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ABSTRACT

Similarity search is one of the fundamental problems for
large scale multimedia applications. Hashing techniques, as
one popular strategy, have been intensively investigated ow-
ing to the speed and memory efficiency. Recent research
has shown that leveraging supervised information can lead
to high quality hashing. However, most existing supervised
methods learn hashing function by treating each training ex-
ample equally while ignoring the different semantic degree
related to the label, i.e. semantic confidence, of different
examples.
In this paper, we propose a novel semi-supervised hashing

framework by leveraging semantic confidence. Specifically, a
confidence factor is first assigned to each example by neigh-
bor voting and click count in the scenarios with label and
click-through data, respectively. Then, the factor is incor-
porated into the pairwise and triplet relationship learning
for hashing. Furthermore, the two learnt relationships are
seamlessly encoded into semi-supervised hashing method-
s with pairwise and listwise supervision respectively, which
are formulated as minimizing empirical error on the labeled
data while maximizing the variance of hash bits or minimiz-
ing quantization loss over both the labeled and unlabeled
data. In addition, the kernelized variant of semi-supervised
hashing is also presented. We have conducted experiments
on both CIFAR-10 (with label) and Clickture (with click da-
ta) image benchmarks (up to one million image examples),
demonstrating that our approaches outperform the state-of-
the-art hashing techniques.
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Figure 1: Three exemplary image pairs. (a) Both im-

ages are highly relevant to the common label “Barack

Obama;” (b) One is highly relevant and the other is

weakly relevant to the label “Airplane;” (c) One is highly

relevant to the label “Barack Obama,” and the other is

highly relevant to the label “Airplane.”
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1. INTRODUCTION
The rapid development of Web 2.0 technologies has led to

the surge of research activities in large scale visual search.
One fundamental research problem is similarity search, i.e.,
nearest neighbor search, which attempts to identify similar
instances according to a query example. The need to search
for millions of visual examples in a high-dimensional feature
space, however, makes the task computationally expensive
and thus challenging.

Hashing techniques [23][26][29], one direction of the most
well-known Approximate Nearest Neighbor (ANN) search
methods, have received intensive research attention for its
great efficiency in gigantic data. The basic idea of hashing
is to design a compact binary code in a low-dimensional s-
pace for each example, making the Hamming distances on
similar examples minimized and simultaneously maximized
on dissimilar examples. In the similarity search process,
the query example is usually first transformed to its hash-
ing code. Then, the Hamming distances between the hash
codes of instances in the retrieved database and the query
example are computed. The instances within small Ham-
ming distances are returned. Through hashing, the storage
is substantially reduced as the representations of examples
are highly compressed with a low-dimensional binary space



and the Hamming distance between two hash codes can be
implemented by bitwise XOR operation, leading to a very
efficient searching process.
While existing hashing approaches are promising to re-

trieve neighbors, each example is treated equally during the
learning of hash function. Importantly, we argue that hash-
ing would obtain higher search accuracy if the semantic de-
gree to the label of each example, i.e., semantic confidence,
is taken into account. Figure 1 shows three exemplary im-
age pairs. Conventional supervised hashing methods use to
learn hash function to make the corresponding binary codes
similar for images annotated by the common label while dis-
similar for those with different labels. However, take the two
pairs in Figure 1 (a) and (b) as examples, although each pair
is relevant to an individual label, the two images in (a) are all
highly relevant and thus their hashing code should be clos-
er in proximity than the image pair in (b). Meanwhile, for
images that share different labels in Figure 1 (c), their hash
codes should be made as dissimilar as possible, especially
when they are highly relevant to their respective labels.
By encoding the semantic confidence into hash function

learning, this paper presents a novel and principled semi-
supervised hashing framework for large scale image search,
as illustrated in Figure 2. The semantic confidence is for-
mulated by devising a confidence factor that evaluates the
semantic relatedness of an example to a label. We consider
two kinds of confidence factors computed based upon image
neighbor voting and click count respectively. By assuming
the availability of labeled examples, the former first builds a
similarity graph over all images of a given label followed by
assigning each image a confidence score based on the number
of its out-link neighbors. The latter considers click-through
data and relates the confidence score directly to the num-
ber of click counts an image receives. Based on the seman-
tic confidence, the pairwise and triplet relationships among
image examples are further developed and incorporated in-
to the hash function learning in standard (with pairwise
supervision) and ranking (with listwise supervision) semi-
supervised hashing framework, respectively. In addition, to
accommodate linearly inseparable data, a kernel formulation
is employed on ranking semi-supervised hashing. After the
hash function learning, each image is mapped to compact
binary codes. For any query image, the image search list
will be returned by sorting their Hamming distances with
the query.
In summary, this paper makes the following contributions:

• Instead of assuming each image contributes equally to
learning, we explore the learning of a hash function by
taking into account the semantic degree to which an
image is associated with a label, on the basis that the
degree can be quantified as a numeric score (or seman-
tic confidence factor). To the best of knowledge, this
paper represents the first effort towards this target.

• By considering two different ways of devising seman-
tic confidences, we propose a general hashing frame-
work that facilitates the exploration of pairwise and
triplet image relationships for semi-supervised hash-
ing, ranking-based semi-supervised hashing, and its k-
ernelized variant respectively.

• An extensive set of experiments on two real world im-
age datasets, i.e., CIFAR-10 sampled from 80-million

tiny images collection with labels and Clickture collect-
ed from one-year click log from a commercial image
search engine, to demonstrate the advantages of the
proposed methods over several state-of-the-art hash-
ing techniques.

The remaining sections are organized as follows. Section
2 briefly surveys several popular hashing methods. Section
3 presents the semantic confidence, the pairwise and triplet
relationships with semantic confidence, while Section 4 fur-
ther details the utilization of the two relationships in semi-
supervised hashing framework. Section 5 provides empirical
evaluations, followed by the discussion and conclusions in
Section 6.

2. RELATED WORK
We briefly group the related works into three categories:

unsupervised, supervised, and semi-supervised hashing.

2.1 Unsupervised Hashing
Unsupervised hashing refers to the setting when the la-

bel information is not available. Locality Sensitive Hashing
(LSH) [3] is one of the most popular unsupervised hash-
ing methods, which simply uses random linear projections
to construct hash functions. This method was continuously
expanded to Kernelized and Multi-Kernel Locality Sensitive
Hashing [11][31]. Another effective method called Iterative
Quantization (ITQ) [4] was suggested for better quantiza-
tion rather than random projections. The Spectral Hashing
(SH) in [30] was proposed to design compact binary codes
by preserving the similarity between samples, which can be
viewed as an extension of spectral clustering [33]. Recently,
the graph based hashing technique namely Anchor Graph
Hashing (AGH) was proposed by Liu et al. in [14], which
can leverage low-dimensional manifold structure of data to
design efficient hash codes. Later in [12], Discrete Graph
Hashing (DGH) was proposed to generate high-quality codes
by preserving the neighborhood structure of massive data in
a discrete code space.

2.2 Supervised Hashing
In contrast, when the label information is available, we re-

fer to the problem as supervised hashing. For example, Lin-
ear Discriminant Analysis Hashing (LDAH) [24] can tackle
supervision via easy optimization. The deep neural network
stacked with Restricted Boltzman Machine (RBM) [6] was
applied to learn binary hash codes in [23]. To utilize the pair-
wise supervision information in the hash function learning,
Kernel-Based Supervised Hashing (KSH) proposed in [13]
used pairwise relationship between samples to achieve high
quality hashing. Binary Reconstructive Embedding (BRE)
[10] was proposed to learn hash functions by minimizing the
reconstructed error between the metric space and Hamming
space. Minimal Loss Hashing (MLH) was proposed in [16]
which aims to learn similarity-preserving binary codes by us-
ing the pairwise relationship. Moreover, there are also sever-
al works using the ranking order information to design hash
functions. Ranking-based Supervised Hashing (RSH) [27]
was proposed to leverage listwise supervision into the hash
function learning framework. Besides RSH, the tree-based
method [20] and a hamming metric learning framework pre-
sented in [17] also aim to preserve the ranking orders.

In addition, several cross-view hashing methods have been
proposed as well. The Canonical Correlation Analysis with
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Figure 2: Semi-supervised hashing with semantic confidence. (a) Semantic confidence measurement of each image

example: on the labeled data, the semantic confidence is based on the number of out-link neighbors of each image in

the similarity graph built on all images of each label. With the click-through data, click count of an image is considered

as an indicator of its semantic confidence in answering the query. (b) Pairwise and Triplet Relationship with semantic

confidence: pairwise and triplet relationship is derived by exploiting semantic confidence of each example for hashing

with pairwise and listwise supervision, respectively. (c) Semi-supervised hashing: the learnt pairwise and triplet

relationship is further incorporated into the hash function learning in standard and ranking semi-supervised hashing

framework, respectively. For better viewing, please see original color pdf file.

Iterative Quantization (CCA-ITQ) was proposed in [4] to
learn the hash codes from the content features and tags.
In [21], Rastegari et al. proposed Predictable Dual-View
Hashing (PDH) to create a cross-view hamming space by
embedding proximity of data samples in the original spaces.

2.3 Semi-supervised Hashing
Semi-supervised hashing methods have also been proposed.

One representative work is Semi-Supervised Hashing (SSH)
[26] which utilizes pairwise information on labeled samples
to preserve semantic similarity while remaining robust to
overfitting. Semi-Supervised Discriminant Hashing (SSDH)
can learn hash codes based on Fisher’s discriminant anal-
ysis to maximize the separability between labeled data in
different classes while the unlabeled data are used for reg-
ularization [8]. In another work [15], the label-regularized
maximum margin partition (LAMP) method was proposed
to enhance hashing quality by using kernel-based similari-
ty and additional pairwise constraints as side information.
Semi-Supervised Tag Hashing (SSTH) proposed in [28] can
fully incorporate tag information into hash function learning
by exploring the correlation between tags and hashing bits.
In short, our approach belongs to semi-supervised hash-

ing. While these aforementioned semi-supervised hashing
methods focus on the regularization of both labeled and
unlabeled examples from different means, they treat each
image equally and hence the role that each image should
play and contribute in learning is overlooked. Our work in
this paper contributes by exploring this issue through not
only devising the rigorous ways of measuring semantic con-
fidences, but also how the hash function can be more reliably
learnt by exploring the semantic confidence.

3. LEARNING RELATIONSHIP WITH SE-

MANTIC CONFIDENCE
In this section, we first define the semantic confidence

measurement for each image example, i.e. confidence fac-
tor, in the context of scenarios with label and click-through
data, respectively. Then, pairwise and triplet relationships
with semantic confidence is further devised to be encoded
into hash function learning in semi-supervised hashing.

3.1 Confidence Factor
Given a label t, let X = {x1, x2, · · · , xL} be the set of all

images annotated by the label t, where xi represents the ith

image in X and its image feature vector is denoted as vi.
Let Nk(i) be the k-nearest neighbor set of the ith image. A
directed graph is then built where nodes are all images in X

and there is an edge between the ith and jth image if and
only if the ith image appears in Nk(j). Deriving from the
idea of neighbor voting [34], the semantic confidence of the
ith image is reflected by the number of the image appearing
in the neighbors of other images in the graph, i.e., the num-
ber of out-link neighbors. Specifically, the confidence factor
is generally formulated as

si =
(o+i )

γ

maxj(o
+
j )

γ , (1)

where (o+i ) is the number of out-link neighbors of the ith

image and it is normalized by the maximum number of out-
link neighbors of all images in the graph. γ is used to control
the impact of the number of out-link neighbors. The ratio-
nale underlying this formula is that, if the ith image always
appears in the k-nearest neighbors of other images, the ith



image is similar to the other images of the category and thus
should be more semantically related to this category.
In the scenario with click-through data, we view the click

count of an image in response to a query (category) as an
indicator of their relevance [19]. As most image search en-
gines display results as thumbnails, the users can view the
entire image before clicking on it. As such, the users pre-
dominantly tend to click on images that are relevant to the
query. Therefore, click count can be served as a reliable con-
nection between queries and images. Then, the confidence
factor can be re-expressed as

si =
(ci)

γ

maxj(cj)
γ , (2)

where ci is the click count of the ith image in response to
the query and maxj(cj) is the maximum click count of the
returned images for the query. Particularly, the higher the
click count, the more the relevance between the image and
the query.

3.2 Pairwise Relationship with Semantic Con-
fidence

Most of the existing learning to hash methods are to gen-
erate hashing code to satisfy pairwise supervision, i.e., mak-
ing the Hamming distance minimized on similar pairs while
maximized on dissimilar pairs. As a result, pairwise rela-
tionship is first developed with semantic confidence of each
example. Let M and C be the set of neighbor pairs and non-
neighbor pairs, respectively. Specifically, a pair (vi,vj) ∈
M is denoted as a neighbor pair in which vi and vj are
from the same category or in answering the common query.
Similarly, a pair (vi,vj) ∈ C is called as a non-neighbor pair
if vi and vj are from the different category or in response
to the different query. By incorporating the semantic confi-
dence, the pairwise relationship is defined as

SP (vi,vj) =

{ √
sisje

−|si−sj |, if (vi,vj) ∈ M
−√

sisje
−|si+sj−2|, if (vi,vj) ∈ C

,

(3)
where si and sj are the confidence factor for the ith and jth

image, respectively.
The spirit of pairwise relationship with semantic confi-

dence is to make the neighbor pair in close proximity if the
two examples of the pair both have high confidence factors,
while weakening the relationship of the neighbor pair if any
one in the pair has a low confidence. On the other hand,
if the two examples in a non-neighbor pair are both with
high confidence to each category, the pair will receive a very
dissimilar relationship strengthened by their semantic con-
fidences.

3.3 Triplet Relationship with Semantic Confi-
dence

To further leverage the listwise supervision [27] which has
been employed to design more effective hash functions in
search tasks, semantic confidence is then encoded into triplet
relationship learning. Denote T as the set of triplets, and
each triplet as (vi,v

+
j ,v

−
k ). In the case when labels are

available, vi refers to a query image, v+
j (v−

k ) as the image

with the same (different) category as vi. For click data, v+
j

refers to the clicked image of the same query on image vi,
and v−

k is a clicked image of another query different from

that of vi. For any triplet, we can derive the relationship
with semantic confidence as

ST (vi,v
+
j ,v

−
k ) =

1

2

(

SP (vi,v
+
j )− SP (vi,v

−
k )
)

, (4)

where SP (vi,v
+
j ) and SP (vi,v

−
k ) are the pairwise relation-

ship defined in Section 3.2. It is straightforward to see that
the triplet (vi,v

+
j ,v

−
k ) will be associated with a strong rela-

tionship when the image v+
j is close to the query image vi,

and simultaneously the image v−
k holds a quite dissimilar

relationship with the image vi.

4. SEMI-SUPERVISED HASHING
In this section, we will present our semi-supervised hash-

ing framework under the umbrella of encoding the learnt
relationships with semantic confidence to three primary as-
pects: semi-supervised hashing by exploiting pairwise rela-
tionship with semantic confidence, ranking semi-supervised
hashing by leveraging triplet relationship with semantic con-
fidence and its kernelized variant.

Suppose there are n images in the whole set, represented
as: V = {vi|i = 1, · · · , n}, where vi ∈ R

D represents the
image feature vector and V = {v1,v2, . . . ,vn} ∈ R

D×n is
the feature matrix of the image set. Similarly, assume there
are L (L < n) labeled images and the feature matrix of the
labeled images are denoted as Vl ∈ R

D×L. Note that the
feature matrices are normalized to zero-centered. Our goal
is to map V ∈ R

D×n to a compact binary code representa-
tion B ∈ {−1, 1}K×n in a low-dimensional Hamming space,
where K is the code length.

4.1 Semi-supervised Hashing with Semantic
Confidence (SHSC)

Here we use the linear formulation to design the hashing
functions. For each bit k = 1, . . . ,K, its hash function is
defined as

hk(vi) = sgn(wk · vi), (5)

where wk ∈ R
D is the coefficient vector and sgn(•) is the

signum function. Let W = {w1,w2, . . . ,wK}⊤ ∈ R
K×D

be the projection matrix, we can get the K-bit binary code
representation B of an image set V as

B = sgn(WV). (6)

Inspired by the idea of semi-supervised hashing [26], we
propose the semi-supervised hashing with semantic confi-
dence. The problem is formulated as simultaneously max-
imizing empirical accuracy on the labeled images and the
variance of hash bits over both the labeled and unlabeled
images, in which pairwise relationship with semantic confi-
dence is encoded into the computation of empirical accura-
cy. Specifically, the empirical accuracy on the label images
is defined as

J1(W) =
∑

k

(

∑

(vi,vj)∈M

SP (vi,vj)hk(vi)hk(vj)

+
∑

(vi,vj)∈C

SP (vi,vj)hk(vi)hk(vj)
)

,
(7)

where SP (vi,vj) is the pairwise relationship with semantic
confidence for pair (vi,vj). By defining the pairwise rela-
tionship matrix S ∈ R

L×L on the labeled images Vl with



its element Si,j = Sp(vi,vj), the empirical accuracy J1(W)
can be represented as

J1(W) =
1

2
tr
(

sgn(WVl) S sgn(WVl)
⊤
)

. (8)

Through maximizing empirical accuracy on the labeled
images, the hash codes will be in close proximity for neigh-
boring pairs with high pairwise relationship, while very dif-
ferent for non-neighboring pairs especially when both sam-
ples are with high confidence to different category.
On the other hand, to generate hash codes in which each

bit maximizes the information by generating a balanced par-
tition of the data, the variance of hash bits should be also
maximized. Here, the variance of hash bits over the labeled
and unlabeled images is measured as

J2(W) =
1

2
tr
(

WV(WV)⊤
)

. (9)

The overall objective function integrates the empirical ac-
curacy on the labeled images and the variance of hash bits
over the labeled and unlabeled images. Hence we get the
following optimization problem

max
W

J1(W) + µJ2(W) s.t. WW⊤ = I, (10)

where µ is the tradeoff parameter and the constraintWW⊤ =
I limits the hashing projection matrix to be orthogonal.
We use non-orthogonal projection learning [26] for the op-

timization, which relaxes the orthogonality constraint and
solves the non-convex problem with matrix decomposition.

4.2 Ranking SHSC
To design more effective hash functions, we further in-

corporate the triplet relationship with semantic confidence
into ranking semi-supervised hashing which represents the
ranking information by a set of ranking triplets. The train-
ing of Ranking SHSC (RSHSC) is performed by minimizing
both the triplet loss based on the labeled images and the
quantization loss on the whole image set.
Formulation. For Ranking SHSC, we still use the linear

form of hash functions as defined in Eq.(5). Formally, giv-
en an image pair (vi,vj), we revise a distance function to
measure the degree of hash code difference as

d(vi,vj) =

(sgn(Wvi)− sgn(Wvj))
⊤(sgn(Wvi)− sgn(Wvj)). (11)

The triplet loss on the labeled images Vl is defined as

J1(W) =
∑

(vi,v
+

j
,v

−

k
)∈T

ST (vi,v
+
j ,v

−
k )L(vi,v

+
j ,v

−
k ),

L(vi,v
+
j ,v

−
k ) = max

(

0, d(vi,v
+
j )− d(vi,v

−
k ) + 1

)

,

(12)

where ST (vi,vj
+,vk

−) is the triplet relationship with se-
mantic confidence consisting of the query image vi, an im-
age vj

+ from the same category and an image vk
− from a

different category. Note that all the triplets in Eq.(12) are
from the triplet sets T generated on labeled images Vl. The
triplet loss exploits the margin ranking loss [5][32] that is
widely used in information retrieval weighted by the triplet
relationship. By minimizing the triplet loss on the labeled
images, the relative distance relationship for hash codes in
hamming space is preserved under the listwise supervision.
Specifically, for the triplet (vi,vj

+,vk
−) with strong rela-

tionship, we aim to make the hash codes in close proximity

for vi and vj
+, and simultaneously get the very different

bits for vi and vk
−.

To better generate hash codes and avoid overfitting, we
additionally incorporate another term by using all the la-
beled and unlabeled images, leading to a semi-supervised
framework. Motivated by iterative quantization [4], the
quantization loss is defined on the whole image set V as

J2(W) = ‖B−WV‖2F , (13)

where B = sgn(WV) and ‖•‖F denotes the Frobenius nor-
m. Minimization of the quantization loss will preserve the
original locality structure better in the generated hash codes.

The overall objective function for Ranking SHSC is com-
prised of the triplet loss in Eq.(12) and the quantization loss
in Eq.(13). Hence we get the following optimization problem
for our RSHSC:

min
W

∑

(vi,v
+

j
,v

−

k
)∈T

ST (vi,v
+
j ,v

−
k )L(vi,v

+
j ,v

−
k )

+α ‖B−WV‖2
F

s.t. WW⊤ = I, (14)

where α is the tradeoff parameter and the constraintWW⊤ =
I forces the hashing projection matrix W to be orthogonal,
making the bits of the generated hash codes uncorrelated to
each other.

Optimization. The orthogonal constraints and the non-
differentiable terms (i.e., sgn(•)) in Eq.(14) make the op-
timization difficult to be solved. To address this problem,
we first relax the overall objective function by replacing the
signum function in Eq.(11) with its signed magnitude as sug-
gested in [26][28]. With this relaxation, the distance function
in Eq.(11) can be rewritten as

d(vi,vj) = (W(vi − vj))
⊤W(vi − vj). (15)

Thus, the triplet loss in Eq.(12) becomes differentiable.
Next, the orthogonal constraint WW⊤ = I can be re-

laxed by appending the converted soft penalty term to the
objective function. The penalty term is defined as

J3(W) =
∥

∥

∥
WW⊤ − I

∥

∥

∥

2

F
. (16)

After the two relaxations, the overall objective function
becomes

min
W

∑

(vi,v
+

j
,v

−

k
)∈T

ST (vi,v
+
j ,v

−
k )L(vi,v

+
j ,v

−
k )

+α ‖B−WV‖2
F
+ β

∥

∥

∥
WW⊤ − I

∥

∥

∥

2

F
, (17)

where α and β are the tradeoff parameters.
To address the relaxed optimization problem in Eq.(17),

the stochastic gradient descent is used for its efficiency and
capability in dealing with highly scalable problems. Note
that the quantization loss term in Eq.(13) cannot be relaxed
by its signed magnitude directly, otherwise this quantization
loss will go to 0, which is meaningless in practice. Similar
to the common solution used in [4][28], in each iteration
of the gradient descent procedure, we split the optimization
process into two steps: 1) fix W and update B = sgn(WV);
2) fix B and update W according to the gradient descent for
the objective function. We alternate the process of updating
B and W to find a locally optimal solution. The whole
RSHSC algorithm is given in Algorithm 1.



Algorithm 1 Ranking Semi-supervised Hashing with Se-
mantic Confidence (RSHSC)

1: Input: Training images V and labeled images Vl.
2: Generate a set of triplets T consisting of (vi,vj

+,vk
−)

from the labeled images Vl.
Initialize the projection matrix W using a normal dis-
tribution with mean zero and standard deviation one.
Initialize the learning rate η, and two tradeoff parame-
ters α and β.

3: for iter = 1 to Tmax do
4: Select a random triplet (vi,vj

+,vk
−) from T .

5: B = sgn(WV)
6: W = W− η(−2α(B−WV)V⊤ +2β(WW⊤ − I)W)
7: L(vi,v

+
j ,v

−
k ) = max(0, d(vi,vj

+)− d(vi,vk
−) + 1)

8: if L(vi,v
+
j ,v

−
k ) ≻ 0 then

9: ∇L = 2W(vi − v+
j )(vi − v+

j )
⊤

−2W(vi − v−
k )(vi − v−

k )⊤

10: Compute ST (vi,vj
+,vk

−) via Eq.(4).
11: W = W − ηST (vi,v

+
j ,v

−
k )∇L

12: end if
13: end for
14: Output:

The optimized hashing projection matrix W.

4.3 Kernel-based Ranking SHSC
Our Ranking SHSCmethod can be easily kernelized (Kernel-

based Ranking SHSC) through the kernel trick which has
been proven to be able to tackle linearly inseparable data.
To kernelize Ranking SHSC, we use a kernel function κ :
R

D × R
D 7→ R to construct the hash functions. Following

the kernel-based hashing algorithms [11][13], we define the
kernelized hash function with the kernel κ plugged in as

h̃(vi) = sgn

(

m
∑

j=1

κ(v(j),vi)wj − b

)

, (18)

where v(1), . . . ,v(m) are m samples randomly selected from
V, wj ∈ R is the coefficient and b ∈ R is the bias. It is worth
noting that in order to make this kernel-based hashing fast,
m is set to be much smaller than the image dataset size
n. Following the balancing criterion [4][13] in hash function
that the generated hash bit should take as much information
as possible, the bias b is set as

b =

n
∑

i=1

m
∑

j=1

κ(v(j),vi)wj

/

n. (19)

Therefore, the kernelized hash function is rewritten as

h̃(vi) = sgn

(

m
∑

j=1

(κ(v(j),vi)−
1

n

n
∑

i=1

κ(v(j),vi))wj

)

= sgn (wκ(vi)) ,

(20)

where w = [w1, . . . , wm] is the coefficient vector and κ :
RD 7→ Rm is the vectorial map, which is defined as

κ(vi) = [κ(v(1),vi)− b1, . . . , κ(v(m),vi)− bm]⊤,

bj =
1

n

n
∑

i=1

κ(v(j),vi).
(21)

With the vectorial map κ, we can obtain the kernelized
feature matrix Vκ ∈ R

m×n. The K-bit kernel-based binary
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Figure 3: Ten example images randomly selected from

each class in CIFAR-10 dataset. The class label is given

in the first column.

code representation Bκ of the image set V is then given as

Bκ = sgn(WVκ), (22)

where W is learnt by using the proposed Ranking SHSC
method.

5. EXPERIMENTS
We conducted large-scale image retrieval experiments on

two image datasets, i.e., CIFAR-101, a tiny image collection
in 10 classes and Clickture [7], a click-based image dataset.

5.1 Datasets
The CIFAR-10 dataset contains 60,000 real world tiny

images (32× 32 pixels), which is a labeled subset of the 80
million tiny images dataset [25]. It consists of 10 object
classes and each class contains 6K samples. Every image in
this dataset is assigned to a mutually exclusive class label
and represented by a 512-dimensional GIST feature vector
[18]. Figure 3 shows 10 randomly selected images from each
class in CIFAR-10.

The dataset is partitioned into two parts: a training set
with 59K images and a test set with 1K images evenly sam-
pled from ten classes. We additionally sample 100 images
from each class in the training set and constitute 1K labeled
subset for training. For each test image, the ground-truth
similar images are derived from class label, i.e., images from
the same class are deemed to be similar.

Clickture is a large-scale click based image dataset [7]. It
was collected from one year click-through data of one com-
mercial image search engine. The dataset comprises two
parts, i.e., the training and development (dev) sets. The
training set consists of 23.1 million {query, image, click} tri-
ads of 11.7 millions distinct queries and 1.0 million unique
images. Figure 4 shows a few exemplary queries with their
clicked images and click counts in the Clickture. For exam-
ple, users clicked the first image 25 times in the search results

1http://www.cs.toronto.edu/˜kriz/cifar.html
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Figure 4: Examples in Clickture dataset (upper row:

search queries; lower row: images with click times in

response to the upper query).

when submitting query “cardinal logo” in total. In the de-
v dataset, there are 79,926 〈query, image〉 pairs generated
from 1,000 queries, where each image to the corresponding
query was manually annotated on a three point ordinal s-
cale: Excellent, Good, and Bad. Inspired by the success of
deep convolutional neural networks (DCNN) [1][9], we take
the output of 1000-way fc8 classification layer by using De-
CAF [2] as the image representation for Clickture dataset,
which constitutes a 1000-dimensional feature vector.
In the experiment, we adopt 1.0 million unique images in

the training set as our training data and randomly sampled
10K images as labeled subset. Moreover, 1K unique images
that are annotated as “Excellent” to the query in the dev
set are randomly selected as the test images. To ensure ob-
jective as well as effective evaluation, the ground truth data
are carefully generated on the click-through. Specifically,
for each test image, the set of images clicked by the same
query in the training set are taken as the semantically simi-
lar images. In addition, for training queries that share more
than one common noun phrase with the query of the test
image, their clicked images are also regarded as the similar
ones. The other images in the training set are all used as
dissimilar ones to the test image.

5.2 Protocols and Baseline Methods
We follow three evaluation protocols, i.e., hash lookup,

recall and mean average precision (MAP), which are wide-
ly used in [4][13][26]. Hash lookup takes constant search
time over a lookup table. We carry out hash lookup with-
in a Hamming radius 2 of the query and report the search
precision. Following [26], query failing in finding any hash
bucket receives zero score in precision. Given the number
of the retrieved images, the fraction of relevant ones, i.e.,
recall, is given as well. MAP is further exploited to evaluate
the ranking quality in Hamming space for each query image.
We compare the following approaches for performance e-

valuation:

• Locality Sensitive Hashing [3] (LSH ). LSH aims to
map similar examples to the same bucket with high
probability by using a Gaussian random projection
matrix. The property of locality in the original space
will be largely preserved in the Hamming space.

• PCA Hashing (PCAH ). PCAH simply uses the matrix
of top-k PCA directions as projection matrix.

• Spectral Hashing [30] (SH ). SH is based on quantizing
the values of analytical eigenfunctions computed along
PCA directions of the data.

• Semi-supervised Hashing [26] (SSH ). SSH formulates
the hashing problem as minimizing empirical error on
the labeled data while maximizing variance of hash
bits over both the labeled and unlabeled data.

• Semi-supervised Hashing with Semantic Confidence
(SHSC ) based on our proposal presented in Section
4.1.

• Ranking SHSC (RSHSC ) based on Algorithm 1.

• Kernel-based Supervised Hashing [13] (KSH ). KSH

employs a kernel formulation for learning the hash
functions to handle linearly inseparable data. We name
this run as KSH in short.

• Kernel-based Ranking SHSC (KRSHSC ) based on our
proposal in Section 4.3. A slightly different of this run
is name as KRSHSC−, which measures the quantiza-
tion loss only on the labeled data.

5.3 Parameter Settings
To ensure that all the methods are comparable under the

same setting, as in [13], we use the same Gaussian RBF ker-
nel κ(vi,vj) = exp(−‖vi − vj‖

/

2σ2) and m = 300 support
samples in all kernel-based methods. The parameter σ is
tuned on each dataset. The parameters α and β are select-
ed from {0.2, 0.4, 0.6, 0.8, 1.0} and the optimal values are
determined by using a validation set. Finally, α and β are
both set to 0.8.

5.4 Results on CIFAR-10 Dataset
Performance Comparison. Figure 5(a) shows the MAP

performances of nine runs on CIFAR-10 dataset. Overall,
the results on MAP across different lengths of hash code
consistently indicate that hashing with semantic confidence
leads to a performance boost. There is a significant perfor-
mance gap between the kernel-based and linear runs. It is
not very surprising to see that LSH provides the worst MAP
performance since the random hash functions lack discrim-
ination power for small bit lengths. On the other hand,
PCAH and SH work relatively well for small bit sizes, but
getting worse as the number of bits increases, indicating that
PCA is effective in preserving semantic consistency for small
hash code lengths. Furthermore, by additionally incorporat-
ing semantic confidence, SHSC exhibits better performance
than SSH. Similar is spirit, KRSHSC− improves KSH, but
the performance is still lower than that of KRSHSC, demon-
strating the advantage of exploiting the unlabeled data in
semi-supervised hashing approaches. The improvement can
also be observed of RSHSC compared to SHSC.

In the evaluation of hash lookup within Hamming radius
2 as shown in Figure 5(b), the precisions for most of the
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Figure 5: Comparisons with state-of-the-art approaches on CIFAR-10 dataset. (a) Mean average precision (MAP)

performance. (b) Precision within Hamming radius 2 using hash lookup. (c) Recall curves with 32 bits. For better
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compared methods drop when a longer size of hash code
is used (32 bits in our case). This is because the number
of samples falling into a bucket decreases exponentially for
longer sizes of hash code. Therefore, for some query images,
there are even no any neighbor in a Hamming ball of radius
2. Even in this case, our proposed KRSHSC provides the
best performance and the drop in precision for long size of
hash code is less than others.
We further details the recall at different numbers of re-

turned examples in Figure 5(c). The results confirm the
trends seen in Figure 5(a) and demonstrate performance im-
provement using the proposed semi-supervised hashing with
semantic confidence approaches, especially KRSHSC, over
other runs. In addition, to verify that the performance of
different approaches is not by chance, we conducted signif-
icance test using the randomization test [22]. The number
of iterations used in the randomization is 100,000 and at
0.05 significance level. KRSHSC is found to be significantly
better than others.
Varying the number of iterations. In our RSHSC

and KRSHSC algorithms, the learning of hash function is
an iterative process. Next, we conducted experiments to
evaluate the performances of our proposed approaches by
varying the number of iterations from 1 to 1.0 million on
CIFAR-10 dataset. Note that the training time grows lin-
early with the number of iterations.
MAP performances and precisions within Hamming ra-

dius 2 hash lookup with 32 hashing bits are reported in

Figure 6. Not surprisingly, we can observe that the perfor-
mances of RSHSC and KRSHSC are both improved with
the increase of iterations. Furthermore, after a number of
iterations (600K in our case), the performances of RSHSC

and KRSHSC change very smoothly, as the algorithms have
already received sufficient knowledge to learn a good hash
function.

5.5 Results on Clickture Dataset
Figure 7 shows the experimental results on Clickture dataset.

As for some queries in Clickture dataset, there are only tens
of or even less than ten clicked (relevant) images, making
the search task very challenging. MAP performance and
precision with Hamming radius 2 using hash lookup are giv-
en in Figure 7(a) and (b), respectively. Our KRSHSC ap-
proach consistently outperforms other runs. In particular,
the MAP performance and precision with Hamming radius
2 using hash lookup of KRSHSC can achieve 0.0818 and
0.1735 with 48 hash bits, which make the improvement over
the best competitor KSH by 3.5% and 12.8%. Method-
s that learn hash functions with semantic confidence, e.g.
KRSHSC− and SHSC, are generally better than KSH and
SSH, respectively. Similar to the observations on CIFAR-10
dataset, LSH performs poorly especially for small bit sizes
and SH leads to better performance gain than PCAH for
longer hash code. Figure 8 showcases some exemplar query
images and their retrieved neighbors with 48 bits. KRSH-

SC still exhibits the best search quality in terms of visual
relevance.

5.6 Complexity Analysis
The time complexities for training RSHSC and KRSHSC

are Tmax × O(nKD + DK2 + D) and Tmax × O(nKm +
mK2 + m), respectively, which scales linearly with n given
n ≫ D ≻ m ≻ K. In practice, take the training on 1 million
triplets for example, KRSHSC takes about 30 minutes on a
server with 2.40GHz CPU and 128GB RAM. For each query,
the hashing time of RSHSC and KRSHSC are O(KD) and
O(Dm+Km), respectively.

6. DISCUSSION AND CONCLUSION
In this paper, we have presented an important concep-

t, i.e. semantic confidence, for the learning of hash func-
tion. Particularly, we propose two ways of measuring the
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Figure 7: Comparisons with state-of-the-art approaches on Clickture dataset (Better viewed in color). (a)
Mean average precision (MAP) performance. (b) Precision within Hamming radius 2 using hash lookup.

semantic confidence, by neighbor voting and click counts,
where the former is for general purpose and the latter ex-
ploits the click-through data which is largely available by
search engine. With the semantic confidence, pairwise and
triplet relationships are deployed and further incorporated
into semi-supervised hashing learning framework with pair-
wise and listwise supervision, respectively. Finally, a kernel-
based version is proposed to handle the linearly inseparable
data.
We performed extensive experiments on two image dataset-

s and compared with the state-of-the-art hashing techniques.
Experimental results demonstrated that the proposed semi-
supervised hashing with semantic confidence yields superior
performance. The current work can be extended with the
design of multiple listwise supervised hash tables, which is
expected to show even better performance.
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