How to Implement (ORAM in) MPC

Marcel Keller Peter Scholl Nigel Smart

University of Bristol

21 February 2014
Overview

1. How to Implement MPC
2. ORAM in MPC
Part I

How to Implement MPC
SPDZ: MPC with Preprocessing

Offline Phase
- Correlated Randomness
- Independent of secret inputs
- Homomorphic encryption with distributed decryption
- Highly parallelizable

Online Phase
- No encryption
- Information-theoretic security in random oracle model
How to Share a Secret with Authentication

<table>
<thead>
<tr>
<th>Shares</th>
<th>MAC shares</th>
<th>MAC key</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>$\gamma(a)_1$</td>
<td>α_1</td>
</tr>
<tr>
<td>a_2</td>
<td>$\gamma(a)_2$</td>
<td>α_2</td>
</tr>
<tr>
<td>a_3</td>
<td>$\gamma(a)_3$</td>
<td>α_3</td>
</tr>
<tr>
<td>a</td>
<td>$\alpha \cdot a$</td>
<td>α</td>
</tr>
</tbody>
</table>

$\sum_i a_i = \sum_i \gamma(a)_i = \sum_i \alpha_i = a$
How to Share a Secret with Authentication

<table>
<thead>
<tr>
<th>Shares</th>
<th>MAC shares</th>
<th>MAC key</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_1 + b_1$</td>
<td>$\gamma(a)_1 + \gamma(b)_1$</td>
<td>α_1</td>
</tr>
<tr>
<td>$a_2 + b_2$</td>
<td>$\gamma(a)_2 + \gamma(b)_2$</td>
<td>α_2</td>
</tr>
<tr>
<td>$a_3 + b_3$</td>
<td>$\gamma(a)_3 + \gamma(b)_3$</td>
<td>α_3</td>
</tr>
<tr>
<td>$a + b$</td>
<td>$\alpha \cdot (a + b)$</td>
<td>α</td>
</tr>
<tr>
<td>$= \sum_i a_i + b_i$</td>
<td>$= \sum_i \gamma(a)_i + \gamma(b)_i$</td>
<td>$= \sum_i \alpha_i$</td>
</tr>
<tr>
<td>$= a + b$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiplication with Random Triple
(Beaver Randomization)

\[x \cdot y = (x + a - a) \cdot (y + b - b) \]
\[= (x + a) \cdot (y + b) - (y + b) \cdot a - (x + a) \cdot b + a \cdot b \]
Multiplication with Random Triple
(Beaver Randomization)

\[x \cdot y = (x + a - a) \cdot (y + b - b) \]

\[= (x + a) \cdot (y + b) - (y + b) \cdot a - (x + a) \cdot b + a \cdot b \]

Masked and opened

Random secret triple
Toolchain Overview

- **Python-like high-level code**
 - Compiler
 - Bytecode
 - Virtual machine

- **Compiler**
 - Python
 - Easier development
 - Circuit optimization
 - Speed not an issue
 - Memory overhead

- **Virtual machine**
 - Online phase
 - C++
 - Fast
 - ~150 instructions
Core Technique: I/O Parallelization

\[z = x \cdot y \]
\[u = z \cdot w \]
\[z = x \cdot y \]
\[u = v \cdot w \]
Core Technique: I/O Parallelization

\[z = x \cdot y \]
\[u = z \cdot w \]

1. Mask and open \(x \) and \(y \)
2. Compute \(z \)
3. Mask and open \(z \) and \(w \)
4. Compute \(u \)

\[z = x \cdot y \]
\[u = v \cdot w \]

1. Mask and open \(x \), \(y \), \(v \), and \(w \)
2. Compute \(z \) and \(u \)
Goal: Automatize I/O Parallelization

▶ Manual parallelization is tedious:

\[
\begin{align*}
 x_{10} &= x_2 \cdot x_3 \\
 x_{11} &= x_8 + x_4 \\
 x_{12} &= x_{10} \cdot x_1 \\
 x_{13} &= x_7 + x_9 \\
 x_{14} &= x_7 \cdot x_1 \\
 x_{15} &= x_9 + x_{12} \\
 x_{16} &= x_{13} \cdot x_{14} \\
 x_{17} &= x_0 + x_{11} \\
 x_{18} &= x_{11} \cdot x_{15} \\
 x_{19} &= x_{13} \cdot x_7 \\
 x_{20} &= x_4 + x_6 \\
 x_{21} &= x_{16} + x_2 \\
 x_{22} &= x_0 + x_{12} \\
 x_{23} &= x_{22} + x_{14} \\
 x_{24} &= x_{11} + x_{19} \\
 x_{25} &= x_4 \cdot x_{19} \\
 x_{26} &= x_{23} \cdot x_9 \\
 x_{27} &= x_7 \cdot x_5 \\
 x_{28} &= x_{13} + x_{21} \\
 x_{29} &= x_{14} + x_{27} \\
 x_{30} &= x_{19} \cdot x_1 \\
 x_{31} &= x_{16} + x_{26} \\
 x_{32} &= x_0 \cdot x_{10} \\
 x_{33} &= x_{26} + x_{32} \\
 x_{34} &= x_7 \cdot x_3 \\
 x_{35} &= x_9 \cdot x_{29} \\
 x_{36} &= x_{33} + x_{22} \\
 x_{37} &= x_{29} \cdot x_{24} \\
 x_{38} &= x_{16} + x_{23} \\
 x_{39} &= x_{15} + x_{37} \\
 x_{40} &= x_{12} \cdot x_{39} \\
 x_{41} &= x_{34} + x_7 \\
 x_{42} &= x_{32} + x_5 \\
 x_{43} &= x_{12} + x_{26} \\
 x_{44} &= x_{43} \cdot x_{38} \\
 x_{45} &= x_{38} + x_{14} \\
 x_{46} &= x_{44} \cdot x_{27} \\
 x_{47} &= x_{22} + x_{24} \\
 x_{48} &= x_{39} \cdot x_{38} \\
 x_{49} &= x_{21} \cdot x_3 \\
 x_{50} &= x_{28} + x_{16} \\
 x_{51} &= x_{15} + x_{38} \\
 x_{52} &= x_{50} \cdot x_{46} \\
 x_{53} &= x_{19} + x_2 \\
 x_{54} &= x_{20} \cdot x_{13} \\
 x_{55} &= x_{21} + x_{22} \\
 x_{56} &= x_{19} \cdot x_6 \\
 x_{57} &= x_{46} + x_1 \\
 x_{58} &= x_{38} \cdot x_{55} \\
 x_{59} &= x_{47} + x_{29}
\end{align*}
\]

▶ SIMD not suitable for every application
Circuit as Directed Acyclic Graph

- **Nodes**: Instructions
- **Edges**: Output of instruction is input to another
- **Two instructions** for open: sending and receiving
- **Edge weight**:
 - One between sending and receiving
 - Zero otherwise
- **Longest path with respect to weights** determines communication round
- **Merge all communication per round**
 \[\Rightarrow \text{Optimal number of rounds} \]
Need to re-compute topological order
(no edges pointing backwards)
⇒ Standard algorithm linear in number of edges

Heuristic to shorten lifetime of variables
⇒ Reduced memory usage
Part II

Oblivious RAM in MPC
Goal: Oblivious Data Structures

- Generally
 - Secret pointers
 - Secret type of access if needed
- Oblivious array / dictionary
 - Secret index / key
 - Secret whether reading or writing
- Oblivious priority queue
 - Secret priority and value
 - Secret whether decreasing priority or inserting
Oblivious RAM
Oblivious RAM
Oblivious RAM in MPC

Client
MPC circuit

Server
Secret Sharing

Reveal

\(x_1\)
\(x_2\)
\(x_3\)
\(x_4\)
Simple Oblivious Array (Trivial ORAM)

Inner product with index vector

\[
\begin{pmatrix}
[0] \\
\vdots \\
[1] \\
[0] \\
\vdots \\
[0]
\end{pmatrix}
\cdot
\begin{pmatrix}
[a_0] \\
\vdots \\
[a_{i-1}] \\
[a_i] \\
[a_{i+1}] \\
\vdots \\
[a_{n-1}]
\end{pmatrix}
= [a_i]
\]

Index vector computation

\[
[i] \mapsto \begin{pmatrix}
[i] \overset{?}{=} 0 \\
\vdots \\
[i] \overset{?}{=} i \\
\vdots \\
[i] \overset{?}{=} n - 1
\end{pmatrix}
\]
Simple Oblivious Array

Index vector computation without equality test

- Bit decomposition: \([x] \mapsto ([x_0], \ldots, [x_{n-1}])\) such that \(x = \sum_i x_i 2^i\)
- Demux: \(([x_0], \ldots, [x_{n-1}]) \mapsto ([\delta_0], \ldots, [\delta_{2^n-1}])\) such that \(\delta_i = (i \equiv x)\)

Example: \(n = 4, \ i = 2\)
Tree-based ORAM

- Entries stored in tree of trivial ORAMs of fixed size (buckets)
- Access only buckets on path to specific leaf per ORAM access
- Store path in smaller ORAM \Rightarrow recursion
- Data-independent eviction to distribute entries over tree
- Original idea by Shi et al. (Asiacrypt 2011)
- Path ORAM: improved eviction by Stefanov et al. (CCS 2013)
Oblivious Array Access Timings

Two Parties, Online Phase

<table>
<thead>
<tr>
<th>Size</th>
<th>Access time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original tree-based ORAM</td>
</tr>
<tr>
<td>10^0</td>
<td>1</td>
</tr>
<tr>
<td>10^1</td>
<td>10</td>
</tr>
<tr>
<td>10^2</td>
<td>100</td>
</tr>
<tr>
<td>10^3</td>
<td>1000</td>
</tr>
<tr>
<td>10^4</td>
<td>10000</td>
</tr>
<tr>
<td>10^5</td>
<td>100000</td>
</tr>
<tr>
<td>10^6</td>
<td>1000000</td>
</tr>
</tbody>
</table>

[Graph showing access times for different ORAM schemes]
Oblivious Priority Queue

- Store value-priority pairs
- Values unique
- Operations
 - Remove value with minimal priority
 - Insert new pair
 - Update value to lower priority
- Two oblivious arrays
 - Binary heap by priority
 - Index to find entries in heap by value

\[[00, \lambda, 0, 1, 01] \]
Dijkstra’s Shortest Path Algorithm

\[\text{a} \quad 3 \quad \text{b} \]

\[\text{s} \quad 1 \quad \text{c} \]

\[\text{1} \quad \text{2} \]
Dijkstra’s Shortest Path Algorithm

\begin{align*}
a & : 1 \\
1 & \quad 3 & b \\
1 & \quad 2 & \quad c : 1 \\
1 & \quad a : 1
\end{align*}
Dijkstra’s Shortest Path Algorithm
Dijkstra’s Shortest Path Algorithm
Dijkstra’s Shortest Path Algorithm

\[
\begin{array}{c}
 a : 1 \\
 b : 2 \\
 c : 1 \\
 s \\
 1 \\
 2 \\
 3 \\
\end{array}
\]
Dijkstra’s Algorithm in MPC

for each vertex do
outer loop body
for each neighbor do
inner loop body

- Number of vertices and edges public
- Graph structure in two oblivious arrays (vertices and edges)
- Use oblivious priority queue
- Dijkstra’s algorithms uses two nested loops
 - One vertices, one of neighbors thereof
 - MPC would reveal the number of neighbors for every vertex
 - Replace by loop over all edges in same order
 - Flag set when starting with a new vertex
- Polylog overhead over classical algorithm
- Previous work: polynomial overhead
Dijkstra’s Algorithm in MPC

```plaintext
for each edge do
outer loop body
(dummy if same vertex)
inner loop body
```

- Number of vertices and edges public
- Graph structure in two oblivious arrays (vertices and edges)
- Use oblivious priority queue
- Dijkstra’s algorithms uses two nested loops
 - One vertices, one of neighbors thereof
 - MPC would reveal the number of neighbors for every vertex
 - Replace by loop over all edges in same order
 - Flag set when starting with a new vertex
- Polylog overhead over classical algorithm
- Previous work: polynomial overhead
Dijkstra’s Algorithm in MPC
Timings for Cycle Graphs

![Graph showing timings for different array structures with sizes ranging from 10^0 to 10^5. The x-axis represents size, and the y-axis represents total time in seconds. The graph compares No ORAM, No ORAM (estimated), Simple array, Simple array (estimated), Tree-based array, and Tree-based array (estimated).]
Conclusion

- Practical MPC requires a dedicated compiler.
 (ACM CCS 2013 / ePrint 2013:143)
- Oblivious data structures in MPC are feasible and useful.
 (ePrint 2014:137)