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Abstract

Despite the growing popularity of Solid State Disks (SSDs)

in the datacenter, little is known about their reliability char-

acteristics in the field. The little knowledge is mainly ven-

dor supplied, and such information cannot really help un-

derstand how SSD failures can manifest and impact the op-

eration of production systems, in order to take appropriate

remedial measures. Besides actual failure data and the symp-

toms exhibited by SSDs before failing, a detailed character-

ization effort requires wide set of data about factors influ-

encing SSD failures, right from provisioning factors to the

operational ones. This paper presents an extensive SSD fail-

ure characterization by analyzing a wide spectrum of data

from over half a million SSDs that span multiple genera-

tions spread across several datacenters which host a wide

spectrum of workloads over nearly 3 years. By studying the

diverse set of design, provisioning and operational factors

on failures, and their symptoms, our work provides the first

comprehensive analysis of the what, when and why charac-

teristics of SSD failures in production datacenters.

Categories and Subject Descriptors B.8.1 [Hardware]:

Reliability, Testing, and Fault-Tolerance

Keywords solid state drives; reliability; characterization;

1. Introduction

Storage system reliability is of paramount importance be-

cause storage component failures can lead to data corruption,

or even permanent data loss. Consequently, beyond multi-

level redundancies, timely replacement of storage devices is

common in production datacenters. A direct consequence is

the hardware replacement costs. An indirect consequence is
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the associated downtime to fix the problem and/or replace

the device. It can even take several days to repair/replace a

storage component after its failure, with associated server

being unusable during this period. To account for this down-

time, datacenters resort to over-provisioning (which can add

significant cost) in order to meet the desired application

availability Service Level Agreements (SLAs).

In the storage stack, SSDs are obviously at an advan-

tage compared to HDDs in terms of failure rates. How-

ever, (i) SSDs are between 4X-40X costlier per GB than

HDDs, depending on their grade (neutralizing, and in fact

out-weighing the lower failure rate advantage); and (ii) an

SSD-related failure ticket in our dataset results in a replace-

ment 79% of the time compared to 11% for HDD-related

tickets (i.e. SSD related failure tickets are more critical in

the datacenter). These factors, together with rapid SSDs

adoption[3, 13], motivate us to understand SSD reliability.

The current knowledge on SSD failure rate is primar-

ily vendor supplied, based on accelerated lab testing under

controlled conditions. In addition to the parameters they are

tested for, numerous other factors in a production environ-

ment (e.g., diverse sets of workloads, environment, manage-

ment policies, etc.) may not have been considered. Also,

simply understanding vendor specified failure rates may not

suffice, even if they hold in practice. A datacenter operator

may need to understand the what, when and why character-

istics for appropriate provisioning and operational decisions,

that are not easily captured by a single (failure rate) metric.

Understanding SSD failure characteristics can be valu-

able in several ways. Though not comprehensive, some use-

cases include: (i) pick vendors and models with more rigor

by evaluating the performability-capacity-cost trade-offs;

(ii) evaluate the consequences of SSD failures not just on

its TCO, but also on the datacenter as a whole based on

associated server downtimes; (iii) provision (hot or cold)

spares accordingly; (iv) deployment for the right workloads

based on their read-write characteristics; and (v) anticipating

failures and taking appropriate actions including pro-active

service, re-purposing for different workloads, etc.

However, with SSDs being relatively in their infancy

compared to their HDD counterparts (past 5-8 years vs. sev-



eral decades), little is understood about their real-word fail-

ure properties, in order to be useful for the above purposes.

There are a few studies (e.g. [10, 15, 33]) that examine spe-

cific errors and their effects in a laboratory setting. To our

knowledge, prior large-scale field studies on SSD failures

are from Facebook [24] and Google [31]. However, these

studies (i) examine a single kind of SSD hardware failure

(bit error rates) and not all possible SSD failures that could

take the server down; and (ii) analyze correlating factors

independently, which makes it difficult to understand the

what, when and why answers that could depend on several

workload and datacenter spatio-temporal factors.

We present an extensive characterization of failure data

from over half a million SSDs that span five very large

and several edge datacenters, over a span of nearly 3 years.

These SSDs serve a wide spectrum of workloads including

Big Data Analytics, Content Distribution Caches and Web

Search Engines. that exhibit diverse characteristics. Beyond

failure data, several other influential factors such as design,

provisioning, and workload evolution data (read/write vol-

umes, write amplification, etc.) have also been collected at

fine spatial (datacenter , rack and server levels) and tempo-

ral resolution. In addition, SSD failure symptoms provided

by the SMART (Self-Monitoring, Analysis and Reporting

Technology) [2] attributes have also been captured. Using

a comprehensive multi-factor analysis of this large dataset,

this paper makes the following important contributions:

• The observed Annualized Failure Rate (AFR) in these

production datacenters for some models is significantly

higher (as much as 70%) than that quoted in SSD specifi-

cations, reiterating the need for this kind of field study.

• Four symptoms - Data Errors (Uncorrectable and CRC),

Sector Reallocations, Program/Erase Failures and SATA

Downshift - experienced by SSDs at the lower levels are

the most important (in that order) of those captured by the

SMART attributes.

• Even though Uncorrectable Bit Errors in our environment

are not as high as in a prior study [24], it is still at least an

order of magnitude higher than the target rates [26].

• There is a higher likelihood of the symptoms (captured

by SMART) preceding SSD failures, with an intense

manifestation preventing their survivability beyond a few

months. However, our analysis shows that these symp-

toms are not a sufficient indicator for diagnosing failures.

• Other provisioning (what model? where deployed? etc.)

and operational parameters (write rates, write amplifica-

tion, etc.) all show some correlation with SSD failures.

This motivates the need for not just a relative ordering of

their influence (to be useful to a datacenter operator), but

also a systematic multi-factor analysis of them all to better

answer the what, when and why of SSD failures.

• We use machine learning models and graphical causal

models to jointly evaluate the impact of all relevant factors

on failures. We show that (i) Failed devices can be dif-

ferentiated from healthy ones with high precision (87%)

and recall (71%) using failure signatures from tens of im-

portant factors and their threshold values; (ii) Top factors

used in accurate identification of failed devices include:

Failure symptoms of data errors and reallocated sectors,

device and server level workload factors such as total

NAND writes, total reads and writes, memory utilization,

etc.; (iii) Devices are more likely to fail in less than a

month after their symptoms match failure signatures, but,

they tend to survive longer if the failure signature is en-

tirely based on workload factors; (iv) Causal analysis sug-

gests that symptoms and the device model have direct im-

pact on failures, while workload factors tend to impact

failures via media wear-out.

2. Data collection

Datacenter hierarchy: Our study covers five large and sev-

eral small edge (closer to users) datacenter facilities with di-

verse properties packaging, cooling and availability design.

The datacenter facility spans numerous racks. A rack hosts

multiple servers and network equipment of a specific config-

uration, that is referred to as Rack SKU. In these datacenters,

a rack is the smallest unit of deployment, and all the servers

of a rack are assigned the same workload type. Our dataset

consists of six rack SKUs from two different vendors. In our

study, each server has 2 sockets, 6-8 cores per socket, 32-

128GB memory, 0-2 SSDs, and 4 HDDs based on the SKU

configuration.

Runtime collects data for monitoring system health and

performance issues through various sources in the datacen-

ter. For instance, SMART monitoring system is employed

in HDDs and SSDs to detect and report various failure in-

dicators in addition to normal usage. Performance counters

(e.g., cpu, memory, storage utilization, etc.) are constantly

used to track the performance and well-being of operating

systems and applications. Table 1 presents the data collected

and used for this study.

SSD Population: We examine over half a million SSDs in

these datacenters. Table 2 summarizes their salient charac-

teristics by categorizing them into five groups based on their

vendors and models. Each group has hundreds of thousands

of devices. Majority of them come from a single vendor

(named as 1) spanning multiple generations. The older gen-

eration SSDs (1-A, 1-B and 1-C) have a capacity of 160GB

and have been operational for over 2.5 years. The newer gen-

erations in 1-D and 2-A have a capacity of 480GB each,

with mean age slightly below 2 years. They all use MLC

based flash medium. Models from vendor 1 are consumer

class whereas the model 2-A SSDs are enterprise class.

Workloads: The SSDs under study are used by different

classes of cloud applications and we identify the following

four major categories: (i) W1 - platform for big data anal-

ysis, (ii) W2 - content caching in edge nodes close to cus-

tomers, (iii) W3 - datacenter management software, (iv) W4



Design/Provisioning Features : Categorical

Attributes Type

Facility, Rack SKU, SSD Vendor, SSD Model static

Server level workload : Numeric

Attributes Type

Utilization of CPU, Memory, Network daily average

Space utilization of SSDs, HDDs daily average

Disk queue length daily average

Device level workload : Numeric

Attribute SMART value Type

Reads raw cumulative, daily average

Host writes raw cumulative, daily average

NAND writes raw cumulative, daily average

Reads+Writes raw cumulative, daily average

WAF derived cumulative

Read/Write ratio derived cumulative

Media wear-out val normalized

Device level symptoms : Numeric

Attribute SMART value Type

Reallocated sectors raw cumulative event

Program fail raw cumulative event

Erase fail raw cumulative event

Reserve space val normalized

Uncorrectable errors raw cumulative event

CRC errors raw cumulative event

SATA downshift raw cumulative event

Table 1: List of features/factors/attributes. Type represents

the information type captured. An instance of these features

represents a device’s signature.

Model Size µage µreads µwrites Lith.

1-A 160GB 3.17 yrs. NA 42.8 TB 34nm

1-B 160GB 3.31 yrs. 138.7 TB 25.1 TB 25nm

1-C 160GB 2.69 yrs. 99.9 TB 11.7 TB 25nm

1-D 480GB 1.92 yrs. 145.2 TB 40.3 TB 25nm

2-A 480GB 1.8 yrs. NA NA 20nm

Table 2: SSDs under study. µage - average age, µreads and µwrites

- the average amount of data read and written, respectively, per disk

since its deployment, Lith. - lithograph, NA - unavailable data.

- web search which includes indexing, multimedia, object

store, advertisement, and others. These workloads have very

different access patterns and read/write intensities, and Fig-

ure 1 captures their difference in daily average of read/write

characteristics. Note, except for workload W1 (big data anal-

ysis) all the other workloads have higher reads than writes.

This is distinct from the previous study by Facebook where

the difference between reads and writes is not that significant

as shown in Figure 1.

3. SSD reliability

3.1 Flash Reliability Basics

NAND flash cells can sustain only a certain number of pro-

gram/erase cycles, as specified by the endurance rating, be-

fore they permanently wear out. SSDs use wear-leveling to

distribute wear evenly across cells. Despite this, wear out can

lead to capacity fade over time. They are also prone to some

reversible failure phenomenon resulting in data errors. First,
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Figure 1: Workloads and SSD usage characteristics. Dotted line

represents equal amount of daily data reads and writes. Read (write)

dominant workloads are above (below) the dotted line.

they are susceptible to retention errors caused due to leakage

current, which worsens with time when not acted upon. Sec-

ond, they also suffer from phenomenon such as read disturb

and program disturb errors, where read or program of a row

or block of cells affects the threshold voltage of untouched

cells in its vicinity. Flash controllers have proactive and re-

active mechanisms in place, to prevent the flash error prop-

agation to higher levels in the system stack. Consequently,

not all of the above-mentioned failures propagate to upper

layers. But, ones that do propagate can result in fail-stop fail-

ures. Infrastructure management layer at the datacenter [18]

captures such failures and creates a failure ticket for further

inspection. In this work, we analyze and characterize these

fail-stop failures arising from SSD failures1 that propagated

up to the software in a production datacenter environment.

3.2 SSD Failures and Their Implications

DEFINITION 1. Failed Device: We identify an SSD to fail-

stop, if the result of some underlying SSD events/failures

propagates to the corresponding server, causing it to be shut-

down for external (sometimes physical) intervention or in-

vestigation. The device will be replaced or repaired subse-

quently2. We refer to a device that fail-stops anytime during

our observation window, as a “Failed” device.

DEFINITION 2. Healthy Device: Any SSD that does not fail-

stop during observation window is a “Healthy” device.

Henceforth, a failure refers to a fail-stop failure in this pa-

per. Any other SSD error/failure that does not take down the

server is referred to as a symptom. Even if a device does not

fail-stop within our observation time window, it could fail-

stop immediately after. In order to prevent mis-classification,

we use a larger observation window (of 34 months) to clas-

sify devices, and conduct analysis for the data in the first 30

months, leaving 4 months for only classification.

Why focus on fail-stop failures? Fail-stop failures are

significant in our data set, and the consequent downtime can

1 We investigated failure tickets and identified SSDs as the failure source.
2 Yet, we conservatively term it as failed in this study, since the downtime is

itself a significant concern/cost. Nearly 80% of the fail-stopped SSDs were

replaced in our observed datacenters during the observation window.



lead to substantial Quality-of-Service (QoS), cost and avail-

ability concerns. To quantify these failures, we use Annual-

ized Failure Rate (AFR) as the metric, which is commonly

used to report hardware failures [28, 29]:

AFR = Total devices with failures
Total device years in %

1−A 1−B 1−C 1−D 2−A

 Model 

A
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R
 %

0
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0
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Figure 2: AFR vs. SSD models. Hor-
izontal lines - Vendors reported AFR.

Figure 2 shows the AFRs

for various SSD models

under study. Model 2-A

(an enterprise class SSD)

has much lower AFR

compared to the other

consumer class models.

For the latter, SSD speci-

fications report AFRs be-

tween 0.61% - 0.73%.

However, except model

1-A which is in the spec-

ified range, both model 1-B and model 1-C exceed the pub-

lished AFR, while model 1-D is well below. This indicates

that a production datacenter environment running real work-

loads can affect a SSD’s failure characteristics very differ-

ently from the operating conditions imposed by their corre-

sponding manufacturer’s test environments.

As mentioned earlier, the consequences of fail-stop fail-

ures are multi-fold. This includes: (i) lower Quality-of-

Service and availability to hosted applications (and asso-

ciated loss in revenue), and/or (ii) higher capital and operat-

ing expenses in provisioning extra capacities to guarantee a

promised availability to these applications.

As SSD footprint continues to rapidly increase in data-

centers [3, 13], SSDs are replacing HDDs in Edge datacen-

ters, CDNs [1] and public clouds [25], beyond its widespread

role as data caches. Therefore, it becomes extremely crucial

to understand the what, when and why of SSD failures from

the field. Towards this goal, we begin by examining symp-

toms experienced by SSDs to understand whether they can

help identify devices that fail. After showing that they do not

suffice, we conduct a more in-depth analysis across a wide

range of parameters to study the correlations/causalities.

3.3 SSD Failure Symptoms

Even before the onset of a fail-stop failure, SSDs can exhibit

the following symptoms from underlying problems, cap-

tured using SMART attributes – Reallocated Sector Count,

Program/Erase Fail Count, CRC and Uncorrectable Error

Count, and SATA Downshift Count. Some of these symp-

toms can by themselves be debilitating enough to be viewed

as a “failure” in certain situations [24, 31], even if they do

not immediately result in a fail-stop. However, in this paper,

we still treat these as symptoms, and consider only the fail-

stop events, as described previously, to be failures. We mea-

sure the extent of symptom occurrence in the datacenter as

the percentage of devices where the corresponding SMART

attribute value is non-zero in the total population.

Reallocated (Realloc) Sector Count: It captures the num-

ber of times a sector was re-allocated elsewhere on the SSD.

Reallocations result in reduction of reserve space, which

plays an important role in reducing write amplification and

wear-leveling [17]. While this reduction may not immedi-

ately result in fail-stop failures, it could have a long-term

impact on the lifetime of NAND cells. The oldest model 1-

A shows the highest extent of reallocations with more than

80% of the devices exhibiting at least one reallocation. Inter-

estingly, a younger model 1-D also shows a significant real-

locations, affecting more than 7% of the devices. As shown

later, the reallocation count is an important (though not suf-

ficient) symptom leading up to fail-stop failures.

Program/Erase (P/E) fail count: It captures failures in pro-

gram/erase operations that indicate problems in the underly-

ing flash medium. Nearly, 0.5%-3.23% of the devices show

this symptom. Such program/erase failures can also cascade

into sector reallocations.

CRC and Uncorrectable errors: These events stem from

data errors in media or errors in the communication link.

Even if such symptoms may not necessarily propagate to

higher levels because of ECC (Error Correction Code), they

could have performance consequences. These errors affect
Model 1-B 1-C 1-D

UBER/device 6.15 x 10
−14

1.27 x 10
−11

1.24 x 10
−14

Table 3: Uncorrectable Bit Error Rate (UBER).

about 0.47% to 2.8% of devices. Bit Error Rate (BER) (as

in [15, 24]) is another standard metric used to capture the

rate at which such errors occur, relative to the total data

read by the device. Uncorrectable Bit Error Rate (UBER)

is similarly computed for SSD uncorrectable errors (but can

be host-correctable). Prior works such as [15, 24], provide

extensive characterization of data errors using BER metric.

Table 3 presents the UBER for models that expose both un-

correctable error count and total data usage. Even though un-

correctable errors are not as common in our datacenters as

those seen in the Facebook study [24], the UBER observed

in our dataset (10−11 to 10−14) is at least an order of mag-

nitude higher than the target rate (10−15) [26].

SATA downshift count: The SATA interface downgrades to

a lower signaling rate when it encounters more errors. This

low signaling rate (and the underlying cause) can potentially

result in performance degradation. The reason for downshift

could be either a temporary disturbance or a permanent

problem in the storage/communication medium. Selecting a

lower signaling rate is not uncommon in SSDs, with more

than 5% of devices in model 1-C going down to a lower

signalling speed during their lifetime.

Failure symptoms correlate with AFR of SSDs. Fig-

ure 3 shows AFR for two groups of devices, those exhibit-

ing symptoms and those not, for the four symptom cate-

gories. The presence of any of these symptoms increases

AFR consistently by as much as 3X to 20X. In particu-

lar, data errors have a significant impact on AFR of SSDs
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Figure 3: AFR in the presence

and absence of symptoms.

with as much as 20X

difference for the two

groups. And, the pres-

ence of Reallocations

and SATA downshift in-

creases the AFR by 4X.

Program and Erase fail

events show a less pro-

nounced difference of

2.75X.

3.4 Failures vs. SMART Symptoms

Given the preliminary indications that the failed SSDs have

higher likelihood of exhibiting symptoms, we investigate

whether they are a sufficient indicator. We use survival prob-

ability to study how long a device survives once it starts ex-

hibiting symptoms. It is computed using Kaplan-Meier esti-

mator [22] as follows: S(t) =
∏

ti≤t
ni−fi
ni

where ni is the number of survivors, and fi is the number

of failed devices at time ti. n0 is the population in the

beginning at risk, with non-zero SMART counter values.
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Figure 4: Survivability in the presence of symptoms.

Impact of Symptom Occurrence: Figure 4 presents the

survival probability for devices with any of the four symp-

toms for up to 9 months after its first occurrence (note that

the lines flatten out beyond this point). In the interest of

space, we only show results for Model 1-C and Model 1-

D to represent the older and younger model of devices, re-

spectively. As shown in Figure 4a, the survival probability of

1-D is little affected by the presence of reallocation events,

whereas for 1-C, 10% of devices fail within a few months

after their sectors are reallocated. Symptoms P/E fail (Fig-

ure 4b) and SATA downshift (Figure 4d) also show a similar

effect, though less pronounced. Data errors (Figure 4c), on
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Figure 5: CDFs of symp. intensity in failed and healthy devices.
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Figure 6: Survivability at high risk. High risk group has symptom

intensity greater than 80
th percentile value.

the other hand, have the most significant influence on sur-

vival probability for both the models. Nearly 22% and 8%

of devices from models 1-C and 1-D respectively fail within

a window of 9 months after this symptom was exhibited.

Impact of Symptom Intensity: Just one occurrence of

a symptom, may be too ephemeral towards classifying

whether a device would fail or not. For instance, Figures 5a

and 5b show the Cumulative Distribution Functions (CDFs)

of reallocated sectors and data errors respectively, for failed

and healthy devices of model 1-C. They show that symp-

toms are more prevalent in failed devices. In particular, a

large fraction of healthy devices have no symptoms, and

even if the symptoms occur, they are very mild in intensity,

e.g., 80% of healthy devices have fewer than 2 reallocated

sectors. In contrast, failed devices have much higher symp-

tom occurrences, e.g., 20% of failed devices have over 1000

sectors reallocated. The other symptoms also show similar

behavior and data is not explicitly presented here.

We next analyze the survival probability of SSDs that

are at higher risk. Specifically, we use the 80th percentile

of each symptom’s CDF for all devices (both healthy and

failed) to represent high risk. Figure 6 shows that devices of

both models fail significantly faster when the risk is high.

This effect is more prominent in model 1-C, where nearly

20% and 36% of high risk devices fail within 9 months after

first occurrence of reallocation and data errors, respectively.

Symptom’s Progression Rate: A device which has started

exhibiting symptoms can deteriorate progressively until it

fails. To capture the progression of the symptoms (and hence

the possible progression of the underlying cause), we calcu-
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Figure 7: Progression of the symptoms. Similar effects for P/E fail

and SATA downshift.

late the symptom’s incremental rate once a device starts ex-

hibiting it in Figure 7. We can see that more than 20% of the

devices show rapid progressive acceleration of symptoms in

reallocation events (over 94 per day) in model 1-C, com-

pared to less than 3% in model 1-D. Data errors also show

a significant difference with 40% of the devices having a

higher incremental rate (over 790 events per day) in model

1-C compared to less than 10% of the devices in model 1-D.

As can be seen from model 1-C, faster progression of symp-

toms is associated with lower survival rates once the symp-

toms start to manifest, as shown in Figure 4 and Figure 7 .

There is a higher likelihood of the symptoms preceding SSD

failures, with an intense manifestation and rapid progression

preventing their survivability beyond a few months.

Symptoms and Prognosis: Much of the data
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Figure 8: % of failed/healthy

devices exhibit symptoms.

discussed in this subsec-

tion, seems to indicate

that devices are likely

to exhibit symptoms be-

fore (6-9 months) they

fail. But, these symptoms

alone are not a sufficient

indicator of failure. Fig-

ure 8 compares the per-

centage of “Failed” and

“Healthy” SSD popula-

tion that exhibit these

symptoms. From this

data, we can observe the following:

• Around 62% of “failed” devices displayed at least one of

the above 4 symptoms (refer bar ‘Any’), suggesting that a

failed device has higher chance of having experienced one

of these symptoms.

• However, 38% of the failed devices did not experience

any such symptom. This suggests that a pure “symptom”

based diagnosis of failures, may not be very accurate.

• Of the symptoms, while sector re-allocation dominates

over the others, it is also prevalent among Healthy devices

(and not just the Failed ones), suggesting it may not be

a sufficient indicator of failure. The data errors, on the

other hand, are rarely (only 1%) experienced by Healthy

devices even if approximately 12% of failed devices have
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Figure 9: AFR vs. Avg. Host writes per day (GB).

experienced it, i.e. a SSD experiencing a data error has

a high likelihood of failure, even if not experiencing this

symptom cannot be used for a “Healthy” prognosis.

These suggest that, even though tracking symptoms is im-

portant, prognosis of whether a SSD will fail(-stop) or not,

cannot be made entirely based on the symptoms. This moti-

vates us to study other factors, beyond SMART symptoms,

to better understand the characteristics of failed devices.

3.5 Failures vs. Correlating Factors

Various operational, design and provisioning decisions in

the datacenter can affect SSD reliability. In this section, we

study the relationships of such factors on SSD failures.

3.5.1 Device Level Factors

SSD usage (reads & writes) and its idiosyncrasies (e.g. write

amplification) can impact its failure characteristics.

Host Writes: As explained earlier, flash cells can undergo

a limited number of Program/Erase (P/E) cycles referred to

as the endurance rating. The wear-out due to P/E cycles

degrades SSD capacity over time and may eventually lead

to its failure. The P/E operations are directly affected by

the volume of writes to the device. Since we lack direct

measurement of P/E cycles, we use host directed writes as

its proxy. Figure 9 shows the relationship between mean host

writes per device per day (in x-axis) and SSD AFR (in y-

axis). Writes are histogrammed into buckets of equal value,

and any bucket with less than 1% of the total devices are

assigned to its nearest bin due to its small population size.

In general, the impact of writes on SSD reliability varies

across the SSD models. For instance, we observe a 2X to

4X increase in AFR as the average writes per day increases

for the older models of 1-A, 1-B and 1-C (only 1-C is shown

here). However, the AFR of the relatively younger model,

1-D, does not reveal any obvious correlation with the write

usage – this model has higher capacity and is still far from

its quoted endurance rating.

Reads: Understanding the impact of reads on SSD failure is

essential for many systems that already employ SSDs as read

caches. We studied the relationship between average reads

per day and the SSD AFR. The data did not show much

correlation between SSD AFR and the data read rate from

these devices. This again re-iterates the point of previous
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Figure 10: AFR vs. Read/Write Ratio. Model 1-B shows similar

trends as model 1-C. Data unavailable for models 1-A and 2-A.

studies [7, 24, 26] that read disturbance, a failure mode seen

at the flash chip level, is not predominant to manifest as a

significant fail-stop failure in production datacenters.

Read/Write Ratio: In addition to the absolute read and

write rates, we also study their combined impact using the

read/write ratio:
Reads (TB)

Reads (TB)+ Writes (TB)
. It captures the

dominance of reads vs. writes, and Figure 10 plots the AFR

of devices for different bins of Read/Write Ratios. The plot

shows that for model 1-C, write dominant devices have

higher failures, which corresponds to the observation made

in Figure 9(a) that higher write rate increases AFR for model

1-C. Model 1-B shows similar behavior (not shown here).

On the other hand, model 1-D shows that AFR is skewed

towards the read dominant region (x-axis > 0.6). Note that

for model 1-D, using just the absolute rates of reads and host

writes do not show any significant correlations.
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Figure 11: SSD AFR vs. WAF

for model 1-D.

Write Amplification

(WAF): WAF is the ra-

tio of data written to the

flash memory to the host

directed writes. It de-

pends on factors such

as workload characteris-

tics (sequential/random

access), background ac-

tivities like garbage col-

lection, etc. These ad-

ditional writes may not

only affect performance

of a write request, but also consume additional P/E cy-

cles to reduce lifetime. Figure 11 shows the correlation

between WAF and SSD AFR. It shows that devices with

either very high or very low write amplification have higher

failure rates. While the latter category may appear counter

intuitive, WAF can fall below 1 when the device performs

compression. Despite such optimizations, they have higher

failure rate as this category of devices also exhibited higher

wearout. Also, note that SSD failures for model 1-D did not

indicate any obvious correlation to Host Writes, but shows

correlation with higher WAF. These justify the need for

multi-factor analysis to understand the interactions among

various factors.

3.5.2 Server Level Factors

At each server, the usage of sub-components and their inter-

actions with SSDs, can also affect SSD reliability.

Storage Space Utilization: We first look at the space uti-

lization of the storage sub-components: HDDs and SSDs.

Figure 12 shows the AFRs as a function of the space that

is utilized (written) on the SSD and HDD on a daily basis.

In general, higher SSD space correlates with an increase in

SSD AFR. This is expected, as higher space utilization typ-

ically indicates more valid data written to the SSDs. Apart

from P/E wear issues due to high write traffic, higher uti-

lization translates to lower free space, leading to higher in-

duced writes, garbage collection, wear leveling and their cor-

responding P/E wear. In contrast, we find an inverse relation-

ship between SSD AFR and HDD space utilization on the

corresponding servers, where higher HDD space utilization

correlates with reduced SSD AFRs. This pattern is consis-

tent across all the device models we observe. This may be

due to the fact that most of the servers in our study use SSDs

as buffers/caches for HDDs. A web search workload (write

once, read many times) may cause high HDD utilization, but

only reads on SSDs which do not generally reduce SSD life-

time. In contrast, a big data analysis workload (write many

times) may not necessarily impose high HDD utilization, but

may impose heavy writes on SSDs for better performance,

which can significantly reduce SSD lifetime.
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Figure 12: AFR vs. Space Utilization.

Memory and CPU Utilization: We have also studied the

impact of memory (space) and CPU utilization of the servers

on the failure characteristics of their respective SSDs. A

workload (and corresponding server) that is memory inten-

sive, is also likely to be storage intensive, since memory

is typically used as a staging area for the storage. Conse-

quently, higher memory utilization does tend to correlate

with SSD failures for most models. The data does not show

much statistical significance to draw conclusions to correlate

SSD failures with processor utilization.

3.5.3 Datacenter Level Factors

At the datacenter level, design decisions such as configura-

tions, packaging and cooling technologies etc. can impact



the failure rates of different components [19, 30]. In the

interest of space, we only show the correlation with Rack

SKU.

Rack SKU: A Rack SKU represents the vendor, model,

SKU Configuration

S1-1 1x 160GB SSD
S1-2 2x 160GB SSDs
S1-3a 2x 480GB SSDs
S1-3b 2x 480GB SSDs

S2-1 1x 160GB SSD
S2-2 2x 160GB SSDs

Table 4: Rack SKUs from 2 ven-
dors (S1, S2). Suffix represent gen-
eration. S1-3a and S1-3b only differ
in their HDD capacity.

capacity, and configuration

of the compute/storage de-

vices (see Table 4). Figure 13

shows their SSD AFRs for

different models. The results

indicate: (i) For the same

SSD model, there is a large

difference in AFRs between

the SKUs of different ven-

dors. e.g. AFR of model 1-

A in S1-1 is 14X as high as that in SKU S2-1. This in-

dicates that factors external to SSDs also play a role in

determining the failure rates; (ii) HDD deployed in SKU

makes difference in AFR. Specifically, SKU S1-3a and SKU

S1-3b are similar in all aspects but their HDD capacity,

with SKU S1-3a having higher HDD capacity than SKU

S1-3b. Both SSD models in SKU S1-3b show 2X differ-

ence in AFRs compared to the same models in SKU S1-3a.
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Figure 13: AFR for various SKUs,

sorted by vendor and generation.

Apart from other

differences be-

tween the SKUs

(such as where they

are placed in the

datacenter and as-

sociated environ-

mental parame-

ters), one important

consequence of the

SKU is the class of applications that they host, and as was

observed earlier, the workloads do impact the failure char-

acteristics of the SSDs.

4. Characterization of Failed Devices

So far, we have identified several factors that correlate with

SSD failures. The next step is to identify the important fac-

tors, their order of importance, and understand their tempo-

ral and causal relationships to better characterize the failed

devices. In this section, we explore the what, when, and why

of SSD failures by jointly considering them all. In particu-

lar, this is useful for a datacenter operator to take appropriate

operational and provisioning decisions, which are not easily

achieved by simply analyzing individual factors.

4.1 Understanding the What?

We use machine learning classification models to decide

whether the signature of a SSD corresponds to failed or

healthy class. The signature of a device represents the val-

ues of its correlating factors. Labeled failed and healthy de-

vices, dataset uses the data from entire 2.5 years period. We

use features including symptoms, device/server level factors,

Category Feature Importance

Symptom DataErrors 1
Symptom ReallocSectors 0.943
Device workload TotalNANDWrites 0.526
Device workload HostWrites 0.517
Device workload TotalReads+Writes 0.516
Server workload AvgMemory 0.504
Server workload AvgSSDSpace 0.493
Device workload UsagePerDay 0.491
Device workload TotalReads 0.475
Device workload ReadsPerDay 0.469

Table 5: Top-10 features that affect accurate identification of failed

devices (using permutation feature ranking).

and design/provisioning factors as shown in Table 1. Among

all the classification models (boosted decision tree, SVM,

logistic regression, etc.) we have evaluated, we choose ran-

dom forest model [5] (based on an ensemble of decision

trees) due to its better performance and robustness in the

presence of noisy inputs. It takes a device signature as in-

put and classifies it to that of a failed or a healthy device.

We also apply SMOTE [12] for over-sampling during the

training phase to mitigate imbalance in the dataset as the

number of failed devices is much smaller than the number of

healthy ones. We perform 5-fold cross validation to avoid bi-

ased results – the dataset is divided into 5 folds, where each

round of cross validation uses 4 folds for training and one

for testing. The results present the average performance for

all 5 rounds. To evaluate the classifier’s performance (i.e.,

the ability to differentiate the failed from the healthy), we

use standard classification metrics of precision and recall:

precision = |A∩P |
|P | , recall = |A∩P |

|A| where A is the true

set of failed devices, and P is a set of failed devices identi-

fied by the model. High precision and recall is desired.

Can we differentiate the failed and the healthy devices

using their signature? We answer this affirmatively. Our

classification model has a recall of 0.71 and precision of

0.87. i.e., it is able to identify 71% of all the true failed de-

vices, and of all those classified as failed by the model, 87%

of them are truly failed (the other 13% are false positives).

Compared to the previous sections, this multi-factor classi-

fication model has much higher precision and coverage in

identifying the failed devices than just using individual fac-

tors or symptoms.

What are the important factors for identifying failed

devices accurately?
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Figure 14: Precision and recall

with factors added in their order

of importance.

We use permutation

feature ranking (PFR) [5]

to answer this ques-

tion. PFR metric reports

the importance of each

feature based on how

much the model accu-

racy changes as the value

of the feature is per-

muted.

Table 5 shows the top-

10 most important fac-



tors, with importance value normalized to that of the highest

one. It shows that symptoms, which represent some under-

lying issues, rank the highest. Total NAND writes, which

directly consumes P/E cycles, also ranks as a significant fac-

tor. The next few important factors are all based on device

or server-level workloads such as total reads and writes, av-

erage memory and SSD space utilization, etc. Factors that

rank lower may either correlate with higher ranked ones or

suggest that they are bad indicators. So, we further analyze

whether or not we need all the features.

We study the change in overall classification accuracy

when only a subset of features is used to build the model.

This is identified by the order of importance obtained using

PFR. Figure 14 shows that there is a significant improvement

in precision and recall as we add the top-8 most important

features in Table 5. The accuracy even approaches close to

the case of using all features. This indicates that in addition

to top ranking symptoms, other highly ranked factors also

play an important role in accurate identification of failed

devices. In contrast, adding features that are ranked below

the top-8 incurs only a modest increase in precision/recall.

What constitute the signature of failed devices? The sig-

nature of a failed device includes both the factors and their

corresponding values. The random forest presents a list of

rules to classify the devices. A rule is a set of conditions that

evaluates the values of multiple features. Understanding the

rules is an important but a challenging task, as even a model

in modest size (like ours) contains several thousands of rules

(> 3500). So, we investigate the properties of most frequent

patterns, which are a part of the original rules and contain a

small number of conditions (e.g., < 3). In general, patterns

are easier to interpret, and frequent ones impact decisions

more. Also, note that patterns with more conditions could

deliver better performance at the cost of less interpretability.

Using inTrees framework [14], we present patterns that are

critical for identification of the failed device’s signature.

Pattern Condition Class

P1 DataErrors<=1 & ReallocSectors<=5 H

P2 DataErrors<=1& WAF<=1 H

P3 MediaWearout=100 & WAF<=1 H

P4 AvgSSDspace >=10 F

Table 6: Most frequent patterns seen in the classification rules.

MediaWearout is normalized to 0-100 range. 100 represents no

wear, and 0 represents high wear. “H” - Healthy and “F” - Failed.

Table 6 presents four most frequent patterns with low-

est error rate in their classification accuracy. They compare

the thresholds for Data Errors, Reallocated Sectors, Me-

dia wearout, WAF and average SSD space usage. Patterns

P1 and P2 identify the thresholds for individual symptoms

in the healthy devices while accounting for other symp-

toms/factors. This is in consensus with what we observed in

Section 3.4 that the symptom’s intensity is important for it to

manifest as failure. These patterns represent that a data error

of 1 and a reallocation count of at most 5 is acceptable in

certain scenarios. Pattern P2 and P3 identifies the signature

of healthy devices in the low WAF group as the ones that do

not exhibit data errors nor suffer from media wearout. This

also agrees with our observation in section 3.5 that low WAF

devices had higher AFR due to media wearout. The last pat-

tern represents that increase in SSD space usage corresponds

to failure when other factors are accounted for.

Implications: While being used to characterize the failed

and healthy devices in this paper, the machine learning

model that identifies tens of important features, their thresh-

olds and their combinations can be leveraged to predict de-

vices that are going to fail and take appropriate measures.

4.2 Understanding the When?
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Figure 15: CDF of Time to

fail (tf−tm). Mean = 4 months

To understand when a de-

vice fails, we leverage

the rules (identified in

Section 4.1) with high

frequency and lower er-

ror rate. We represent

the time at which a de-

vice’s signature matches

the classification rules as

tm and the actual time of

failure as tf , tf >= tm.

We present the CDF of the difference between these two

timestamps (tf -tm) as the time to fail in Figure 15. It shows

that the CDF is shifted towards the left with respect to an

uniform distribution, indicating the devices are likely to fail

sooner once their signature matches. We also observe de-

vices with high intensity symptom and high rate of progres-

sion tend to fail in less than a month from tm. In contrast, the

devices that survive for a longer period tend to match rules

based on device/server level workloads rather than symp-

toms. Some of these devices did not exhibit any symptoms

at time tm, but they presented with symptoms just before the

time tf . This indicates that, unlike symptoms, workload re-

lated factors have a long term accumulative effect in leading

to SSD failures.

Implications: The results suggest that: i) There exists a suf-

ficient time window of opportunity to identify devices that

are likely to fail, and take proactive actions to prevent un-

intended consequences of SSD failures. ii) The scope is es-

pecially large for signatures that are entirely based on the

workload characteristics as they tend to survive longer. This

indicates an opportunity to intervene and extend device life-

time such as by tailoring the workload assignment, device re-

purposing for an entirely different workload, etc. We leave

such an in-depth study as a part of our future work.
4.3 Understanding the Why?

To understand “why”, we study the causal relationship be-

tween factors, symptoms and failures. Typically, randomized

controlled experiments are used to find such relationships.



However, they are often impractical or even infeasible due to

their time and cost constraints. Instead, we intend to find the

causal relationships from the observational data. We use R

package pcalg [21] that leverages causal graphical models

[23] to learn causal structure and Pearl’s do-calculus [27] to

estimate causal effects, from our dataset. Here, graph mod-

els encode conditional independencies to capture the causal

structure, where nodes represent features and edges repre-

sent the direction of causation. Though the true causal struc-

ture is very difficult to obtain, the framework can estimate

the Markov equivalence class of the true causal graph. In

addition, Pearl’s do-calculus operation (mapping interven-

tional and observational distributions in the causal graph) is

applied to obtain possible causal measure. For instance, to

measure the causal effect of node Vx on node Vy , the change

of Vy in mean is used, i.e., ∂
∂x

E[Vy|do(Vx = x)], where

P [Vy|do(Vx = x)] represents the resulting distribution of

Vy after manipulating Vx.

Figure 16a shows a high level view of the causal struc-

ture,and Figure 16b focuses a part of it with effect mea-

sure shown on the edges (complete graph not shown due

to space limitation). We observe the following: (i) symp-

toms (i.e. data errors and reallocated) have direct effect on

failures. (ii) in addition, the observational data suggests that

design/provisioning factors such as device model also have

a direct impact on failures; (iii) other design/provisioning/

operational factors at server and device levels impact fail-

ures through Media Wearout. For instance, NAND writes

indirectly affect Failure via Media wearout which reduces

Reserve Space; (iv) the factors with stronger causal impact

(e.g., Data Errors, ReallocSectors, NAND Writes in Fig-

ure 16b) match well with the top ranked ones in Table 5.

Although the results assume no hidden variables (possible

confounding factors which are not observed/collected in our

study) are present, interestingly, we also see similar causal

structure when hidden variables are considered.

Implications: Although this is only an estimate of possible

causal relationships, it still provides useful insights and can

serve as effective guidance for designing and prioritizing ex-

periments (which are expensive in production datacenters) to

identify and measure causality. For instance, the model iden-

tifies important provisioning knobs (SSD model) and control

knobs (workload factors that affect Media Wearout) that di-

rectly or indirectly influence SSD failures in datacenters.

5. Related Work

Several works have examined failure trends of raw flash

chips [4, 6, 8, 10, 15, 16, 26, 32]. Prior work has analyzed

various modes of flash failures such as data retention [7, 10],

program disturb [8], read disturb [9], endurance [4, 11],

and power faults [32, 33]. The performance and robustness

of SSDs under various read/write characteristics and power

faults have also been studied [20, 33]. While these stud-

ies provide insights into SSD failure mechanisms, they are

Failure

Symptoms

Media Wearout

Server level Device level

Design/Provisioning

(a) High level interaction.

ReallocSectors

Failure

Reserve Space

Media wearout

0.58

0.64

NAND Writes

0.75

0.07

0.23

Data Errors

1.58

0.33

Model

0.01

(b) A partial view.

Figure 16: Causal structure and effect for factors on failure

highly limited by their scale (observations over tens of de-

vices), controlled testing environment, and the use of syn-

thetic workloads. Their impact on production systems is un-

clear. The closest related work to ours, by Meza et. al. [24],

examined the failure trends of flash based SSD in Facebook

production environments using uncorrectable errors as the

failure metric. This work mostly focuses on a single param-

eter analysis of SSD failures for a fleet comprising mainly

of devices with equivalent read/write rates. To our knowl-

edge, no prior work has considered SSD failures at scale in a

production environment, by investigating a wide set of fail-

ures that really impact SSD/server downtimes, and studied

the impact of a diverse set of design, provisioning and oper-

ational parameters on the failures (and their symptoms).

6. Concluding Remarks

This paper presents an extensive characterization of SSD

failures using field data.We first show that SSD failure rates

in the field can be very different from what vendors specify.

Next, we identify and quantify four types of SMART failure

symptoms exhibited by the SSDs, and provide characteris-

tics of symptom occurrence, intensity and progression rate.

We show that despite their presence, the symptoms alone

cannot be a sufficient indicator of failures. We have also

studied the impact of multiple provisioning and operational

factors across different layers of the datacenter hierarchy on

SSD reliability. Many of these factors are individually influ-

encing, and can also interact with each other in complicated

ways, to impact SSD failures. We have used machine learn-

ing and graphical model based approaches to systematically

consider the impact of multiple influential factors towards

answering the what, when and why of SSD failures. We be-

lieve the insights gained from this paper can greatly influ-

ence the design, provisioning and operational decisions for

SSDs in datacenters.
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