
Online data processing with
S4 and Omid*

Flavio Junqueira

Microsoft Research, Cambridge

* Work done while in Yahoo! Research

Big Data defined

http://hortonworks.com/blog/big-data-defined/
http://hortonworks.com/blog/big-data-defined-part-deux-value-definition/

Wikipedia

In information technology, big data[1][2] is a collection of data sets so large and complex that
it becomes difficult to process using on-hand database management tools or traditional data
processing applications.

Hortonworks

A Big Data system has four properties:
- It uses local storage to be fast but inexpensive
- It uses clusters of commodity hardware to be inexpensive
- It uses free software to be inexpensive
- It is open source to avoid expensive vendor lock-in

Hadoop @ Yahoo!

Eric Baldeschwieler @IBM Big Data, May 2011

Context: Back in 2008

• Needed scalable real-time processing
• Direct feedback

• Optimization

• Adaptation

• Use case
• Ad ranking with clickthrough analysis

• Solution
• Distributed stream processing platform

• At the time
• No generic platform available

• Research project

Source: unbounce.com

Stream Processing Platform

• Enables applications that process streams of events

• Desirable properties
• Online meaning low-latency
• Best effort
• Scalable
• Fault tolerance (perhaps limited)
• Flexible

Source: ji-make.com

S4: Simple Scalable Streaming System
http://incubator.apache.org/s4

S4 Evolution

Internal Yahoo! codebase

Open source release (github)

Apache project

S4 piper

Nov. 10

Sep. 11

Sep. 11

Aug. 08

0.3

0.4

0.5

System overview

APP 1
APP 2

External

stream Internal

stream

Complete application

Sub-system 1 Sub-system 2

Resources allocated independently

App

AdapterApp

MyApp

MyApp

External

stream Send events
according to
hash partitioning

Cluster 1

Cluster 2

• App defines keys
• One PE per key

S4 Node

Processing
Element (PE)

Deployment

Zookeeper

Blessed Repository

“Publish new application”

Logical cluster

Physical cluster

S4R

Fault tolerance: Fail-over

http://incubator.apache.org/s4/doc/0.6.0/fault_tolerance/

http://incubator.apache.org/s4/doc/0.6.0/fault_tolerance/

Fault tolerance: Checkpointing

http://incubator.apache.org/s4/doc/0.6.0/fault_tolerance/

• Uncoordinated and Asynchronous checkpoints
• Lazy recovery

• PE state recovered upon message

• Scheme is lossy
• Prevents loss of state accumulated over

extended periods

Pluggable backend

http://incubator.apache.org/s4/doc/0.6.0/fault_tolerance/

Writing an app

Skeleton of an app

• HelloInputAdapter
• Events from external source

• HelloApp
• Creates topology

• Connects adapter to first PE

• HelloPE
• Process events

Skeleton of an app

• HelloInputAdapter
• Events from external source

• HelloApp
• Creates topology

• Connects adapter to first PE

• HelloPE
• Process events

public class HelloInputAdapter extends AdapterApp {

…

@Override

protected void onStart() {

…
Event event = new Event();

event.put("name", String.class, line);

getRemoteStream().put(event);

connectedSocket.close();

…
}

…
}

Skeleton of an app

• HelloInputAdapter
• Events from external source

• HelloApp
• Creates topology

• Connects adapter to first PE

• HelloPE
• Process events

public class HelloApp extends App {

…

@Override

protected void onInit() {

// create a prototype

HelloPE helloPE = createPE(HelloPE.class);

// Create a stream that listens to the "names" stream and

// passes events to the helloPE instance.

createInputStream("names", new KeyFinder<Event>() {

@Override

public List<String> get(Event event) {

return Arrays.asList(new String[] { event.get("name") });

}

}, helloPE);

}

…

}

Skeleton of an app

• HelloInputAdapter
• Events from external source

• HelloApp
• Creates topology

• Connects adapter to first PE

• HelloPE
• Process events

public class HelloPE extends ProcessingElement {

…

public void onEvent(Event event) {

System.out.println("Hello " + (seen ? "again " : "") +

event.get("name") + "!");

}

…

}

S4 Piper
Lessons learned

Lessons from initial design

• State loss upon node crash

• Rigid communication layer
• UDP only

• No retransmission, no flow control

• Hard to use/debug/deploy
• Subjective, but that’s the overall feeling

• Isolated applications

• No regression tests

S4 Piper improvements

• Dynamic coupling of applications
• Via a simple registration scheme

• Communication via TCP
• Throttling

• Retransmission and flow control

• Fault tolerance
• Checkpointing

• Node failover

Other ways of achieving low latency?
Omid project: https://github.com/yahoo/omid

https://github.com/yahoo/omid

Context

• Incremental processing a la Percolator (Google, OSDI 2010)
• Distributed transactions

• Observers

• Bigtable

• Use case
• Search index

• Online updates

• Crawl to index in 5s

• Omid is about transactions…

Why transactions?

Offline MapReduce

Fault tolerance
Scalability

Online Event Processing

Shared state
Fault tolerance
Scalability

Txns

How does it differ from S4 stream processing?

• S4
• Data lives in memory

• Access to databases is expensive

• Incremental processing
• Computation is close to the data

• Higher latency

• Omid
• Targets lower latency for transactions

Omid architecture

• Centralized Status Oracle
• Lock-free scheme

• Status replicated to clients
• Replication reduces SO load

Runs on unmodified
HBase

WAL for
recoverability

Throughput vs. Latency

Use case

• News recommendation system

• Users with similar interests are clustered

• Upon a new article
• Check which clusters might be interested in that article

• Recommend article to users in the cluster

• Problems txns solve
• Concurrent operations reconfiguring the clusters

• Queries while clusters are being reconfigured

http://www.slideshare.net/DanielGmezFerro/omid-efficient-transaction-management-and-incremental-processing-for-hbase-hadoop-summit-europe-2013

http://www.slideshare.net/DanielGmezFerro/omid-efficient-transaction-management-and-incremental-processing-for-hbase-hadoop-summit-europe-2013

Wrap up

Online processing

• Goal
• Receive events

• Make them ready for consumption fast

• Two techniques
• Stream processing

• Events processed against small amount of local memory

• Very low latency (+250k events/node/s)

• Incremental processing
• Shared state in the form of a datastore

• Events processed against the datastore

• Higher latency

Acknowledgements

• S4
• Matthieu (lead developer)
• Daniel Gómez Ferro
• Leo Neumeyer
• Kishore Gopalakrishna

• Omid
• Daniel Gómez Ferro (lead developer)
• Maysam Yabandeh
• Ivan Kelly
• Ben Reed

S4 project: http://incubator.apache.org/s4

Omid project: https://github.com/yahoo/omid

http://incubator.apache.org/s4
https://github.com/yahoo/omid

