol

- Send/Receive/Compute
- 2. Broadcast
- 3. Send/Receive/Compute
- 4. Send/Receive/Compute
- Broadcast

Moderated protocol

Each P_i starts with $f_i=1$

- Send/Receive/Compute
- Modercast, update f_i
- 3. Send/Receive/Compute
- 4. Send/Receive/Compute

As secure as original protocol if at least one honest player has f_i=1

From 3 to 2 Broadcast Rounds

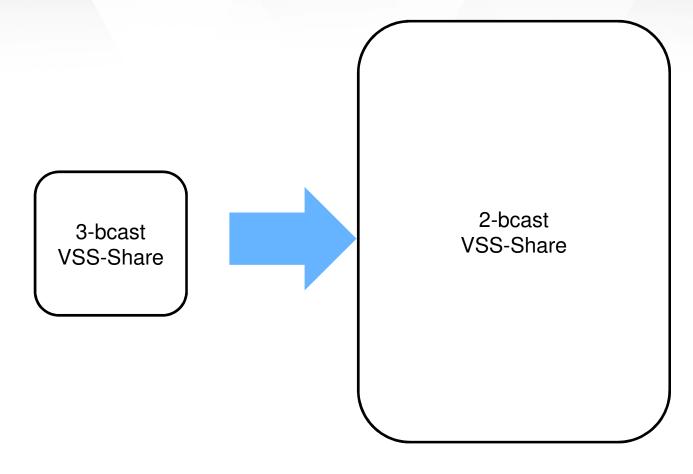
Prepare setups for Modercast with 1 round of **broadcast** (based on [HR13])

3-bcast VSS-Share

Moderated by the Dealer 3-bcast VSS-Share

Broadcast f_i . If > n/2 $f_i=1 \rightarrow success$.

From 3 to 2 Broadcast Rounds



Related Work (VSS)

- [RB89,Rab94]: (7,0)-bcast O(1)-round VSS
- [KPC10]: (2,2)-bcast (3,2)-round VSS
 - Exponential time; not (apparently) linear
 - (3,2)-bcast (4,2)-round poly-time VSS protocol; linear?
- [HR13]: (1,0)-bcast O(n)-round VSS
 - Linear no. of rounds → not ideal for natural VSS app's
- [KK07,Koo07,KKK08]: Role of b'cast in VSS and MPC
 - Reduce overall no. of rounds when b'cast is simulated over p2p channels

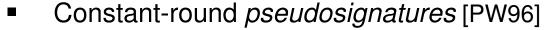
Our Results

- VSS with two b'cast rounds, constant overall rounds
 - First linear VSS protocol enjoying these features
 - (2,0)-bcast (20,1)-round VSS protocol

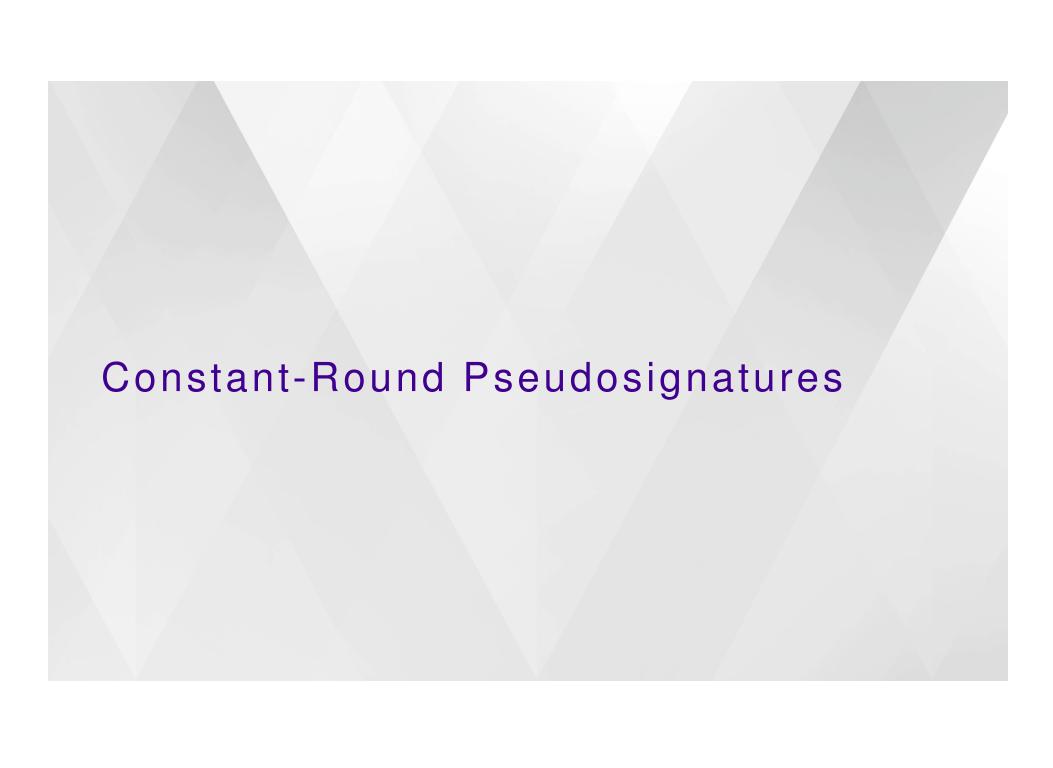
- Unconditionally secure *anonymous channel* (aka DC-nets [Chaum'88])
- Black-box use of VSS; same b'cast complexity

Our Results

- VSS with two b'cast rounds, constant overall rounds
 - First linear VSS protocol enjoying these features
 - (2,0)-bcast (20,1)-round VSS protocol



- Unconditionally secure anonymous channel (aka DC-nets [Chaum'88])
- Black-box use of VSS; same b'cast complexity

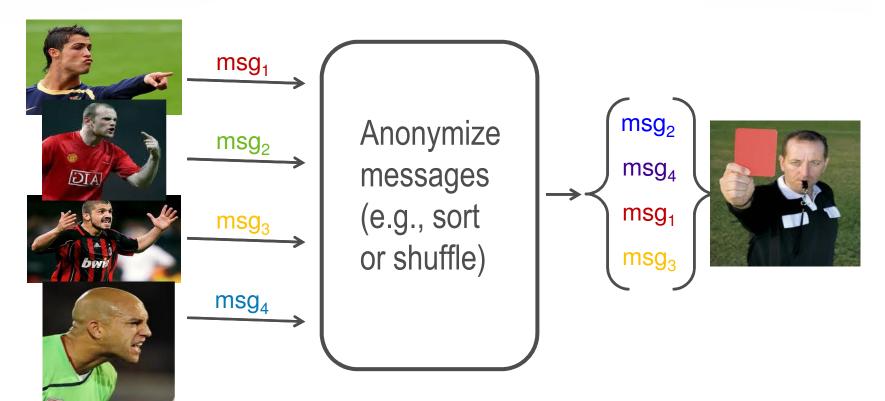


Pseudosignatures [PW96]

- Information-theoretic signature scheme...
 - For a fixed-in-advance set of players
 - Verification keys are kept secret
 - Needs physical broadcast setup
 - Only bounded transferability of signatures
- Once we have them, we can implement *authenticated* broadcast protocol (e.g., [DS83, KK06]; tolerate n > t)
 - → No more physical broadcasts required!

Pseudosignatures [PW96]

Based on sender-anonymous channel [Chaum88]:

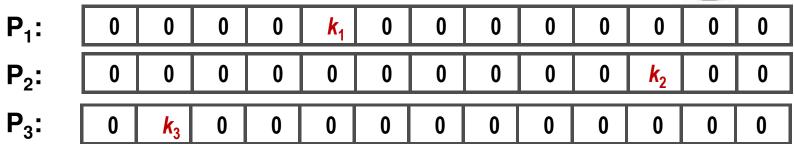


Anonymous Channel: Security Requirements

- Even a cheating Receiver learns no more about honest senders' inputs than the multiset of them (Anonymity)
- Honest Receiver correctly gets all honest messages (Correctness)
- Cheating players have zero information on value of honest players' messages, for honest Receiver (Privacy)
- Cheating players' messages are independent of honest players' messages, for honest Receiver (Non-Malleability)

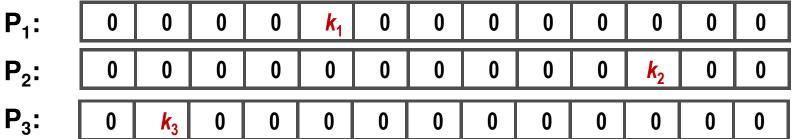
Our Anonymous Channel

The Idea: *Throwing Darts* [Hag91]



Our Anonymous Channel

The Idea: Throwing Darts [Hag91]



- Each player commits to vector, and gives ZK proof that committed vector is mostly zeroes
- Accepted (committed) vectors are added coordinate-wise:

|--|

From Anonymous Channel to Pseudosignatures

- Every party sends random keys, anonymously, to Signer. Repeat the process "several" (say, p) times.
- Signer receives p signature blocks of keys $B_1 = ((a_{11}, b_{11}), \dots, (a_{1n}, b_{1n})), \dots, B_p = ((a_{p1}, b_{p1}), \dots, (a_{pn}, b_{pn}))$ Signature(M) = ($a_{11}M \oplus b_{11}, ..., a_{1n}M \oplus b_{1n}$), $(a_{21}M \oplus b_{21}, ..., a_{2n}M \oplus b_{2n}),$ $(a_{p1}M \oplus b_{p1}, ..., a_{pn}M \oplus b_{pn}).$
- 1st verifier: Given (M, σ) , verify all blocks have correct $aM \oplus b$
- 2^{nd} verifier: Verify *most* blocks have correct $aM \oplus b$

Our Anonymous Channel (cont'd)

- AnonChan implements an anonymous channel for t < n/2, using only black-box access to a linear VSS protocol
- Protocol is constant-round, and uses no additional broadcast rounds beyond those required by VSS
- Broadcast complexity: $B_{share} + B_{rec}$
- Our VSS protocol: $B_{share} = 2$, $B_{rec} = 0$

Related Work (Anonymous Channels, Pseudosig's)

- [Chaum88]: Introduced DC-nets; passive adversary
- [CR91]: Unconditionally secure signatures; only one transfer
- [PW96]: Introduced pseudosig's; $\Omega(n^2)$ rounds (t < n)
- Cryptographic constructions of anonymous channels:
 - [vABH03]: "k-anonymity;" also "dart-throwing;" not *reliable*
 - [GJ06]: "collisions" not considered; *malleable*
- [SHZI02, BTHR07] Alternative pseudosig. construction, based on random low-degree multi-variate polynomials
 - Not constant-round; not domain independent only sign msgs from underlying field
 - More communication efficient

Putting It All Together: Π_f

Preprocessing phase:

- Parties invoke AnonChan with each P_i acting as receiver for many sessions in parallel, to generate a pseudosig' setup for future broadcasts
 - Parties use VSS protocol → 2 b'cast rounds
- Parties now leverage information-theoretic PKI to generate sufficiently many random multiplication triples (using, e.g., constant-round authenticated protocol [Koo07])

Computation phase:

- To compute circuit, parties first share their inputs using VSS, replacing calls to b'cast with p2p authenticated b'cast protocol
- Parties use the multiplication triples to evaluate any arithmetic circuit w/o further use of b'cast, in O(D) rounds

Summary

- VSS with two b'cast rounds, constant overall rounds
 - First linear VSS protocol enjoying these features
 - (2,0)-bcast (20,1)-round VSS protocol
- Constant-round pseudosignatures
 - Unconditionally secure anonymous channel (aka DC-nets)
 - Black-box use of VSS; same b'cast complexity

References

- J. Garay, C. Givens, R. Ostrovsky and P. Raykov, "Broadcast (and Round) Efficient Verifiable Secret Sharing." *Proc ICITS 2013.* Cryptology ePrint Archive: http://eprint.iacr.org/2012/130.
- J. Garay, C. Givens, R. Ostrovsky and P. Raykov, "Fast and Unconditionally Secure Anonymous Channel." In submission.

YAHOO! LABS Science-Driven Innovation

$$\begin{aligned} & \lim_{|x| \to \infty} \min_{|x| \to \infty} \left[\langle h, -x| \beta \rangle \right] & R(A, w) = \frac{|\langle D, T | | \langle D, c_{x'}, A' \rangle|}{|\langle D, T' | \rangle} \\ & Dir \left(n_{x'} + \overline{n}_{x'} + A \theta_{\pi(x')} \right) \end{aligned}$$

$$& Lin(v_{x'}v') = \sum_{\text{tots conv}} \frac{|v(w) + v'(w)|}{|\langle v(w) + v'(w)|} \\ & = Pr(c) Pr(c) \frac{|\rho_{x'}(v)|}{|\rho_{x'}(v)|} Pr(d|c_{x'}, x) + \sum_{|\alpha| \in A \setminus A} |\langle v(w) + v'(w)| \\ & = Pr(c) Pr(c) \frac{|\rho_{x'}(v)|}{|\rho_{x'}(v)|} Pr(d|c_{x'}, x) + \sum_{|\alpha| \in A \setminus A} |\langle v(w) + v'(w)| \\ & = Pr(c) Pr(c) \frac{|\rho_{x'}(v)|}{|\rho_{x'}(v)|} Pr(d|c_{x'}, x) + \sum_{|\alpha| \in A \setminus A} |\langle v(w) + v'(w)| \\ & = Pr(c) Pr(c) \frac{|\rho_{x'}(v)|}{|\rho_{x'}(v)|} Pr(d|c_{x'}, x) + \sum_{|\alpha| \in A \setminus A} |\langle v(w) + v'(w)| \\ & = Pr(c) Pr(c) \frac{|\rho_{x'}(v)|}{|\rho_{x'}(v)|} Pr(d|c_{x'}, x) + \sum_{|\alpha| \in A \setminus A} |\langle v(w) + v'(w)| \\ & = Pr(c) Pr(c) \frac{|\rho_{x'}(v)|}{|\rho_{x'}(v)|} Pr(d|c_{x'}, x) + \sum_{|\alpha| \in A} |\langle v(w) + v'(w)| \\ & = \sqrt{\sin(v_{x'}^{2}, v_{x'}^{2}) \cdot \sin(v_{x'}^{2}, v_{x'}^{2})} \cdot \sin(v_{x'}^{2}, v_{x'}^{2})} \\ & = Pr(c) Pr(c) \frac{|\rho_{x'}(v)|}{|\rho_{x'}(v)|} Pr(c) \frac{|\rho_{x'}(v)|}{|\rho_{x'}(v)|} Pr(d|c_{x'}, x) \\ & = Pr(c) Pr(c) \frac{|\rho_{x'}(v)|}{|\rho_{x'}(v)|} Pr(c) \frac{|\rho_{x'}(v)|}{|\rho_{x'}(v)|} Pr(c) Pr(c) \frac{|\rho_{x'}(v)|}{|\rho_{x'}(v)|} Pr(c) Pr(c)$$