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Abstract
Visual sentiment analysis aims to automatically
recognize positive and negative emotions from im-
ages. There are three main challenges, including
large intra-class variance, fine-grained image cate-
gories, and scalability. Most existing methods pre-
dominantly focus on one or two challenges, which
has limited their performance. In this paper, we
propose a novel visual sentiment analysis approach
with deep coupled adjective and noun neural net-
works. Specifically, to reduce the large intra-class
variance, we first learn a shared middle-level senti-
ment representation by jointly learning an adjective
and a noun deep neural network with weak label su-
pervision. Second, based on the learned sentiment
representation, a prediction network is further opti-
mized to deal with the subtle differences which of-
ten exist in the fine-grained image categories. The
three networks are trained in an end-to-end manner,
where the middle-level representations learned in
previous two networks can guide the sentiment net-
work to achieve high performance and fast conver-
gence. Third, we generalize the training with mu-
tual supervision between the learned adjective and
noun networks by a Rectified Kullback-Leibler loss
(ReKL), when the adjective and noun labels are not
available. Extensive experiments on two widely-
used datasets show that our method outperforms the
state-of-the-art on SentiBank dataset with 10.2%
accuracy gain and surpasses the previous best ap-
proach on Twitter dataset with clear margins.

1 Introduction
Recently, understanding the emotion and sentiment from vi-
sual content (e.g., image and video) has attracted great atten-
tion, since the sentiment conveyed from visual content can
explain or even strengthen the sentiment conveyed from tex-
t. The capability of automatic visual sentiment analysis will
promote visual understanding, and benefit a broad range of
applications, such as affective computing [Datta et al., 2008;
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Figure 1: The three challenges for visual sentiment analysis.
(1) Large intra-class variance. (a) and (b) depict different ob-
jects, but show the same positive sentiment. (2) Fine-grained
image categories. Even the images in the same category, e.g.,
the “dogs” in (c) and (d), can even convey different senti-
ments. (3) Scalability. The labels, such as “sunny beach,” are
hard to obtain, which makes sentiment analysis hard to scale
up. (Green: positive samples; Red: negative samples)

Ko and Kim, 2015; Siersdorfer et al., 2010], opinion mining
[Morency et al., 2011; Yuan et al., 2013], image captioning
[Mathews, 2015], etc.

In this paper we consider visual sentiment analysis as a
binary prediction problem which is to classify an image as
positive or negative from its visual content [You et al., 2015a;
Yuan et al., 2013; Campos et al., 2015; You et al., 2015b].
The difficulty is derived from the “affective gap” between
low-level visual content and high-level semantics [Machajdik
and Hanbury, 2010]. Significant progresses have been made
by designing the sentiment-related visual sentiment ontology,
which consists of more than 3,000 adjective noun pairs (de-
noted as “ANP”) with associated training images from search
engines [Borth et al., 2013]. They consider each ANP as an
affective concept, and thus sentiment prediction can be con-
ducted by determining whether an image can be classified
with the affective concepts. For example, images classified
with the ANP of “beautiful sky” are positive, while images
classified with “terrible accident” are negative.



Although ANP-based representation has made sentiment
analysis more visually detectable, general object recognition
methods can only achieve limited performance. The chal-
lenges are three-folds. First, same positive/negative senti-
ment can be reflected in different objects, which results in
large intra-class variance. For example, “beach” and “road”
are visually dissimilar. However, images of both “sunny
beach” and “sunny road” (Fig. 1 (a)(b)) show the same pos-
itive sentiment. Second, different sentiments can be inferred
from the same object, and hence visual sentiment analysis
needs to detect subtle differences even in the same objec-
t class. For example, images of “angry dog” and “happy dog”
(Fig. 1 (c)(d)) are all dogs in terms of object class, but are
obviously in different sentiment categories. Third, although
object-level labels are widely available (e.g., ImageNet [Deng
et al., 2009], MS COCO [Chen et al., 2015]), designing ANP
and collecting clean ANP samples are expensive. To the best
of our knowledge, only VSO [Borth et al., 2013] and MVSO
[Jou et al., 2015] dataset provide ANP-level yet noisy training
data, which makes sentiment analysis hard to scale up.

Despite a few recent works trying to formulate sentiment
analysis as a fine-grained classification problem [Borth et al.,
2013; Chen et al., 2014a] to solve the second challenge, few
research has studied this topic by considering the above three
challenges simultaneously. In this paper, we propose a novel
visual sentiment analysis approach with Deep Coupled Ad-
jective and Noun neural networks (DCAN), towards handling
the above three challenges in a single framework. First, to
overcome the large intra-class variance, we propose to jointly
learn deep neural networks for both the adjectives and nouns
of ANPs. The goal of designing such a network is to discov-
er the shared features of the same adjective/noun. Second,
since the ANP labels are not widely available, we propose to
generalize the training with mutual supervision between the
adjective and noun networks by a rectified Kullback-Leibler
loss (ReKL) to other visual sentiment datasets. Third, once
the middle-level sentiment representations of the adjectives
and nouns are learned, the sentiment prediction network is
further trained to detect subtle differences for the same object
by weighting the prediction of both networks. Note that the
adjective, noun and sentiment network are trained in an end-
to-end manner. Moreover, the first two networks are con-
sidered as auxiliary classifiers with discount weights in the
final loss function, which can guide the sentiment network to
achieve high performance and fast convergence. The main
contributions of this paper can be summarized as follows:
• We address the challenges of visual sentiment analysis

by training a novel coupled deep adjective and noun neu-
ral network, which can learn middle-level sentiment rep-
resentation and reduce intra-class variance.
• We generalize the proposed method to support sentiment

analysis without ANP labels by mutual supervision and
transfer learning scheme, which makes our method more
scalable.
• We conduct experiments on two widely-used sentiment

datasets (i.e., SentiBank [Borth et al., 2013], Twitter [Y-
ou et al., 2015b]), and obtain superior performance over
the state-of-the-art with 10.2% accuracy gain.

The rest of the paper is organized as follows. Section 2

describes related work. Section 3 introduces our proposed
method. Section 4 provides evaluation and analysis, followed
by conclusion in Section 5.

2 Related Work
The research on visual sentiment analysis proceeds along two
dimensions, i.e., hand-crafted feature-based and deep learn-
ing feature-based approaches.

Traditional methods focus on designing hand-crafted fea-
tures to represent images [Mei et al., 2008; Xu et al., 2009; Fu
et al., 2015a; Li et al., 2015]. Previous literatures have been
trying to design/apply important sentiment-related features
including Wiccest features and Gabor features [Yanulevskaya
et al., 2008], global and local RGB histogram [Siersdorfer
et al., 2010], SIFT-based bag of features [Siersdorfer et al.,
2010; Chen et al., 2014b], Gist features [Yuan et al., 2013;
Chen et al., 2014b], and so on. Besides, some works have
tried to utilize middle-level features to improve classification
results. For example, 102 pre-defined scene attributes from
SUN dataset [Xiao et al., 2010] were used as features for sen-
timent in [Yuan et al., 2013]. In [Borth et al., 2013], 1200-
dim features from 1,200 adjective-noun pairs were extract-
ed as middle-level attributes to categorize sentiment based on
Plutchiks psychological theorem [Plutchik, 1980].

With the growing of images and videos on the web, tra-
ditional methods found it hard to handle the scalability and
generalization problem. In contrast, Convolutional Neural
Networks (CNNs) [LeCun et al., 1998] are capable of au-
tomatically learning robust features from a large number of
images [Krizhevsky et al., 2012; Fu et al., 2015b] and videos
[Karpathy et al., 2014; Gan et al., 2015], showing significant
performances. Motivated by the great success of CNNs, some
works have already made attempts to introduce CNNs to vi-
sual sentiment classification task [You et al., 2015b][Chen et
al., 2014a][Campos et al., 2015].

The most similar work to ours is Bilinear CNN [Lin et al.,
2015], which consists of two convolutional feature extractors
for fine-grained categorization. Different from this method,
our approach can simultaneously solve the above three chal-
lenges, i.e., large intra-class variance, fine-grained recogni-
tion and low-scalability.

3 Approach
In this section, we introduce the proposed DCAN for visu-
al sentiment analysis. Images with sentiment labels (pos-
itive/negative) are first fed into two sub-networks (A-net
and N-net) to extract sentiment representation, as shown in
Fig. 2(a)-(c). The outputs of both A-net and N-net are further
normalized and concatenated in Fig. 2(f), and finally mapped
to sentiment in Fig. 2(g). To effectively guide the training
process, a weak supervision is used in Fig. 2(d), if noisy AN-
P labels are available. Otherwise, a mutual supervision with
a rectified Kullback-Leibler loss (ReKL) is used in Fig. 2(e),
which makes the network more scalable.

3.1 Learning Deep Sentiment Representation
Unlike traditional object recognition task, where images of
the same object class often share highly-similar visual pat-
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Figure 2: The deep coupled adjective and noun neural network (DCAN). Images in (a) are fed into two sub-nets to extract
the descriptiveness features in (b) and the objectiveness features in (c), respectively. The learnt sentiment features are further
concatenated in (f) and finally mapped to sentiment in (g). Weak supervision in (d) is applied when noisy labels Ya and Yn are
supplied. Mutual supervision in (e) is applied by predicting an expected output of each sub-network with a transition matrix S,
when ANP is unavailable. The network is optimized by minimizing the sentiment loss Ls and the two auxiliary losses La, Ln.

terns such as contour and texture, image sentiment analysis
are usually involved with great intra-class variance. Given the
sentiment supervision (positive/negative), it is hard to learn a
mapping function from low-level image pixels to high-level
sentiment space, even for the powerful deep learning net-
works. Previous work has shown that a deeper network even
leads to worse result if the appropriate guidance is missing
[You et al., 2015b].

To utilize middle-level features to guide the sentimen-
t learning, we propose to learn robust sentiment represen-
tation with joint adjective/noun descriptions. Once the ad-
jective/noun descriptions are learned, we consider them as
middle-level representation to guide the learning of high-level
sentiment. The network structure is shown in Fig. 2. We di-
vide each ANP label into an adjective and a noun, and lever-
age the two types of labels as weak supervision, since the
ANP labels are noisy. Sentiment representation of an image
are extracted by two parallel sub-networks (i.e., A-net and
N-net) with convolutional and fully-connected layers, under
the supervision of adjectives (A) and nouns (N), respectively.
The loss of each sub-network is measured by cross entropy:

La/n = L(z , t ; I,W) = − logP(z = t |I,W), (1)

P(z = t |I,W) = softmax(zk) =
exp (zk)∑K
i=1 exp (zi)

, (2)

where z is a K-dim network output, I represents an input im-
age, W denotes network parameters, z and t is the predicted
and true label, respectively.

The advantages of jointly learning adjective network and
noun network are two-folds. First, images with the same ad-
jective/noun label usually share similar visual patterns. As
shown in Fig. 1, images of both “sunny beach” and “sunny
road” show similar visual patterns of “bright light,” while the

images of both “angry dog” and “happy dog” share common
dog appearance. This strategy thus enables the sub-networks
to effectively learn common representation for different im-
ages under the same adjective or noun. Second, from the per-
spective of sample distribution, compared to the images as-
signed by ANP labels, images under the same adjective/noun
are much richer and thus benefit for sample expansion and
balance. For example, “angry dog” contains less than 100
images in SentiBank [Borth et al., 2013], while there are t-
housands of samples under “angry” or “dog.”

3.2 Transfer Learning with an Rectified
Kullback-Leibler Loss

As designing ANP and collecting clean image data with AN-
P labels are expensive, to further generalize our method to
support the task where no ANP labels are provided, we pro-
pose a mutual supervision approach by the learnt sentiment
representations and ANP transfer. Although the ANP labels
are sometimes noisy to image content, this weak supervision
can provide us a reliable correlation for constraining the ad-
jective and noun pairs. It would be possible to generate unre-
lated adjective and noun pairs from A-net and N-net without
the ANP supervision. For example, the adjective “cute” is
reasonable to describe “dog” or “girl,” but inappropriate to
describe “bank” or “sky.” In order to eliminate those unrea-
sonable results and learn better sentiment representation, we
introduce a rectified Kullback-Leibler loss term (denoted as
ReKL) to mutually supervise the sub-network outputs of the
adjective and noun.

Specifically, given the prediction of N-net, we calculate the
expected output of A-net by a transition matrix from noun to
adjective, and further to minimize the discrepancy between
the predicted and expected distribution over different adjec-
tives of the A-net. Since the N-net can supervise the training



of A-net (and vice versa), we call this training procedure as
mutual supervision. Note that since the parameters of A-net
and N-net can be first pre-trained in weakly-supervised sce-
narios with a relatively good discrimination ability, the A-net
and N-net can be reenforced for each other on other datasets
without ANP labels by the proposed mutual supervision. For-
mally, given the output of A-net, a rectified Kullback-Leibler
loss (ReKL) of N-net is defined as:

ReKL(n‖n∗) =
∑

k
nkmax

(
log

nk

n∗
k

, 0
)

=
∑

k
nkmax

(
log

nk∑
j ajSjk

, 0
)
, (3)

where n is the predicted output of the N-net, and n∗ is the ex-
pected output given the A-net output. k is the kth dimension
of the N-net output. Sjk is an element of the transition matrix
S, which has KA columns and KN rows. KA and KN indi-
cates the number of adjectives and nouns, respectively. Sjk

can be obtained by calculating the co-occurence times of the
jth adjective and the kth noun from ANPs. The matrix S is
further normalized by rows. Note that the term in the sum
function is ignored if (nk ≤ n∗

k). The reason is that if nk is
larger enough compared to n∗

k, the output probability of noun
is irrational compared with the expectation and should be pe-
nalized. Since the expected output gives all the “possible”
choices of the network output, we should avoid the penalty if
(nk ≤ n∗

k). Similarly, given the output of the N-net, the loss
of A-net is shown as:

ReKL(a‖a∗) =
∑

k
akmax(log

ak∑
j njST

jk

, 0), (4)

where ST is obtained by transposing the matrix S and
normalizing by columns. The derivatives of the proposed
ReKL loss are calculated as follows:

∂ReKL(n‖n∗)

∂nk
=

{
log nk∑

j
ajSjk

+ 1, n∗ ≤ nk,

0, otherwise,
(5)

∂ReKL(a‖a∗)
∂ak

=

{
log ak∑

j
njST

jk

+ 1, a∗ ≤ ak,

0, otherwise.
(6)

3.3 Sentiment Analysis
Since the visual sentiment analysis also needs to solve the
fine-grained challenge, the learned representation of A-net
and N-net are further concatenated and connected to an ad-
ditional fully-connected layers with a softmax function for
binary prediction. Adjectives are usually related to descrip-
tiveness, while nouns represent objectiveness of an image.
Therefore, combining the two kinds of representation could
be reasonable and easy to learn a fine-grained and discrimi-
native sentiment predictor as:

Ps = softmax(W(M+1) · [a;n]), (7)

Ls = − logPs , (8)
where W(M+1) is the parameter of the last fully-connected
layer, Ls is the loss. To end-to-end train the whole neural
network, we integrate the loss of A-net, N-net and sentiment
by a linear combination in two forms:

Algorithm 1 Training the end-to-end DCAN
Input: Training images: X = [x1, ...,xN ], sentiment labels
Ys, noisy adjective and noun labels Ya, Yn, initial parame-
ters W = [W(1), ...,W(M+1)] (M + 1 denotes the last fully-
connected layer), rectified Linear Activation Function f(·).
Procedure:
Repeat:
Forward Propagation:
Last layer output z(M+1)

s = W(M+1)[z
(M)
a , z

(M)
n ]

Other layers are similar as traditional CNN
Backward Propagation:
1. For m =M + 1, calculate

∂L

∂W(M+1) = ∂Ls

∂W(M+1) , δ(M+1)
s = −ws

∂Ls

∂z
(M+1)
s

2. For m =M , calculate
∂L

∂W(M) = δ
(M+1)
s (f(z

(M+1)
s ))T

δ(M) = [(W(M))T δ
(M+1)
s ] · f ′(z(M))

For weak supervision:
δ
(M)
a = δ(M) − wa

∂La

∂z
(M)
a

, δ(M)
n = δ(M) − wn

∂Ln

∂z
(M)
n

For mutual supervision:
δ
(M)
a = δ(M) − wa

∂ReKL(a‖a∗)

∂z
(M)
a

,

δ
(M)
n = δ(M) − wn

∂ReKL(n‖n∗)

∂z
(M)
n

3. For m =M − 1 to m = 2, calculate
∂L

∂W(m) = δ(m+1)(f(z(m)))T

δ(m) = [(W(m))T δ(m+1)] · f ′(z(m))
Until the max iteration
Output: W = [W(1), ...,W(M+1)]

• Weak Supervision
L = wsLs + waLa + wnLn , (9)

• Mutual Supervision
L = wsLs+waReKL(a‖a∗)+wnReKL(n‖n∗), (10)

where ws , wa , wn are weights. We generally set ws to be
relatively larger for faster convergence and better result. In
optimization, we adopt stochastic gradient descent method to
train our model. Algorithm 1 summarizes the training proce-
dure of the proposed DCAN.

3.4 Discussions
One of the challenges that hinders neural networks to go
deeper is the notorious “vanishing gradient” problem. In the
22-layer GoogLeNet [Szegedy et al., 2014], additional auxil-
iary classifiers are introduced at intermediate layers to relieve
the vanishing gradient problem and improve the performance.
In Deeply-Supervised Nets [Chen-Yu et al., 2014], supervi-
sion on hidden neurons via companion objectives shows su-
perior performance on ImageNet challenge. In our model, the
adjective and noun classifier can also be viewed as auxiliary
supervision on middle-level layers, which is expected to im-
prove the accuracy of sentiment prediction. Different from
GoogLeNet and Deeply-Supervised Nets, the learnt adjective
and noun features have specific meaning and are further inte-
grated into the sentiment analysis.

4 Experiments
We evaluate the proposed DCAN on two datasets and com-
pare the performance of DCAN with the state-of-the-art.



Table 1: Results of CNNs with different depths on SentiBank.

Network Structure Accuracy
6-layer CNN (2Conv+4FC) 0.718

8-layer CNN (AlexNet) 0.649
9-layer CNN (5Conv+4FC) 0.640

Table 2: The precision, recall, F1 and accuracy of different
approaches on SentiBank testing set.

Methods Prec. Rec. F1 Acc.
2Conv+4FC 0.714 0.729 0.722 0.718

PCNN 0.759 0.826 0.791 0.781
Bilinear CNN 0.669 0.666 0.668 0.667

DCAN (2Conv+4FC) 0.755 0.719 0.737 0.742
DCAN(ANP) 0.843 0.843 0.843 0.843
DCAN (Alex) 0.858 0.889 0.873 0.870
DCAN (share) 0.857 0.893 0.875 0.872

DCAN (pre-train) 0.865 0.908 0.886 0.883

4.1 Datasets
SentiBank [Borth et al., 2013]. SentiBank is widely-used,
which contains about one-half million images from Flickr
with designed ANPs as queries. The sentiment label of each
image is decided by sentiment polarity of the corresponding
ANP. We use this dataset for weak supervision, as noisy AN-
P labels are provided. The training/testing split is 90% and
10%, respectively.
Twitter “five-agree” [You et al., 2015b]. The dataset is
more challenging than SentiBank, which contains 581 pos-
itive samples and 301 negative samples. Each sample is la-
beled by at least 5 AMT workers. The training/testing split
is 80% and 20%, respectively. The network is pre-trained on
SentiBank, and fine-tuned on Twitter. We use the mutual su-
pervision as ANP labels are unavailable.

4.2 Compared Methods
We compare the proposed DCAN network with 8 baselines:
• GCH/LCH/GCH+BoW/LCH+BoW: 64-bin global

color histogram features (GCH), 64-bin local color his-
togram (LCH) and SIFT-based Bag-of-words features,
as defined in [Siersdorfer et al., 2010].
• SentiBank: Using 1200-dim ANP representation with

Linear SVM as classifier [Borth et al., 2013].
• Sentribute: Using middle-level representation with 102

pre-defined scene attributes [Yuan et al., 2013].
• 2Conv+4FC: A CNN method with 2 convolutional lay-

ers and 4 fully-connected layers, as in [You et al.,
2015b].
• PCNN: Progressive CNN [You et al., 2015b].
• DeepSentiBank: 2089-dim CNN features with linear

SVM as classifier [Chen et al., 2014a].
• Fine-tuned CaffeNet: An ImageNet pre-trained

AlexNet [Campos et al., 2015] followed by fine-tune.
• Bilinear CNN: A state-of-the-art fine-grained classifi-

cation method [Lin et al., 2015]. To be comparable, we
use B-CNN[M,M]. The top 5 convolutional layers are

Table 3: Comparison results on Twitter “five-agree.”
Methods Accuracy

GCH 0.684
LCH 0.710

GCH+BoW 0.710
LCH+BoW 0.717
SentiBank 0.709
Sentribute 0.738

DeepSentiBank 0.774
2Conv+4FC 0.783

PCNN 0.773
Fine-tuned CaffeNet 0.830

DCAN (Alex) 0.823
DCAN (Alex)+ReKL 0.838

pre-trained from ImageNet.
We also compare different variants of our DCAN:
• DCAN (2Conv+4FC): Using network structure from

[You et al., 2015b] as A-net and N-net.
• DCAN (Alex): Using AlexNet structure [Krizhevsky et

al., 2012] as A-net and N-net.
• DCAN (ANP): Similar as DCAN (Alex), except using

each ANP as middle representation.
• DCAN (share): Similar as DCAN (Alex), except A-net

and N-net sharing common convolutional layers.
• DCAN (pre-train): Similar as DCAN (Alex), except

training sub-networks first before training the whole.

4.3 Evaluation of Network Depth
We first test the accuracy of neural networks by adding more
layers. The result is shown in Tab. 1, which verifies the same
observation in [You et al., 2015b] that simply going deep can
not help bridge the affective gap between low-level image
pixels and high-level sentiment. It is important to learn ef-
fective middle-level features for visual sentiment analysis.

4.4 Experiments on SentiBank
In SentiBank, we separate the ANPs into about 180 adjectives
and 300 nouns. The input images are first resized to 227×227
and mean-subtracted before propagating to the network. We
train our model using a mini-batch of 256 and weight decay of
0.0005, as suggested by [Krizhevsky et al., 2012]. The initial
learning rate is 0.005 and divided by 10 every 75 epochs until
convergence. We empirically set the weight of sentiment to 2
and the weight of sub networks to be 1 since this weighting
gives the best result.

Tab. 2 summarizes the performances of our approach and
other methods. Compared to the others, DCAN (Alex) gives
the result of 87.0%, which is much better than PCNN [You et
al., 2015b]. DCAN (pre-train) further leads to the best per-
formance, with over 10.0% accuracy gain compared to PC-
NN [You et al., 2015b]. The performance of DCAN (2Con-
v+4FC) is unsatisfactory, because the two sub-networks have
few convolutions and are inadequate to capture the adjec-
tive and noun features. However, the accuracy of DCAN
(2Conv+4FC) is still higher than the pure CNN of 2Con-
v+4FC (74.2% vs 71.8%), which shows the effectiveness for
building the parallel network. Similar observation has been



Figure 3: Accuracy (crop-center) and convergence of D-
CAN(Alex) and DCAN (ANP).

found in Bilinear CNN [Lin et al., 2015], which shows bet-
ter results than the pure CNN (AlexNet). Our network D-
CAN (Alex) shows better performance than Bilinear CNN
with same number of convolutional layers, which verifies
that recognizing sentiment cannot be simply formulated as
a fine-grained problem. Instead, we should simultaneous-
ly consider the three challenges, i.e., large intra-class vari-
ance, fine-grained recognition and low-scalability. Besides,
the proposed network achieves superior performance over D-
CAN (ANP), which suggests that learning shared features for
each adjective or noun can greatly promote the performances
of neural network. We further visualize DCAN(Alex) and D-
CAN (ANP) by comparing their testing accuracy and training
loss through training stage. As shown in Fig. 3, DCAN(Alex)
achieves better performance and faster convergence.

We are also interested in images with high response to
some adjectives such as “crowded,” “delicious,” etc. We first
divide an image into blocks, and feed them into the A-net to
obtain a response score. We further visualize the response s-
core by a heat map. The bright area indicates high response.
As shown in Fig. 4, the proposed network is capable of learn-
ing common descriptive features among different objects. For
example, we can capture the group of people as a visual clue
to represent “crowded” in “crowded city,” “crowded beach,”
etc, and also damaged windows/doors as a sign for “aban-
doned” in “abandoned building,” “abandoned industry,” and
“abandoned factory.”

4.5 Experiments on Twitter “five-agree”
On Twitter, we employ a 5-fold cross validation to test our
model as the same as other baseline methods. We first sepa-
rate the data into five partitions and in each time we use four
partitions for fine-tuning and the rest one partition for testing.
We initialize the model with learnt weights and ANP transi-
tion matrix from SentiBank, then fine-tune the whole model
with a relatively small learning rate. We also implement our
rectified KL to guide the learning of the affective concepts.

We report mean performance on Twitter “five-agree” in
Tab. 3. As can be seen from the table, deep learning based ap-
proaches generally have better ability to describe and model
sentiment information, compared to traditional features based
methods in the first six rows. DCAN (Alex) achieves 5.0%
accuracy gain compared to PCNN [You et al., 2015b]. By
using the proposed ReKL loss, we can further improve the

crowded city crowded beach crowded street

delicious food delicious meat delicious cake

abandoned building abandoned industry abandoned factory

Figure 4: Region-based heat maps for different ANPs by us-
ing the prediction of A-net. The bright areas indicate high-
response regions to the adjectives.

performance with clear margins, which supports the fact that
the mutual supervision can help regularize the outputs of the
two sub-networks and thus produces more accurate features.
The method of fine-tuned CaffeNet also obtains good result.
However, the method utilizes ImageNet dataset [Deng et al.,
2009] for pre-training, which contains over one million man-
ually labeled images. In contrast, our approach can generate
the best result with only weakly-labeled data.

5 Conclusion
In this paper, we propose DCAN which is a novel CNN struc-
ture with deep coupled adjective and noun networks for vi-
sual sentiment analysis. Our network can effectively learn
middle-level sentiment features from noisy web images with
ANP labels, and achieve the best result on both SentiBank
and Twitter dataset to the best of our knowledge. Since the
ANP labels are human-designed, we will focus on automati-
cally discovering robust middle-level representation to guide
the learning of sentiment in our future work.
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