Online data processing with
S4 and Omid-

Flavio Junqueira

Microsoft Research, Cambridge

* Work done while in Yahoo! Research

Big Data defined

Wikipedia

In information technology, big data[1][2] is a collection of data sets so large and complex that
it becomes difficult to process using on-hand database management tools or traditional data
processing applications.

Hortonworks

A Big Data system has four properties:

- It uses local storage to be fast but inexpensive

- It uses clusters of commodity hardware to be inexpensive
- It uses free software to be inexpensive

- It is open source to avoid expensive vendor lock-in

http://hortonworks.com/blog/big-data-defined/
http://hortonworks.com/blog/big-data-defined-part-deux-value-definition/

Hadoop @ Yahoo!

Thousands of Servers

90

80

70

60

50

40

30

20

10

40K+ Servers

170 PB Storage
5M+ Monthly Jobs

2006

Research

2007

Science
Impact

2008

250

“Behind
every
Daily click”
Production Q
>
Fo
©
100 %3
o
50
| 0
2009 2010

Eric Baldeschwieler @IBM Big Data, May 2011

Context: Back in 2008

* Needed scalable real-time processing
* Direct feedback
* Optimization
* Adaptation
* Use case
* Ad ranking with clickthrough analysis

e Solution

* Distributed stream processing platform

e At the time

* No generic platform available
* Research project

AIMS FOR
100% CTR

ACHIEVES
110% CTR

Source: unbounce.com

Stream Processing Platform

* Enables applications that process streams of events

(‘-!

A

* Desirable properties source:make.com
* Online meaning low-latency

Best effort

Scalable

Fault tolerance (perhaps limited)
Flexible

Flavio Junqueira
m Google+ more accessed than Twitter, really?
emarketer.com/Article/Vhich-...

S4: Simple Scalable Streaming System

http://incubator.apache.org/s4

S4 Evolution

System overview

l
|
[
|
[
|
[
\

Cluster 1

AdapterApp

- - o . e o o =

Cluster 2
—————————— s\
\
|
e
@
|
<o
® | s
|
; .
@ ! <@ Processing
P : Element (PE)
I |
Send events | <o
according to I <P I
. . | I
hash partitioning | /
N 7’

* App defines keys
* One PE per key

Deployment

Logical cluster

Blessed Repository /

Zookeeper

“Publish new application”

|
Physical cluster

Fault tolerance: Fail-over

- = | —
| _|
r
Standby nodes

Active nodes

In this example, there are 4 partitions
available, 7 live nodes.

4 of the nodes pick the available partitions
in Zookeeper.

Each activenode consistently receives
messages for the partition it picked.

Zookeeper detects nodes failures and
notifies the other nodes. In this example,
the node assigned with partition 3 fails.

Unassigned nodes compete for a partition
assignment and only 1 of them picks it.
Other nodes are notified of the new
assignment and can reroute messages
for partition 3.

http://incubator.apache.org/s4/doc/0.6.0/fault tolerance/

http://incubator.apache.org/s4/doc/0.6.0/fault_tolerance/

Fault tolerance: Checkpointing

--

hooks -,
/

kéyed message
e e

54 node

..

http://incubator.apache.org/s4/doc/0.6.0/fault tolerance/

Checkpainting] storage
framework “

Uncoordinated and Asynchronous checkpoints
Lazy recovery
* PE state recovered upon message

Scheme is lossy
Prevents loss of state accumulated over
extended periods

http://incubator.apache.org/s4/doc/0.6.0/fault_tolerance/

Writing an app

Skeleton of an app

* HellolnputAdapter
* Events from external source

* HelloApp
* Creates topology
* Connects adapter to first PE

e HelloPE

* Process events

Skeleton of an app

* HellolnputAdapter
* Events from external source

* HelloApp
* Creates topology
* Connects adapter to first PE

e HelloPE
* Process events

public class HellolnputAdapter extends AdapterApp {

@Override
protected void onStart() {

Event event = new Event();
event.put("name", String.class, line);
getRemoteStream().put(event);
connectedSocket.close();

Skeleton of an app

public class HelloApp extends App {

* HellolnputAdapter Soveride

* Events from external source protected void onlnit() {
/[create a prototype
o He||oApp HelloPE helloPE = createPE(HelloPE.class);
/I Create a stream that listens to the "names" stream and
* Creates topology /] passes events to the helloPE instance.
e Connects adapter to first PE createlnpu_tStream(names", new KeyFinder<Event>() {
@Override
° HeI |OPE public List<String> get(Event event) {
return Arrays.asList(new String[] { event.get("name") });
* Process events }
}, helloPE);

Skeleton of an app

* HellolnputAdapter
* Events from external source

* HelloApp
* Creates topology
* Connects adapter to first PE

* HelloPE
* Process events

public class HelloPE extends ProcessingElement {

public void onEvent(Event event) {
System.out.printin("Hello " + (seen ? "again " : ") +
event.get("name") + "I");

}

S4 Piper

Lessons learned

Lessons from initial design

e State loss upon node crash

* Rigid communication layer
 UDP only
* No retransmission, no flow control

* Hard to use/debug/deploy

e Subjective, but that’s the overall feeling
* |solated applications
* No regression tests

S4 Piper improvements

* Dynamic coupling of applications
* Via a simple registration scheme
* Communication via TCP

* Throttling
e Retransmission and flow control

* Fault tolerance
* Checkpointing
* Node failover

Other ways of achieving low latency?

Omid project: https://github.com/yahoo/omid

https://github.com/yahoo/omid

Context

* Incremental processing a la Percolator (Google, OSDI 2010)
 Distributed transactions
* Observers
* Bigtable

* Use case
e Search index
* Online updates
* Crawl to index in 5s

e Omid is about transactions...

Why transactions?

/,” Offline MapReduce * +* Online Event Processing

Shared state
Fault tolerance
Scalability

Fault tolerance
Scalability

TXns

- o mm mm mm mm m mm m m m m m e e e = = e —
e m m m m m m mm mm mm mm mm mm = = = mm — = -
o m m mm m mm mm m mm mm mm mm mm mm mm mm mm = = —

- I N N e e e e e e et ettt et et et e, e, e, e ==

e o m m m m m mm mm = mm = = mm mm m— — = - — -

How does it differ from S4 stream processing?

* 54
* Data lives in memory
* Access to databases is expensive

* Incremental processing

* Computation is close to the data
* Higher latency

e Omid

* Targets lower latency for transactions

Omid architecture

Status Oracle (SO)

WALfor —— (e

: 5 * Centralized Status Oracle
recoverability lastCommit TxnCmt / * Lock-free scheme
| row |T_c : Oracle
!]
| aborted I uncommitted
T8 T32 | (T25 [T26
NS ' e

Runs on unmodified 7 wrsewer Client ' '
HBase " e—— » Status replicated to clients
\ T T_max - / o

| Column Cz — Replication reduces SO load

aborted --

) T18 T32

|_
.

Throughput vs. Latency

30

D [OMWS oo :
4 rows ;
25 | 8 rows —— °
16 rows :
32 rows
E 20+ 128rows -----
L= B12 rows «ovene
a ;
LT
5 L
0 5 3 | : | 5
1o 110 110 110

Throughput in TPS

Use case

* News recommendation system
e Users with similar interests are clustered

 Upon a new article
* Check which clusters might be interested in that article
« Recommend article to users in the cluster

* Problems txns solve
* Concurrent operations reconfiguring the clusters
* Queries while clusters are being reconfigured

http://www.slideshare.net/DanielGmezFerro/omid-efficient-transaction-management-and-incremental-processing-for-hbase-hadoop-summit-europe-2013

http://www.slideshare.net/DanielGmezFerro/omid-efficient-transaction-management-and-incremental-processing-for-hbase-hadoop-summit-europe-2013

Wrap up

Online processing

* Goal
* Receive events
* Make them ready for consumption fast

* Two techniques

e Stream processing
* Events processed against small amount of local memory
* Very low latency (+250k events/node/s)
* Incremental processing
* Shared state in the form of a datastore
* Events processed against the datastore
* Higher latency

Acknowledgements

e 54
* Matthieu (lead developer)
* Daniel Gomez Ferro
* Leo Neumeyer

* Kishore Gopalakrishna S4 project: http://incubator.apache.org/s4

* Omid
* Daniel Gdmez Ferro (lead developer)
* Maysam Yabandeh

* lvan Kelly
* Ben Reed Omid project: https://github.com/yahoo/omid

http://incubator.apache.org/s4
https://github.com/yahoo/omid

