- (Dl 1=
LUV

Deep Dive into Pex

How Pex works, implications for designh of Code Hunt puzzles

Nikolai Tillmann
Principal Software Engineering Manager
Microsoft, Redmond, USA

Agenda

* Dynamic Symbolic Execution with Pex
* Symbolic state representation, constraint solving, the environment

* The Pex Family

e Code Hunt Deep Dive
e How the game works
* Pex in the cloud @ api.codehunt.com
* Inputs and outputs, assumptions, overflows
* Path explosion
e Sandbox, and how to peek below
 Side effects
* Forcing values by branching
* Back end: Public REST APIs

Dynamic Symbolic Execution
with Pex

Symbolic state representation, constraint solving, the environment

Mvnamircr SQaumhnlicr Evarc |'I'ir)n

* This choice decides search order |
_ _)5][Tillmann et al. 08]
» Search order decides how quick we
can achieve high code coverage!
* Incomplete constraint-solver leads

to under-approximation
_ ~d program inputs)

Loop
Choose program input i &) (stop if no such i can be found)
Output/
Execute P(i); recc | 501 does not terminate if number
Set)J:=JUC

of execution paths is infinite)
End loop (in the presence of loops/recursion)

Dynamic Symbolic Execution with Pex

/Choose next path

void CoverMe(int[] a)

- Constraints to solve |Input | Observed constraints
~if (@ == null) return; w1l | acenul]
~1f (a.Length > 0) al=null {3} al=null &&

= if (a[0] == 1234567890)

|
- throw new Exception('hug™: (a.Length>0)

1 al=null && {0} a==hull &&
a.Length>0 a.Length>0 &&
a[0] !'=123456780
AU al=null && {123.} | a==null &&
E - T a.Length>0 && a.Length>0 &&
— \Q a[0]==12345680 a [0]==123456780
a.Length>0 T D Therei th left
F one: Thereis no path left.
/ \
O
a[0]=123...

http://pex4fun.com/CoverMe

http://pex4fun.com/CoverMe

Symbolic State Representation

Representation of symbolic values and state is similar to the ones used to build
verification conditions in ESC/Java, SpectH, ...

Terms for
* Primitive types (integers, floats, ...), constants, expressions
 Struct types by tuples
* Instance fields of classes by mutable”mapping of references to values”
* Elements of arrays, memory accessed through unsafe pointers
by mutable “mapping of integers to values"

Efficiency by

* Many reductionrules, including reduction of ground terms to constants

» Sharing of syntactically equal sub-terms

 BDDs over if-then-else terms to representlogical operations

» Patricia Trees to represent AC1 operators (including parallel array updates)

Constraint Solving

 SMT-Solver (“Satisfiability Modulo Theories”)
* Decides logical first order formulas with respect to theories
* SAT solver for Boolean structure

* Decision procedures for relevant theories:
uninterpreted functions with equalities,
linear integer arithmetic, bitvector arithmetic, arrays, tuples

* Model generation for satisfiable formulas
* Models used as test inputs

* Limitations
* We are not using decision procedure for floating point arithmetic and strings
* Instead, heuristic search-based approaches

* Pex uses Z3: http://research.microsoft.com/z3 gs

http://research.microsoft.com/z3

Dynamic Symbolic Execution Exercises

CodeMe
All explicit branches.

ArraylndexLength
Pex knows about all implicit, exception-throwing control-flow branches

ArrayHeap
Pex models the heap

Assert, Assertl23
Assertions connect code coverage and correctness

pexdfun.com/DynamicSymbolicExecutionExercises

http://pexforfun.com/DynamicSymbolicExecutionExercises

Note: Pex actually runs your code

* Dynamic symbolic
execution

* Behavior of environment
is unknown

* Pex comes with a built-in
way to isolate code from
environment dependencies
(“Moles”)

void CoverMe()

{

var lines = File.ReadAllLines("a.txt”);

1f (l1ines[0] == “[complicated]”)
throw new Exception(“bug”);
if (lines[1l] == “[clear]”)

Disk.Format(“c:”);

The Pex Family

* Pex (released May 2008, Microsoft Research download)
* 30,388 downloads (20 months, Feb 08-Oct 09)
 Ships with Visual Studio 2015 Ultimate “in the box” as Smart Unit Tests

* Moles (released September 2009, Microsoft Research download)
* Shipped with Visual Studio 2012 Ultimate “in the box” as Fakes

* Pex4Fun website (released June 2010)
* 1.6 million user interactions (clicks on “Ask Pex”)

* Code Digger (simplified Pex, released on April 2013 as VS Gallery
download)

« 22,466 downloads (10 months, Apr 13-Jan 14)
* Code Hunt website (released May 2014)

Code Hunt Deep Dive

How the game works, Pex in the cloud @ api.codehunt.com, Inputs and outputs,
assumptions, overflows, Path explosion, Sandbox, and how to peek below, Side
effects, Forcing values by branching, Back end: Public REST APIs

Code Hunt programming game

B code Hunt x
¢ C A £ https:/mvww.codehunt.com &Yy = =

Code Hunt programming game

B code Hunt x g
& C A £ httos://www.codehunt.com

SELECT SECTOR

00 ¢ 01 €02 ¢03 ¢04 ¢05 ¢

INDITIONALS || CONDITIONALS

Code Hunt programming game

B code Hunt

& C A [httos:/Mww.codehunt.com

SECTOR OO

ot

00.02 00.03 00.04

\-"/l st —ren7a

i = @’ X

B code Hunt

¢ C 4 5 httos./~mww.codehunt.com & =

LEVEL: 00.02 » — @ 5B [SETTINGS)

Discover the arithmet1
operation applied to 'x'

Program {
Puzzle(L
f 1 0,

B code Hunt

- C A £ https://maw.codehunt.com

LEVEL: 00.02 P

.» ‘ ‘ |
- . . /
Discover the arithmetic o
operation applied to 'Xx"'. \

EXPECTED YOUR

W RESULT RESULT
.c class Program {

DESCRIPTION
ou DL1

'11[1: static int Puzzle(j_{ b 1 0 Mismatch

return O; 0 0

Bl Code Hunt X

= C A 5 httos:/AMmww.codehunt.com

LEVEL: 00.02 P&

S

Discover the arithmetic
operation applied to ‘'Xx°'.

EXPECTED YOUR
_— 2 RESULT RSl \PESREION
public class Program {
public static int Puzzle(int x) { . e - -
return 1l; | 2 1 Mismatch

B code Hunt

« C A 5 https:/AMww.codehunt.com

LEVEL: 00.02 P

-\ . pam—
Discover the arithmetic
operation applied to 'x°'.

EXPECTED YOUR

RESULT pesuLy DESCRIPTION

class Program {
Ssiatl j,"., ,if‘! { PUZZ‘LE(Ul L 0 0
L == ~F) ¢ 1 1
2

0 Mismatch

Bl code Hunt » -

&~ C' A G https://meww.codehunt.com

LEVEL: 00.02 » coffr = i () EE (sETTINGS]

) —_—
Discover the arithmetic
operation applied to 'x°'.

YOUR

RESULT pesgey || DESCRIFTON

—

pub

class Program {
public static int Puzzle(int Xx) { o 9 - i

return X+1;

1
gl

B code Hunt o x

~ C A & https: weww. codehunt.com & Ay =~
LE FINGS]
— You repaired and captured the code fragment. e
Discc o
opera SKILL RATING: I NN | Java

you wrote elegant code!

RIPTION

TOTAL SCORE: 6

KEEP TRYING

) e T AN R PaA T AT) e N\ Sl =l ey

More difficult level

Bl code Hunt

& C 0 ';"'| https:/ M. codehunt.com

SELECT SECTOR

Y N e
u"/-’ ',l"‘ Y | NI ’/0' LAY

Bl code Hunt «x Q¢

“~ C A 5 https://www.codehunt.com

Ex & w7 —

< LEVEL: 03.63 » ATTEMPTS: 13 CODE. == i @ B [seTTINGS]

ry to

capture the code ftragment

»

Reserievel | swmonrocs

EXPECTED YOUR
LOWERBOUND UPPERBOUND RESULT RESULT DESCRIPTION
1ss Program {
lic static int Puzzle(int lowerBound, int upperBound] { 1 g 40320 8 MLsnatch
lowerBound * upperBound; 15 24 244963328 360 Misnstch

) v 16 17 272 272

& Code Hunt

- C A& £ httos://mmw.codehunt.com

- o7 LY “C DE mus cr
< LEVEL: 03.63 » ATTEMPTS: 14 CODEy = =i @ S [SETTINGS]

A PR e = N 0 D N TN O N PR e g N e

ry to capture the code fragment _ }
RESET LEVEL SWITCHTOCE
EXPECTED YOUR
LOWERBOUND UPPERBOUND RESULT RESULT DESCRIPTION
Program {
Puzzle| lowerBound, 1 upperBound] { - g 46320 5 Mismatch
lowerBound * upperBound 15 24 244963328 360 Mismatch
} v 16 17 272 272
'

(U You may Tind a loop usetul on this level.

Bl Code Hunt x @\

& C A & https:/mww.codehunt.com Gx

<4 LEVEL: 03.03 » ATTEMPTS: 17 coney = = @ [SETTINGS]

A TN e W T N T N2 FT S e B e T T

l"_\ ™ i'.er Ire the ‘nae T '.%u_‘.ﬂ»"!‘a.’ | 3
d CAPTURE CODE RESET LEVEL SWITCHTOCE C\.C
Program { - LOWERBOUND UPPERBOUND EXPECTED YOUR DESCRIPTION
, o . _ RESULT RESULT
Fuzzle(: lowargound, uppergound
r=1; 1 B 40320 5040 Mismatch
(inT 1 = lowerBound; 1 < upperBound; 1++) 16 22 859541760 39070686 Mismatch
r *=1 YOU may Tind the expression <int> <= <1nt> usetul on this
@ level
r; :
}

it’s a game!

iterative gameplay
adaptive
personalized
no cheating
clear winning criterion

TOTAL SCORE: 15
KEEP TRVING /‘\
A\, /4

How it works

S behavior
ﬁ%i ~= Secretimpl == Playerimpl Player Implementation
W) [

\‘mg,j; Secret Implementation

class Secret {
publicstaticint Puzzle(int x) {
if (x <= 0) return 1;
return x * Puzzle(x-1);

}
}

class Test {
public static void Driver(int x) {
if (Secret.Puzzle(x) != Player.Puzzle(x))
throw new Exception(“Mismatch”);

}

\a
ol

'

@class Player {
return X;

}

publicstaticint Puzzle(int x) {

X |yourresult | secretimplementation result Output/Exception
VIERE 1
92 |2 2
I3 |3 6 Mismatch

Pex in the cloud @ api.codehunt.com

* Pex performs dynamic symbolic execution in a sandbox

e 32KB compressed code limit
(deflate compression of UTF8-encoded program text)

* Single-threaded code only
e Default Pex search strategy for path selection
e 2s timeout for each Z3 query, 30s overall timeout

* |f any discovered path exceeds some instruction limit (~100,000),
you lose (likely termination issue)

* |f Pex doesn’t find counterexample, you win
 Secret program can trim / shape input space via assumptions

Inputs and outputs

class Player {
publicstaticint Puzzle(int x) {

return X;
}
}
* The puzzle signature (parameters and result)
Mmay refer to... class Secret {
* simple datatypes (byte, bool, char, int, double, string, ...) publicstaticint Puzzle(int x) {
(however, avoid floating point number computations) if (x <= 0) return 1;
e arrays of simple data types return x * Puzzle(x-1);
* that’s it. } }
* Generated driver code...
* First calls secret program, then user program
class Test {

e Passes inputs to both

 Compares results: values have to be equal
(deep equality for arrays / strings),
exceptions types (if any) have to match

public static void Driver(int x) {
// simplified, similar for exceptions
if (Secret.Puzzle(x) != Player.Puzzle(x))
throw new Exception(“Mismatch”);

}

Assumptions

using Microsoft.Pex.Framework;

[...]

PexAssume.IsTrue(...)

* Assumptions act as filters on input values

* Only the secret code is allowed to contain assumptions

Overflows

 Pex faithfully models the default behavior of C# / .NET.

public static void Puzzle(int x) {
if (x + 10 < x) throw new Exception("what?");

}

Use an assumption to limit input space if you don’t want to confuse
people.

PexAssume.IsTrue(x <= int.MaxValue - 10);

Path explosion

e Pex tries to flip execution at each MSIL branching instruction => avoid branches!
» Prefer strict Boolean expressions over short circuit
* Use PexAssume to impose bounds.

public static void Puzzle(int[] a) {
PexAssume.IsTrue(a != null & & a.Length == 100);
bool condition = true;
for (int 1=0; 1<100; i++) {
condition = condition & a[i] > 1i;
}

PexAssume.IsTrue(condition);

Reminder: Pex actually runs your code...

* In Code Hunt, white-list of APIs for sandboxing

System.lO.Directory.Delete("c:\");
=> “Disallowed dependencies”

* Interaction with PexSymbolicValue
using Microsoft.Pex.Framework;

[-.]
var pc = PexSymbolicValue.GetPathConditionString();

Console.WritelLine(pc);

Side effects

* White-listed APIs: many non-deterministic APIs excluded (e.g.,
System.Random)

* |n code:

* Avoid static fields (except possible for deterministic initialize-once cases)
* Do not mutate incoming arrays: effects are visible to user code

Forcing values

* You can introduce benign branches to force Pex to generate certain
test cases

public static void Puzzle(int[] a) {
if (a != null && a.Length == 10 && a[3] == 27) {}
if (a != null && a.Length == 20 && a[13] == 42) {}

Back end @ api.codehunt.com

e ezl | - hitp://api.codehunt.com/ P~ & ||| CodeHuntServices x

Code Hunt Services

D

Running capacity 12, load 1%

api.codehunt.com is a cloud service that provides remote access to the code exploration and test generation functionality of Pex for .MET programs.

In particular, api.codehunt.com powers the Code Hunt game.

disclaimer

The APIs are subject to change. The state managed by api.codehunt.com may reset at any time.

https://api.codehunt.com/
https://api.codehunt.com/

Statistics

Users: 2044477

User Programs: 94538818
User Explorations: 7490881
Programs: 5309700
Explorations: 4059675

APls

Each APl iz given via its method (GET or POST), its path (/api/=something), an optional request body, and a list of possible response codes and bodies.
Requests and response bedies, if any, are in JSON format, and are specified using TypeScript interface syntax.

authorization

Most APls require a special authorization header with a bearer token. If you do not send the following header with the APls, you will get a 401 Unauthorized
status code.

Zuthorization: Bearer SACCESS TOEEN

There are two ways to get an access token: 1) anonymously (which creates a new anonymous user account on-the-fly), or 2) by referring to a regular user
account. To get an anonymous SARCCESS TOEEN, do the following.

POST /api/token?grant type=client credentialssclient id=anenymoussclient secret=ancnymous
response 200 O body: TokenInfo

interface TokenInfo |
access token: string;

}

Anonymously obtained access tokens have severe usage restrictions. If you want to obtain a regular user account (represented by the pair client id and
client secret), send a request by email to codehunt@microsoft.com.

merging

You can merge all data from an anonymously obtained account into a regular user account. You need to obtain an access token for the anonymous account
from which data will be taken; then call the following APl authorized by the regular target user to whom the data is copied.

POST /api/merge

summary

Code Hunt is a serious programming game
powered by Pex,

an industrial-strength dynamic symbolic execution engine.

www.codehunt.com
api.codehunt.com
research.microsoft.com/Pex
research.microsoft.com/CodeHunt

http://www.codehunt.com/
http://api.codehunt.com/
http://research.microsoft.com/Pex
research.microsoft.com/CodeHunt

