
Deep Dive into Pex
How Pex works, implications for design of Code Hunt puzzles

Nikolai Tillmann
Principal Software Engineering Manager

Microsoft, Redmond, USA

Agenda

• Dynamic Symbolic Execution with Pex
• Symbolic state representation, constraint solving, the environment

• The Pex Family

• Code Hunt Deep Dive
• How the game works
• Pex in the cloud @ api.codehunt.com
• Inputs and outputs, assumptions, overflows
• Path explosion
• Sandbox, and how to peek below
• Side effects
• Forcing values by branching
• Back end: Public REST APIs

Dynamic Symbolic Execution
with Pex
Symbolic state representation, constraint solving, the environment

4

aka Concolic Execution [Godefroid et al. 05][Sen et al. 05][Tillmann et al. 08]

Combines concrete and symbolic execution.

Algorithm:

Set J := ∅ (J is set of already analyzed program inputs)

Loop

Choose program input i ∉ J (stop if no such i can be found)

Output i

Execute P(i); record path condition C (in particular, C(i) holds)

Set J := J ∪ C (viewing C as the set { i | C(i) })

End loop

Loop does not terminate if number

of execution paths is infinite

(in the presence of loops/recursion)

Dynamic Symbolic Execution
• This choice decides search order

• Search order decides how quick we

can achieve high code coverage!

• Incomplete constraint-solver leads

to under-approximation

void CoverMe(int[] a)
{
if (a == null) return;
if (a.Length > 0)

if (a[0] == 1234567890)
throw new Exception("bug");

}

a.Length>0

a[0]==123…

TF

T

F

F
a==null

T

Constraints to solve

a!=null

a!=null &&

a.Length>0

a!=null &&

a.Length>0 &&

a[0]==123456890

Input

null

{}

{0}

{123…}

Execute&MonitorSolve

Choose next path

Observed constraints

a==null

a!=null &&

!(a.Length>0)

a==null &&

a.Length>0 &&

a[0]!=1234567890

a==null &&

a.Length>0 &&

a[0]==1234567890

Done: There is no path left.

Dynamic Symbolic Execution with Pex

http://pex4fun.com/CoverMe

http://pex4fun.com/CoverMe

Representation of symbolic values and state is similar to the ones used to build
verification conditions in ESC/Java, Spec#, …

Terms for
• Primitive types (integers, floats, …), constants, expressions
• Struct types by tuples
• Instance fields of classes by mutable ”mapping of references to values"
• Elements of arrays, memory accessed through unsafe pointers

by mutable “mapping of integers to values"

Efficiency by
• Many reduction rules, including reduction of ground terms to constants
• Sharing of syntactically equal sub-terms
• BDDs over if-then-else terms to represent logical operations
• Patricia Trees to represent AC1 operators (including parallel array updates)

Symbolic State Representation

• SMT-Solver (“Satisfiability Modulo Theories”)
• Decides logical first order formulas with respect to theories
• SAT solver for Boolean structure
• Decision procedures for relevant theories:

uninterpreted functions with equalities,
linear integer arithmetic, bitvector arithmetic, arrays, tuples

• Model generation for satisfiable formulas
• Models used as test inputs

• Limitations
• We are not using decision procedure for floating point arithmetic and strings
• Instead, heuristic search-based approaches

• Pex uses Z3: http://research.microsoft.com/z3

Constraint Solving

http://research.microsoft.com/z3

Dynamic Symbolic Execution Exercises

CodeMe
All explicit branches.

ArrayIndexLength
Pex knows about all implicit, exception-throwing control-flow branches

ArrayHeap
Pex models the heap

Assert, Assert123
Assertions connect code coverage and correctness

pex4fun.com/DynamicSymbolicExecutionExercises

http://pexforfun.com/DynamicSymbolicExecutionExercises

• Dynamic symbolic
execution

• Behavior of environment
is unknown

• Pex comes with a built-in
way to isolate code from
environment dependencies
(“Moles”)

void CoverMe()
{
var lines = File.ReadAllLines(“a.txt”);
if (lines[0] == “[complicated]”)

throw new Exception(“bug”);
if (lines[1] == “[clear]”)

Disk.Format(“c:”);
}

Note: Pex actually runs your code

The Pex Family
Timeline + Impact

• Pex (released May 2008, Microsoft Research download)

• 30,388 downloads (20 months, Feb 08-Oct 09)

• Ships with Visual Studio 2015 Ultimate “in the box” as Smart Unit Tests

• Moles (released September 2009 , Microsoft Research download)

• Shipped with Visual Studio 2012 Ultimate “in the box” as Fakes

• Pex4Fun website (released June 2010)

• 1.6 million user interactions (clicks on “Ask Pex”)

• Code Digger (simplified Pex, released on April 2013 as VS Gallery
download)

• 22,466 downloads (10 months, Apr 13-Jan 14)

• Code Hunt website (released May 2014)

Code Hunt Deep Dive
How the game works, Pex in the cloud @ api.codehunt.com, Inputs and outputs,
assumptions, overflows, Path explosion, Sandbox, and how to peek below, Side
effects, Forcing values by branching, Back end: Public REST APIs

It’s a game!

iterative gameplay
adaptive
personalized
no cheating
clear winning criterion

code

test cases

How it works

Secret Implementation

class Secret {
public static int Puzzle(int x) {

if (x <= 0) return 1;
return x * Puzzle(x-1);

}
}

Player Implementation

class Player {
public static int Puzzle(int x) {

return x;
}

}

class Test {
public static void Driver(int x) {

if (Secret.Puzzle(x) != Player.Puzzle(x))
throw new Exception(“Mismatch”);

}
}

behavior
Secret Impl == Player Impl

29

Pex in the cloud @ api.codehunt.com

• Pex performs dynamic symbolic execution in a sandbox

• 32KB compressed code limit
(deflate compression of UTF8-encoded program text)

• Single-threaded code only

• Default Pex search strategy for path selection

• 2s timeout for each Z3 query, 30s overall timeout

• If any discovered path exceeds some instruction limit (~100,000),
you lose (likely termination issue)

• If Pex doesn’t find counterexample, you win

• Secret program can trim / shape input space via assumptions

Inputs and outputs

• The puzzle signature (parameters and result)
may refer to…
• simple datatypes (byte, bool, char, int, double, string, …)

(however, avoid floating point number computations)
• arrays of simple data types
• that’s it.

• Generated driver code…
• First calls secret program, then user program
• Passes inputs to both
• Compares results: values have to be equal

(deep equality for arrays / strings),
exceptions types (if any) have to match

class Secret {
public static int Puzzle(int x) {

if (x <= 0) return 1;
return x * Puzzle(x-1);

}
}

class Player {
public static int Puzzle(int x) {

return x;
}

}

class Test {
public static void Driver(int x) {

// simplified, similar for exceptions
if (Secret.Puzzle(x) != Player.Puzzle(x))

throw new Exception(“Mismatch”);
}

}

Assumptions

using Microsoft.Pex.Framework;
[…]
PexAssume.IsTrue(…)

• Assumptions act as filters on input values

• Only the secret code is allowed to contain assumptions

Overflows

• Pex faithfully models the default behavior of C# / .NET.

public static void Puzzle(int x) {
if (x + 10 < x) throw new Exception("what?");

}

Use an assumption to limit input space if you don’t want to confuse
people.

PexAssume.IsTrue(x <= int.MaxValue - 10);

Path explosion

• Pex tries to flip execution at each MSIL branching instruction => avoid branches!

• Prefer strict Boolean expressions over short circuit

• Use PexAssume to impose bounds.

public static void Puzzle(int[] a) {

PexAssume.IsTrue(a != null && a.Length == 100);

bool condition = true;

for (int i=0; i<100; i++) {

condition = condition & a[i] > i;

}

PexAssume.IsTrue(condition);

}

Reminder: Pex actually runs your code…

• In Code Hunt, white-list of APIs for sandboxing
System.IO.Directory.Delete("c:\");

=> “Disallowed dependencies”

• Interaction with PexSymbolicValue
using Microsoft.Pex.Framework;

[…]

var pc = PexSymbolicValue.GetPathConditionString();

Console.WriteLine(pc);

Side effects

• White-listed APIs: many non-deterministic APIs excluded (e.g.,
System.Random)

• In code:
• Avoid static fields (except possible for deterministic initialize-once cases)

• Do not mutate incoming arrays: effects are visible to user code

Forcing values

• You can introduce benign branches to force Pex to generate certain
test cases

public static void Puzzle(int[] a) {

if (a != null && a.Length == 10 && a[3] == 27) {}

if (a != null && a.Length == 20 && a[13] == 42) {}

}

Back end @ api.codehunt.com

https://api.codehunt.com/
https://api.codehunt.com/

Back end: Testing as a service

Summary

Code Hunt is a serious programming game
powered by Pex,
an industrial-strength dynamic symbolic execution engine.

www.codehunt.com
api.codehunt.com

research.microsoft.com/Pex
research.microsoft.com/CodeHunt

http://www.codehunt.com/
http://api.codehunt.com/
http://research.microsoft.com/Pex
research.microsoft.com/CodeHunt

