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Preface 

Online advertising, a form of advertising that utilizes the Internet and World Wide Web to 

deliver marketing messages and attract customers, has seen exponential growth since its 

inception over 15 years ago, resulting in a $65 billion market worldwide in 2008; it has been 

pivotal to the success of the World Wide Web.  

The dramatic growth of online advertising poses great challenges to the machine learning 

research community and calls for new technologies to be developed. Online advertising is a 

complex problem, especially from machine learning point of view. It contains multiple parties 

(i.e., advertisers, users, publishers, and ad platforms such as ad exchanges), which interact with 

each other harmoniously but exhibit a conflict of interest when it comes to risk and revenue 

objectives. It is highly dynamic in terms of the rapid change of user information needs, non-

stationary bids of advertisers, and the frequent modifications of ads campaigns. It is very large 

scale, with billions of keywords, tens of millions of ads, billions of users, millions of advertisers 

where events such as clicks and actions can be extremely rare. In addition, the field lies at 

intersection of machine learning, economics, optimization, distributed systems and information 

science all very advanced and complex fields in their own right. For such a complex problem, 

conventional machine learning technologies and evaluation methodologies are not be sufficient, 

and the development of new algorithms and theories is sorely needed. 

The goal of this workshop is to overview the state of the art in online advertising, and to discuss 

future directions and challenges in research and development, from a machine learning point of 

view. We expect the workshop to help develop a community of researchers who are interested 

in this area, and yield future collaboration and exchanges. 

Our call for papers has attracted many submissions. All submitted papers were thoroughly 

reviewed by the program committee. The program committee finally accepted 7 papers. 

We are grateful to the program committee members for carefully reviewing all the submissions. 

We also would like to thank the MLOAD 2010 program committee for their support of this 

workshop and all the authors for their contributions. 
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Keynote address 

Machine Learning for Display Advertising 

Foster Provost 
New York University 

Abstract 

Most on-line advertisements are display ads, yet as compared to sponsored search, display 

advertising has received relatively little attention in the research literature. Nonetheless, display 

advertising is a hotbed of application for machine learning technologies. In this talk, I will discuss 

some of the relevant differences between online display advertising and traditional advertising, 

such as the ability to profile and target individuals and the associated privacy concerns, as well 

as differences from search advertising, such as the relative irrelevance of clicks on ads and the 

concerns over the content next to which brands' ads appear. Then I will dig down and discuss 

how these issues can be addressed with machine learning. I will focus on two main results based 

on work with the successful machine-learning based firm Media6degrees. (i) Privacy-friendly 

``social targeting'' can be quite effective, based on identifying browsers that share fine-grained 

interests with a brand's existing customers--as exhibited through their browsing behavior. (ii) 

Clicks often are a poor surrogate for conversions for training targeting models, but there are 

effective alternatives.  

This work was done in collaboration with Brian Dalessandro, Rod Hook, Alan Murray, Claudia 

Perlich, and Xiaohan Zhang.  
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Keynote address 

Visualization and Modeling of the Joint Behavior of 

Two Long Tailed Random Variables 

Art Owen 
Stanford University 

Abstract 

Many of the variables relevant to online advertising have heavy tails. Keywords range from very 

frequent to obscure. Advertisers span a great size range. Host web sites range from very popular 

to rarely visited.  

Much is known about the statistical properties of heavy tailed random variables. The Zipf 

distribution and Zipf-Mandelbrot distribution are frequently good approximations.  

Much less attention has been paid to the joint distribution of two or more such quantities. In 

this work, we present a graphical display that shows the joint behavior of two long tailed 

random variables. For ratings data (Netflix movies, Yahoo songs) we often see a strong head to 

tail affinity where the major players of one type are over-represented with the minor players of 

the other. We look at several examples which reveal properties of the mechanism underlying 

the data. Then we present some mathematical models based on bipartite preferential 

attachment mechanisms and a Zipf-Poisson ensemble. 

This is joint work with Justin Dyer. 
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Invited Talk 

Hybrid Bidding for Keyword Auctions 

Ashish Goel 
Stanford University 

Abstract 

Search auctions have become a dominant source of revenue generation on the Internet. Such 

auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions 

where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer 

then chooses one of the two as the pricing mechanism. We assume that the advertiser and the 

auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. 

We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. 

We then show that this auction is different from the existing per-click auction in multiple ways: 

1) It takes into account the risk characteristics of the advertisers. 2) For obscure keywords, the 

auctioneer is unlikely to have a very sharp prior on the click- probabilities. In such situations, the 

hybrid auction can result in significantly higher revenue. 3) An advertiser who believes that its 

click-probability is much higher than the auctioneer's estimate can use per-impression bids to 

correct the auctioneer's prior without incurring any extra cost. 4) The hybrid auction can allow 

the advertiser and auctioneer to implement complex dynamic programming strategies. As 

Internet commerce matures, we need more sophisticated pricing models to exploit all the 

information held by each of the participants. We believe that hybrid auctions could be an 

important step in this direction. 
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Invited Talk 

AdPredictor – Large Scale Bayesian Click-Through 

Rate Prediction in Microsoft’s Bing Search Engine 

Thore Graepel and Joaquin Quiñonero Candela 
Microsoft 

Abstract 

In the past years online advertising has grown at least an order of magnitude faster than 

advertising on all other media. Bing and Yahoo! have recently joined forces: all ads on both 

search engines are now served by Microsoft adCenter and all search results on Yahoo! are 

powered by Bing. Accurate predictions of the probability that a user clicks on an advertisement 

for a given query increase the efficiency of the ads network and benefit all three parties involved: 

the user, the advertiser, and the search engine. This talk presents the core machine learning 

model used by Microsoft adCenter for click prediction: an online Bayesian probabilistic 

classification model that has the ability to learn efficiently from terabytes of web usage data. 

The model explicitly represents uncertainty allowing for fully probabilistic predictions: 2 

positives out of 10 instances or 200 out of 1000 both give an average of 20%, but in the first 

case the uncertainty about the prediction is larger. We discuss some challenges in machine 

learning for online systems, such as valid metrics, causal loops and biases in the training data. 
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Invited Talk 

Click Modeling in Search Advertising: Challenges 

and Solutions 

Jianchang Mao 
Yahoo! Labs 

Abstract 

Sponsored search is an important form of online advertising that serves ads that match user's 

query on search result page. The goal is to select an optimal placement of eligible ads to 

maximize a total utility function that captures the expected revenue, user experience and 

advertiser return on investment. Most search engines use a pay-per-click model where 

advertisers pay the search engine a cost determined by an auction mechanism (e.g., generalized 

second price) only when users click on their ad. In this case, the expected revenue is directly tied 

to the probability of click on ads. Click is also often used as a proxy for measuring search user 

experience, and is a traffic driver for advertisers. Therefore, estimation of the probability of click 

is the central problem in sponsored search. It affects ranking, placement, quality filtering and 

price of ads.  

Estimating click probability given a query-ad-user tuple is a challenging statistical modeling 

problem for a large variety of reasons, including click sparsity for the long tail of query-ad-user 

tuples, noisy clicks, missing data, dynamic and seasonal effects, strong position bias, selection 

bias, and externalities (context of an ad being displayed). In this talk, I will provide an overview 

on some of the machine learning techniques recently developed in Advertising Sciences team at 

Yahoo! Labs to deal with those challenges in click modeling. In specific, I will briefly describe: (i) 

a temporal click model for estimating positional bias, externalities, and unbiased user-perceived 

ad quality in a combined model; (ii) techniques for reducing sparsity by aggregating click history 

for sub-queries extracted with a CRF model and by leveraging data hierarchies; and (iii) use of a 

generative model for handling missing click history features. The talk is intended to give a flavor 

of how machine learning techniques can help solve some of the challenging click modeling 

problems arising in online advertising. 
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Invited Talk 

Digital Advertising: Going from Broadcast to 

Personalized Advertising 

James G. Shanahan 
Independent Consultant 

Abstract 

Online advertising is a form of promotion that uses the Internet and World Wide Web for the 

expressed purpose of delivering marketing messages to attract customers. Examples of online 

advertising include text ads that appear on search engine results pages, banner ads, in-text ads, 

or Rich Media ads that appear on regular web pages, portals or applications. Since it inception 

over 15 years ago, online advertising has grown rapidly and currently accounts for 10\% of the 

overall advertising spend (which is approximately $600 billion worldwide)). A large part of the 

more recent success in this field has come from the following key factors:  

* Personalization: offline advertising (via broadcast TV, radio, newspaper etc.) is largely a 

broadcast form of communication where as digital advertising is much more targeted and thus 

enables a personalized, and possibly informative, message to consumers.  

* Interactivity: internet advertising is becoming increasingly interactive with the advent of new 

forms of advertising such as social advertising; this is enables advertisers and consumers to 

operate in a more conversant manner.  

* Engagement: consumers are spending more time online than with any other form of media 

thereby enabling a broader reach and deeper connection with consumers.  

* Explainabilty: advertisers are beginning to understand their consumers better.  

This shift in focus in digital advertising from location (i.e., publisher web pages) to 

personalization has brought with it numerous challenges some of which have received a lot of 

research attention in the data mining and machine learning communities over the past 10-20 

years. In this talk I will review, along the dimensions outlined above, some of these key technical 

problems and challenges that arise when adverting becomes personal. This will be done within 

the context of the elaborate (and ever-evolving) ecosystems of modern day digital advertising 

where one has to capture, store, and process petabytes of data within the constraints of a, 

sometimes, sequential workflow. The ultimate goal to is provide millisecond-based decision-

making at each step of this workflow that enables customizable and engaging consumer 

experiences. 
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Invited Talk 

Machine Learning for Advertiser Engagement 

Tao Qin 
Microsoft Research Asia 

Abstract 

Advertiser engagement, which goal is to attract more advertisers, make them loyal to the ad 

platform, and make them willing to spend more money on (online) advertising, is very important 

for an ad platform to boost its long-term revenue. Industry has paid more and more attention to 

advertiser engagement. For example, many search engines have provided tools to help 

advertisers, including keyword suggestion, traffic (number of impressions/clicks) estimation, and 

bid suggestion. However, from the research point of view, the effort on advertiser engagement 

is still limited.  

In this talk, we discuss the challenges in advertiser engagement, especially from the machine 

learning perspective. Actually machine learning algorithms can be used in many aspects of 

online advertising, such as CTR prediction. We propose a number of principles that should be 

considered when using machine learning technologies to help advertiser engagement.  

(1) Accurate. The results of learning algorithms should be as accurate as possible. This 

principle is the same as that in other machine learning tasks.  

(2) Socially fair. The learning algorithms should promote diversity and be fair to even tail 

advertisers. In this way, more advertisers will feel engaged and the entire ads eco-system will 

become more healthy.  

(3) Understandable. The evaluation metrics and learned models should be easy to interpret. 

In this way, it is easier for advertisers to diagnose their campaigns and identify the key aspects 

to improve. This will also make the ad platform more transparent to advertisers and increase 

their trust in the ad platform.  

(4) Actionable. The learning algorithms should provide actionable suggestions/feedback to 

advertisers. In this way, the advertisers can take effective actions to improve their performances, 

and therefore stick to the ad platform in a more loyal fashion.  

We will show several example problems in online advertising (such as effectiveness evaluation 

and auction mechanism) and discuss possible solutions based the above principles.  

This is joint work with Bin Gao and Tie-Yan Liu. 
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CTR prediction based on click statistic

Bauman K.
Yandex∗

kbauman@yandex-team.ru

Kornetova A.
Yandex

akornet@yandex-team.ru

Topinskiy V.
Yandex

vtopin@yandex-team.ru

Leshiner D.
Yandex

leshch@yandex-team.ru

Abstract

A new click through rate predicting formula which is based on statistics of clicks
and shows is described. It is a result of increasing of log-likelihood given a con-
straint on formula’s variance at small banner history. Form of this predicting for-
mula is derived in different approaches. High risk problem of formula at small
banners history is discussed.

1 Introduction

Sponsored search or Search Advertising is one of the major part of search engines’ revenues. Here
we consider the advertising model that concerns presenting contextual ads directly on query results
pages (SERP). Advertisers are typically charged each time their ads are clicked (the pay-per-click
approach).

The number of ads that the search engine can show to a user is limited and different positions on the
SERP have different attractiveness: an ad shown at the top of the page is more likely to be clicked
than an ad shown at the bottom. That’s why search engines need a system for allocating the positions
to ads and ranking by CPM (cost per million) is a natural choice.

When user asks search query the system finds all ads that are candidates to be shown. After cal-
culating ad’s CTR predictions system ranks them by CPM = bid ∗ CTR and displays best eight.
Choice of CPM as ranking factor is justified by the fact that it estimates an expected payment for a
banner.

The task of CTR prediction is crucial to Sponsored Search advertising because it impacts user expe-
rience, profitability of advertising and search engine revenue.

The main problem that we discuss in our paper is the part of click-through rate prediction (CTR)
used for Sponsored Search.

2 Offline evaluation

To compare two CTR predictions we need to work with measures. There are some well-known
measures such as log-likelihood and mean square error (MSE).

But in fact CTR prediction is only the small part of an advertising system. What is really interesting
to see is how system’s CTR and revenue will change if we try to use different CTR predictions.

∗119021, Leo Tolstoy 16, Moscow, Russia
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The best but not the easiest way to do it is to make an on-line experiment but it always take a lot of
time. So we developed two offline metrics.

1. Method of ROC-like curves
Lets take a set of events from a log as input. To predict CTR we use our predictor, then we
sort all events by CPM and draw following plot: CPM as X, and as Y we take a number of
events from the log, which has CPM not less than corresponding value on X.
For clicks we draw following plot: CPM as X, and as Y we take a number of clicks by
events from the log, which has CPM not less than corresponding value on X. The same plot
we draw for money and for CTR.

Figure 1: Method of ROC-like curves

This plot can help us to compare different predictors. If curve of the first predictor is always
over the other, so it means that if we through out some number of the worst shows from
log, the first predictor will save better events then other. It will have more money and more
clicks.
This method has one deficiency. Curves of two predictors can be different only in interior
area of a CPM range. But if we take the ends of this interval we will see that all curves has
the same value.

2. Model of system
We get a copy of whole our online advertising system. Then we bind this offline copy with
the current snapshots of all needed databases.
Now we can implement there a prediction of CTR and run this specified system on some
pool of queries. Output of this execution for one query is a pool of all relevant ads.
Then we get two sets of results for total queries’ pool for our predictions respectively,
calculate expected revenue and average CTR for further comparison. We use better in
log-likelihood CTR prediction to calculate interested us expectations.
So we get a few numeric properties of our predictions and compare them by means of all
this features.

3 Inference of optimal form of the formula

3.1 Baseline formula

Every banner whenever shown in our system has its history of clicks and shows. Hereafter clicksb

is a number of observed banner b’s clicks in sample of this banner’s shows and showsb is a number
of observations in this sample. Let A is a set of advertisement banners for which we collect statistics
clicks and shows. We assume that click on a banner is generated like random variate with respect

NIPS Workshop: Machine Learning in Online Advertising (MLOAD 2010)
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to Bernoulli distribution with p = ctrb. It’s known that for one banner the maximum likelihood
estimation of ctr is the ratio of clicks to shows. But it’s also known that this estimation has good
performance only when we have a sufficiently large number of observations.

As a baseline we have some formula that corresponds to a constant for a banner with no history and
then it somehow converges to the ratio of clicks to shows. This formula predicts CTR using only
statistics of shows and clicks of banner.

Our goal is to make the best function with the same properties.

3.2 Sketch of the inference in MSE framework

We consider question about how we should take into account statistics of clicks with respect of
amounts of observations to make some predictions about click probabilities on advertisement ban-
ners better in some sense than the sample mean.

Suppose that we have some additional information about C set of {ctrb|b ∈ A} and this information
is ¯ctrb average of ctrb from C. Then we wish to do some trade-off between the maximum likelihood
estimation and this average with respect to a number of observations. More formally we try to find
a ctr prediction as linear combination, coefficients of which are functions of shows.

ˆctr(shows) = α(shows) ∗ ¯ctr + β(shows) ∗ clicks

shows
, where ¯ctr = meanb∈A(ctrb)

One way to find unknown coefficients is to choose them by means of minimizing of expected mean
square errors Q(shows).

Q(shows) = E
∑

b∈A

(ctrb − ˆctrb(shows))2.

Then it’s easy to show that optimal coefficients are calculated as follows.

α(shows) + β(shows) = 1, α(shows) =
S0

S0 + shows
,

where S0 =
meanb∈A(ctrb ∗ (1− ctrb))

varb∈A(ctrb)

Now we can rewrite our new ctr predictions as follows.

ˆctr = α(clicks) + β(clicks) ∗ clicks

shows
=

clicks + C0

shows + S0
, where C0 = ¯ctr ∗ S0

Below on figure 2 we show some comparison of this prediction with the ”baseline” prediction.

3.3 Sketch of inference in MAP framework

Another way to construct this estimation is applying Bayesian framework. Assume that we have
some prior distribution on ctr , say Pprior(ctr). Then if we have statistics showsb and clicksb for
some banner b from A, then the posterior distribution for ctrb is calculated as follows.

Pposterior(ctrb) = Pprior(ctrb) ∗ ctrb
clicksb ∗ (1− ctrb)showsb−clicksb

Let Pprior(ctr) belongs to the family of Beta distributions ( i.e. Pprior(ctr) = ctra∗(1−ctr)d

B(a+1,d+1) ).
Then the respective posterior distribution will be Beta distribution with parameters (a+ clicksb, d+
showsb − clicksb).
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Figure 2: Top subplot exhibits form of optimal coefficients with respect to size of observations;
middle subplot exhibits correlations of both predictions with realized clicks with respect to size of
observations; bottom subplot exhibits mean square errors of both predictions with respect to size of
observations.

And now it’s easy to show that the corresponding MAP estimation for ctrb is

ˆctrb =
clicksb + a

a + clicksb + d + showsb − ckickasb
=

clicksb + a

showsb + a + d
=

clicksb + C1

showsb + S1
.

And again we have got the same form of the formula as in previous framework. But here all our prior
information is encapsulated into two constants C1 and S1. There is question what values should
be chosen for C1 and S1 (or, equivalentely, what Beta distribution should be used). But instead
searching best values of unknown parameters we use some heuristic idea which appears from the
inference in 3.2.

3.4 Further usage of the optimal form

All above justify using statistics of clicks and shows with some additional information as follows.

ˆctrb =
clicksb + D0 ∗ ˜ctr

showsb + D0
, where ˜ctr is an additional information.

Hereafter the form will be called as optimal form (OF).

What is more if we construct some ”static prediction” ( i.e. without direct usage of statistics clicks
and shows, for instance by means of some regression like method on a number of text’s factors and
user’s factors) as mentioned additional information ˜ctr, which has some positive correlation R with
corresponding random variate click =

∑
b∈A clickb ∗ showb where showb = 1[b has been shown],

clickb = 1[b has been clicked], and has variance Σ such that Σ < R2 ∗ var[click], then the similar in-
ference like in expected mean square error minimization framework given α(shows)+β(shows) =
1 gives us that D0 > S0. It is mean that if our additional information ˜ctr is better then the constant
¯ctr, , then we will trust former longer than last one ( i.e. prediction ˆctrb = clicksb+D0∗ ˜ctr

showsb+D0
will

converge to the ratio of clicksb to showsb slowly than ˆctrb = clicksb+S0∗ ¯ctr
showsb+S0

).
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4 Reducing risk

To see different sides of new predictor we made a simulator. It takes a value of CTR and returns
a plot, that shows probability of ad’s bid growth in k times with respect to k. Looking at this plot,
managers can decide how much risk we can allow.

The simulator shows that OF has higher probability of high prediction volatility for events with short
banner history. It’s not good for advertisers. They can lose their money and we can lose our clients.

We try to modify Optimal Form’s values such that their variance on events with small banner history
will coincide with variance on events with large banner history.

Let’s select a number n0 such that we will trust OF on events which has banner’s history longer than
n0. For OF for each show number n we can calculate expectation Mn and standard deviation stdn

of clicks’ amount.

We want to satisfy the following conditions:

1. (stdn)new = stdn0 for every n < n0

2. (Mn)new = Mn

It is enough to take linear form of transformation. Thus, it assumes the following form:

OFnew =
stdn0

stdn
∗OF (clicks, shows) +

(
1− stdn0

stdn

)
∗Mn, if n < n0.

Figure 3: Left: Relationship stdn0
stdn

; Right: Normalization constant
(
1− stdn0

stdn

)
∗Mn

After transformation OFnew has the same variance for all events which has banner history n ≤ n0.
This step reduces the risks for advertisers associated with prediction volatility.

4.1 The experiment

We made an experiment where OF worked only for events with length of banner history in interval
[20, 80]. There are about 14% of all events stay in this set. For other events we used baseline formula.

4.1.1 Results

In off-line experiment the new formula showed an increase in CTR at 1.9% and in log-likelihood at
1%. . On this basis, we decided to make an on-line experiment.

On-line experiment showed an increase in CTR at 1.53%.

Figure 4(left) shows that in the region where OF is used has an improvement with respect to old
predictions.

It is evident (figure 4 right) that a new formula at this interval results a larger revenue.

Now let’s consider the CPC = money
clicks .
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Figure 4: Left:CTR Right:CPM on the length of the history of banners

Figure 5: CPC on the length of the history of banners.

Figure 5 shows that in the OF’s interval CPC became lower, hence more attractive. Thus we increase
the click’s traffic and the average click’s cost decreased. This means that we give better terms for
clients.

5 Conclusion

We described a new click through rate predicting formula. It was shown how to obtain this formula
by two different approaches. Method of reducing risks at small banners history was introduced.
Results of respective experiment were presented.

References

[1] T.Graepel, J.Q.Candela, T.Borchert, R.Herbrich, Web-Scale Bayesian Click-Through Rate Prediction for
Sponsored Search Advertising in Microsoft’s Bing Search Engine

[2] K. Dembczynski, W. Kotlowski, D. Weiss Predicting Ads’ Click-Through Rate with Decision Rules

[3] A. Ashkan, C.L.A. Clarke, E. Agichtein, Q. Guo Estimating Ad Clickthrough Rate through Query Intent
Analysis

NIPS Workshop: Machine Learning in Online Advertising (MLOAD 2010)

13



The Business Next Door: Click-Through Rate
Modeling for Local Search

Suhrid Balakrishnan
AT&T Labs-Research

suhrid@research.att.com

Sumit Chopra
AT&T Labs-Research

schopra@research.att.com

I. Dan Melamed
AT&T Labs-Research

{lastname}@research.att.com

Abstract

Computational advertising has received a tremendous amount of attention from
the business and academic community recently. Great advances have been made
in modeling click-through rates in well studied settings, such as, sponsored search
and context match. However, local search has received relatively little attention.
Geographic nature of local search and associated local browsing leads to inter-
esting research challenges and opportunities. We consider a novel application of
relational regression to local search. The approach allows us to explicitly con-
trol and represent geographic and category-based neighborhood constraints on the
samples that result in superior click-through rate estimates. Our model allows us
to estimate an interpretable inherent ‘quality’ of a business listing, which reveals
interesting latent information about listings that is useful for further analysis.

1 Introduction and Motivation

The rise of the Internet as an advertising medium has led to tremendous growth in computational
advertising research and technology in the last decade. Since web users interact with the Internet
very differently than they do with traditional media, such as, print, and television, many new tech-
nologies have been recently developed and deployed. Due to their large scale and nature (billions
of ads served to hundreds of millions of users per day), computational/algorithmic techniques have
been at the forefront of these technologies right from the beginning.

Extant computational advertising techniques typically address two modes of ad delivery. Spon-
sored/Paid search advertising places ads on a search engine relevant to a query [5, 2, 8]. Context
match advertising places (contextually) relevant ads on a particular website [3, 1, 6]. Local search,
as exemplified by sites such as Yahoo! Local, yellowpages.com, and Google Maps (local), is a sepa-
rate problem domain that has received very little attention. Geography is the differentiating element
of local search. Besides context, the query, and other factors normally considered in generic (non-
local) computational advertising, successful local search advertising requires integrating location
information. Also different is how the user interacts with local search. Indeed, there are essentially
two main modes of online user interaction. In the first mode, which we term look-up mode, the user
has a particular business in mind, and wishes to find more information about this business (an ad-
dress, phone number, website etc.). As an example, a user may wish to find the hours of operation of
their local post office. In the second mode, which we term browse mode, the user has a broad set of
criteria that they would like satisfied by a particular business or, more generally, a set of businesses.
In this mode of interaction, there is more of an exploratory/discovery flavor. For example, a user
might be trying to decide on a restaurant in a particular neighborhood. We argue that any model
for click-through rate in this domain should be cognizant of these modes of interaction, and that
ignoring this or other related information is likely to be detrimental in terms of predictive accuracy.
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In this work, we present a model that aims to capture these local search user interaction modes
via incorporating “neighborhood” information while predicting the click-through rate. We choose
to represent this information via neighborhood graphs, which are defined using both geographical
location and business-category information together. The aim is that incorporating geographic lo-
cality helps with look-up mode queries, and incorporating topic/category information aids browse
mode queries. We analyze the predictive performance of our model on a local search dataset, and
show the importance of incorporating neighborhood information.

2 Relational Regression for Click-Through Rate Modeling

Our task is to model the click-through rates (CTR) of advertisements placed as a result of local search
queries. The data we use for our experiments consists of aggregated daily clicks and impressions
for a business listing/advertiser. In this dataset, the individual queries have been aggregated over
as well, so we are not entirely in the sponsored search domain. Also note that the presence of
geography means we are not quite in the context match domain either. In the notation we follow,
the (log of the) CTR for a business listing i will be denoted by Y i. As with other computational
advertising settings, each business is associated with a vector of measurable factors or covariates
Xi. For instance, these could be, seniority of a listing, i.e., when the business first established its
account, spend-category of a listing, i.e., a category code indicating how much money a business
listing paid to have its ads served etc. The predictive task is to accurately model the CTR for
new/unseen businesses. This can be accomplished by modeling the dependence between the CTR
of a business and its covariates. Our dataset consists of N such training sample pairs, which we
collectively denote by X = {Xi, i = 1 . . . N}, Y = {Y i, i = 1 . . . N}.
Whereas in the standard regression setting this task would likely be modeled assuming independence
of the training samples, so that the estimate of Y ∗ for a test listing ∗ would treat two similar listings
in the dataset independently, as argued in the previous section, we expect this approach is sub-
optimal: when predicting CTR for a new pizzeria in a neighborhood, accounting for the CTR of
a comparable pizzeria next door equally importantly as a pizzeria in the next town (which is what
the independence assumption does) is clearly unsatisfactory. This ignores geographic neighborhood
information. Also unsatisfactory is treating equally the effect of the next door pizzeria and hair salon
which have similar measurable covariates, since this ignores business category information.

We address this particular nature of local search by applying relational regression [4]. At a high level,
a directed neighborhood graph (on the businesses) is used to help specify probabilistic dependencies
between listings in a formal manner, so that they are no longer treated as independent samples. In this
work we examine various kinds of combinations of top-k neighborhoods that use both geographic
locations and business categories (e.g., pizzeria, restaurant etc.). The neighborhood graph is then
used to constrain the estimates of a (scalar) latent variable for each listing i, which we will denote
by Zi. In our relational dependency network model it is precisely these latent variables Zi, that
we make dependent on the latent variables of i’s neighbors. Finally, the click-through rate Y i for
a business i is modeled as the sum (in log-space) of its intrinsic click-through rate Ii (a quantity
that is dependent solely on the covariates of the business), and the neighborhood dependent latent
variable Zi.

Y i = Ii + Zi. (1)
The variable Ii captures the covariate specific click-through rate signal and is modeled as a para-
metric function f(β, Xi). That is

Ii = f(β, Xi) + εi1, (2)
where β are the set of parameters, and εi1 is Gaussian error with zero mean and standard deviation σi1.
The variable Zi captures the neighborhood specific click-through rate signal. Its value is a function
of the Zj’s of the neighboring businesses. The dependency network showing these connections is in
Figure 1. ‘Unrolled’, the network consists of a set of dense directed connections between the latent
variables Zs, and associated sparse connections to each of the Y s. Intuitively, marginalizing over
the latent variables, we would be modeling the Y and X samples jointly for all businesses. Instead,
we force dependence between the businesses through the direct coupling of only the latent variables.
Note that the plate notation slightly obscures the presence of cycles in this network (which is why
this is not a Bayesian network). Indeed, there are many cycles, resulting from neighborhood con-
nection links between the listings. For example, business A is a neighbor of business B (A ∈ N (B))
and vice-versa (B ∈ N (A)) implies a cycle of length two. We avoid such cycles by approximating
the value of Zi using a non-parametric function H of the neighboring Zjs

Zi = H(ZN (i)) + εi2 = Ẑi + εi2, (3)
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N (i) is the set of neighbors of i, ZN (i) is the set of Zs of the neighbors, and εi2 is Gaussian noise
with zero mean and standard deviation σi2. Combining equations 1, 2 and 3, we model the click-
through rate of a business i as

Y i = f(β,Xi) +H(ZN (i)) + εi, (4)
where εi is Gaussian noise with zero mean and standard deviation σi.

β

α

Xi

Y i

Zi Zj

i = 1 . . . N

j = N (i)σi
1

Figure 1: Dependency network for relation modeling of click-through rate for business listings. The
figure uses plate notation for repetition. Observed values are shown as shaded nodes (the click-
through rate Y and the listing covariates X). The cycles present in this graph can be most easily
seen by considering the connections between the Zs in the unrolled version of the graph.

Neighborhood Graph Construction: A point of difference between our work and previous work
on relational dependency networks, is that we do not try and explicitly learn the structure of the
network between businesses (more accurately, their latent variables). Instead, we consider the struc-
ture of the network to be fixed and given. For ease of interpretation and computational efficiency,
we consider k-sparse graph structures, where a business listing is connected only to its k closest
neighbors (more on the particulars of the distance functions used in section 3). Further, we use non-
parametric Nadaraya-Watson kernel regression for smoothly modeling the latent variable effects. In

other words, for a business i we set Ẑi =
∑

j∈N(i)
Kα(dij)Zj∑

j∈N(i)
Kα(dij)

, where K is a valid kernel function,

dij is the distance between businesses i and j, and α is the kernel bandwidth parameter. In our
experience, this model results in rich and sufficiently flexible dependency effects between the latent
variables.

Inference: The standard approaches to approximate inference in relational dependency networks
are mostly Bayesian, like ordered Gibbs sampling, or other graphical model based approximate
inference procedures. In this paper, for scalability, practicality and due to our non-parametric neigh-
borhood model, for which a probabilistic model isn’t well defined, we pursue a different tack. In-
stead of computing a posterior distribution on the random variables, we will concentrate on obtaining
(approximately) maximum likelihood point estimates of the parameters. Let us focus on the main
model parameters for now, the regression coefficients β and the business specific latent variables Z.
We use the fact that conditioned on the latent variables Z, the likelihood can be readily evaluated,
and gradients of the likelihood with respect to the regression parameters can be obtained. Also,
conditioned on the regression parameters, the latent variables can be optimized for. This intuitively
leads to an EM-like scheme wherein starting from various random initializations for β,Z, these two
phases are iterated until convergence to a (local) maximum. For scalability, we employ stochastic
gradient descent for the optimization steps in updating β given Z. We point out that using stochastic
gradient descent makes it possible to use arbitrarily complicated regression models for f(β,X).
Indeed, in this paper, the function f was a two layer neural network with 100 units in the first hidden
layer, followed by a single output unit, giving the estimate of the covariate specific click-through
rate signal. The final output unit does not have any non-linearity.

The above inference procedure can also be justified as inference in energy based models. Briefly,
we can view the regression model and latent variable model as having two separate energy terms
that need to be jointly minimized. Energy based learning is closely related to probabilistic graphical
modeling and while space limitations prevent us from explaining further aspects of energy based
modeling, we refer interested readers to [7] for greater detail.

Before moving to our experiments, we point out that by taking into account the geographic and cat-
egory based neighborhood of listings, our model fits the local search paradigm well. Additionally,
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the latent variable Z provides a continuous effect that is estimated conditioned on the covariates X ,
which makes it interpretable and potentially useful. We can think of Z as modeling any residual
click-through rate after taking into account the covariates. Thus, the Z estimates we obtain should
allow us to compare businesses from two different click-through strata. As an example, by com-
paring their respective Z values, we can compare a plumber’s listing to a pizzeria’s. Thus in some
sense this latent variable can be thought to represent an overall conditional ‘quality’ of a listing (in
terms of click-through) and as such may be useful in the same way page-rank or other global listing
rankings are used. This is an avenue of future work.

3 Data and Experiments

The data we use in our study consists of anonymized web traffic collected over a three month pe-
riod from a popular local search website. The raw data we considered contained daily aggregated
impressions (the event of showing a business listing), clicks and various features associated with the
listing and how/where it was displayed. In order to study local effects, we chose to examine a high
traffic geographic region around New York City.

We aggregated millions of records of raw data over the three months to create one single dataset to
use for this analysis. Businesses with low impression counts over the period and those with missing
covariate information were filtered out, resulting in our final dataset containing 2049 separate busi-
ness listings. The covariates per business we considered were grouped in three different sets. Basic
covariates, of which we had four, namely, the spending-based tier and priority level assigned to the
business, the date when the business first joined the website service, and the average user rating
of the business. The second set of covariates are related to the business category, and are simply
the (multiple) categories that the business is listed under. This is represented in our data by a large
sparse binary indicator matrix, with 2049 rows and 1658 columns. The columns correspond to 1658
listing categories. Finally, we also have geographic covariates, which simply consist of the latitude,
and longitude of the business.

For our relational regression model we create neighborhood graphs based on combinations of geog-
raphy and category features. Exploratory data analysis led us to using the Jaccard distance between
the binary category feature vectors and great-circle distance for the geographic data. To create com-
bination category + geography neighborhoods, a (λ, 1 − λ) blend of the top rank score of sorted
neighbors from each of category or geography were considered. The rank score we chose decays
the rank by an exponentially down-weighted amount further in the position of the ranked list (remi-
niscent of NDCG), so that the “closer” neighbors matter much more than the “far-off” ones. These
similarity graphs are then truncated at the top k position for the neighborhood graphs we use in our
models.

To maximize the size of data for repeat experiments, we perform 10-fold cross validation to test our
models. For each cross validation test fold, we also randomly sample one other fold as validation
data for hyperparameter tuning and the remainder forms the training data (a train/validation/test
data split ratio of 80/10/10). The evaluation measure we focus on is improvement in mean squared
error. The values of the hyper-parameters α, η, were chosen by examining the validation set: α was
set to 0.01, and η which denotes the learning rate of the neural network was initialized to 0.00001
and decreased by half after every 20 epochs. For the kernel regression on the Zs, we employ an
exponential kernel, Kα(dij) = e−dij/α.

4 Results

Our results for click-through rate estimation using relational regression are in Table 1, where we
report the percentage improvements in log click-through rate mean squared error over a linear re-
gression baseline. The click-through rate appears to be better modeled non-linearly, as can be seen
by the improvements made using random forests and gradient boosted regression trees [9], on the
same data. However, relational regression is the clear winner—our best relational models improve
the baseline by around 30%, that is, more than double the performance improvement by our best
non-relational models (around 14%). In addition, although most reasonable forms of neighbor-
hood graph construction appeared to help the regression task, for this study, category information
based neighborhoods appear to be more relevant to the signal. Adding geographic information to
the neighborhood graph did not seem to aid click-through modeling. We conjecture that this is due
to the density of businesses and ease of transportation in New York City.
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Category Fraction, λ Neighborhood size, k
5 10 20 50 100

0.00 (pure Geo.) 7.99 17.22 22.26 19.16 22.57
0.25 10.93 19.39 23.19 12.33 12.80
0.50 8.61 18.07 22.80 22.03 11.01
0.75 12.80 22.96 25.52 12.25 12.87

1.00 (pure Cat.) 22.73 29.32 30.49 30.56 29.86
Random Forests 6.16

Gradient Boosted Trees 13.47

Table 1: The mean percentage improvement in 10 fold cross validated log CTR mean squared error.
The percentage is relative to a simple linear regression baseline model for the log click-through rate.
The table shows relational regression results as a function of both the neighborhood size k, and the
fraction of category to geography information used in the neighborhood, λ.

Rank Business Category
Category neighborhood Geographic neighborhood

1 Cocktail Lounges Take Out Restaurants
2 Lodging Italian Restaurants
3 Beauty Salons Skin Care
4 Day Spas Physicians & Surgeons
5 Hair Removal Cocktail Lounges
6 Brunch & Lunch Restaurants Lodging
7 Bars Sports Bars
8 Sports Bars American Restaurant
9 Restaurants Bars
10 Printing Services Caterers

Table 2: A comparison of the top categories for the businesses in our dataset. Middle column:
categories ranked by aggregate Z for neighborhoods defined using only category information. Right
column: shows the same except using pure geographic information for the neighborhood graphs.

Also interesting is an analysis of the estimated scalar latent variable Z. For the results that follow we
fit the model to the full dataset, using the parameters and hyperparameters as determined by cross
validation. Although noisy, a map of Manhattan showing the color coded value of the latent variable
(red = high, blue = low) for all businesses (Figure 2, left column), allows one to recognize some
popular areas, like mid-town and Greenwich Village. It also shows areas of low interest like the ones
close to 1st and 2nd avenue just below mid-town, and the southern tip of Manhattan. Also shown
in the right column of the same figure are two category specific Z maps. For the Arts category (top
figure in the right column), we see a Broadway effect, with higher Z scores near the theater district
and tapering off away from it. For the Food category (bottom right) we see relatively high Z scores
in both the East and West Village areas, and lower scores in areas in between, and north of West
Village.

We can also see interesting behavior by examining the top categories in terms of (normalized) av-
erage Z value (Table 2). We see that if we disregard geography in terms of neighborhood con-
struction, we get a very different list than if we construct neighborhoods that are purely based on
geographic information. In particular, the geography neighborhoods tend to be much more restau-
rant and evening-outing heavy. We conjecture that this may be due to the geo-neighborhoods being
more suited for modeling browse mode queries which are more frequently used by tourists than local
New Yorkers.

5 Future Work

Our results provide evidence for the applicability of relational regression models to the task of click-
through rate modeling for local search, and we are currently examining other cities/regions to see if
our hypotheses about locality and connectedness of regions hold. Other interesting avenues of future
work are to relax the constraint on the network structure between business and learn it as well, and
to extend the model to handle temporal effects.
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Figure 2: Map of the latent variable Z for the learned model using pure geographic information. The
left panel shows all businesses in the dataset. The top right figure is for businesses in the category
Arts and Entertainment, zoomed in to show mid-town. The lower right figure is businesses in the
Food category, zoomed in around the East and West village areas. Colors range over the standard
vibgyor color palette with indigo/blue on the low end of the scale and orange/red at the high end.
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Abstract

In a realistic context, the online advertisements have constraints such as a certain
number of clicks to draw, as well as a lifetime. Furthermore, receiving a click is
usually a very rare event. Thus, the problem of choosing which advertisement to
display on a web page is inherently dynamic, and intimately combines combinato-
rial and statistical issues. We introduce a planning based algorithm for optimizing
the display of advertisements and investigate its performance through simulations
on a realistic model designed with an important commercial web actor.

1 Introduction and formalization of the problem

In this paper, we consider the problem of selecting advertisements in order to maximize the revenue
earned from clicks in the “cost per click” economic model under different settings. Our goal is not to
optimize any asymptotic behavior or exhibit algorithms that are able to achieve optimal asymptotic
behavior, but rather to solve efficiently the practical problem that arises on a web site and involves
certain degrees of uncertainty originating from various sources.

We define the problem as follows. At a given time t, there is a pool of K advertising campaigns
denoted byKt. Each campaignAdk ∈ Kt is characterized by a tuple (sk, Sk, Lk, Bk, b

t
k, rk) where

k is the identifier of the campaign, sk, Sk, Lk, Bk and rk are its status, starting time, lifetime and
total click budget and the revenue obtained per click respectively. btk ≤ Bk denotes the remaining
budget of the campaign at time t. The campaign lasts for Lk time steps and expects to receive Bk

clicks during its lifetime. The status of an advertising campaign can be either: scheduled when
the campaign will begin at some time in the future, running when the campaign is active (i.e.
Sk ≤ t < Sk+Lk), or expired when the campaign has ended (i.e. Sk+Lk ≤ t or btk = 0). Only the
advertisements of running campaigns can be displayed. The web server receives a continuous stream
of visitors, each of which is assumed to be from one of N possible user profiles. The probability
that the visitor belongs to a certain profile Pi is Ri with

∑N
i=1Ri = 1. When a visitor visits the

web site, a new “session” begins and we observe one or several iterations of the following sequence
of events: (i) the visitor requests a certain page at time t (ii) the requested page is displayed to this
visitor with an advertisement Adk embedded in it, (iii) the visitor clicks on the advertisement with
probability pi,k where i denotes the user profile of the visitor; this probability is usually called the
click-through rate (CTR), (iv) if there is a click, then the revenue associated with the advertisement
rk is incurred. After a certain number of page requests, the visitor leaves the web site and the
session terminates. The objective is to maximize the total revenue by choosing the advertisements
to be displayed “carefully”. Since page requests are atomic actions, in the rest of the paper we will
take a page request as the unit of time to simplify the discussion.

In the simplest case, we assume that (a) time horizon T is fixed, (b) the pool of advertising campaigns
at each time step is given, (c) the visit probabilities of user profiles, Ri, and their click probabilities
for each campaign, pi,k, and the profile of each visitor are known. Note that, the visitor at time t and
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max
∑

Ij∈At

∑
Adk∈AIj

rkE[Po(pi,kai,k,j)]

s.t.
∑

Adk∈AIj
ai,k,j ≤ Po(Rilj),∀ 1 ≤ i ≤ N, Ij ∈ At∑N

i=1

∑
Ij∈IAk

Po(pi,kai,k,j) ≤ btk,∀ Adk ∈ Kt∑N
i=1

∑
Adk∈AIj

ai,k,j ≤ lj ,∀Ij ∈ At

(a) (b)

Figure 1: (a) The timeline divided into intervals and parts. Ad1,3 are in scheduled state at time
t1, and Ad2 expire after t3. Ij denotes the jth interval [tj−1, tj ] and ai,k,j denotes the allocation
for Adk for users belonging to profile Ri in interval Ij . The first index is dropped for the sake of
clarity. (b) Stochastic formulation of the linear program. AIj denotes the set of running campaigns
in interval Ij , lj is the length of interval Ij , and IAk denotes the set of intervals that cover Adk.

whether he will click on the displayed advertisement or not are still unknown. Under this setting,
given a visitor from profile Pi at time t, one possible and efficient way to choose an advertising
campaign is to use the highest expected value (HEV) policy and pick the running campaign with
the highest expected revenue per click, i.e. argmaxAdk∈Kt rkpi,k. Alternatively, one can employ
the stochastic expected value (SEV) policy in which the selection probability of a running campaign
is proportional to its expected revenue per click. As both policies exploit advertising campaigns
with possibly high return and assign lower priority to those with lower return, they are expected to
perform well if the lifetimes of the campaigns are “long enough” to ensure their total click budgets.
However, even under some simple cases they may perform inferior to choosing an advertisement
randomly at each step (see the example in [3] Sec. 2.1.1). In order to do better, it is compulsory
to take into consideration the interactions between the advertising campaigns which materialize
as overlapping time intervals over the timeline (Fig. 1 (a)); the problem then becomes finding an
allocation of the number of advertising campaign displays in each interval such that (a) the allocation
for a particular user profile is not over the capacity of the interval, (b) the remaining total click
budgets are not exceeded, and (c) the total expected revenue is maximized. This corresponds to
the maximization of a linear objective function subject to linear inequality constraints, which is a
linear programming problem and can be solved efficiently; the detailed formulation and discussion
can be found in [3]. The solution of the linear program at time t indicates the number of displays
that should be allocated to each campaign for each user profile and in each interval, but it does not
provide a specific way to choose the campaign to display to a user from a particular profile at time t.
For this purpose, it is possible use the ratio of displays allocated to a particular campaign to the total
allocation of advertising campaign displays for that user profile in the corresponding interval. One
can either pick the campaign having the highest ratio, called the highest LP policy (HLP), or employ
the stochastic LP policy (SLP) in which the selection probability of a campaign is proportional to its
ratio. The linear program can either be solved at each time step or if this option is not feasible (e.g.
due to computation time constraints) with regular periods or intermittently (e.g. when the budget of
a campaign is met). In the latter case, the resulting allocation is used to determine the campaigns to
be displayed until the next problem instance is solved by updating the allocated number of campaign
displays as we move along the timeline and reducing the allocation of the chosen campaigns in the
corresponding intervals. The complete algorithm is presented in [3] Fig. 4.

The static setting with full information has two sources of uncertainty: (a) the user profiles of visi-
tors are drawn from a categorical distribution, and (b) each campaign display is a Bernoulli trial with
a certain probability, which is known, and the result is either a success (i.e. click) or a failure. The
aforementioned linear programming solution of the optimization problem focuses on what happens
in the expectation. Following the resulting policy in different realizations of the random problem
may lead to different total revenue that vary from its expected value (see the example in [3] Sec.
2.1.2). In reality, reducing this variability may also be important and could be considered as another
objective. Note that, the expected number of visitors from user profile Pi during the timespan of in-
terval Ij and the expected number of clicks that would be received if the campaign Adk is displayed
ai,k,j times to the visitors from user profile Pi can be considered as random variables having Pois-
son distributions with parametersRit and pi,kt, respectively. Let Po(λ) denote a Poisson-distributed
random variable with parameter λ. Replacing the corresponding terms in the linear program by the
random variables, we obtain the stochastic optimization problem presented in Fig. 1 (b). The sum of
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independent Poisson-distributed random variables also follows a Poisson distribution with parame-
ter equal to the sum of their parameters. Assuming that Po(pi,kai,k,j) are independent, the budget
constraints can be written as Po(

∑N
i=1

∑
Ij∈IAk

pi,kai,k,j) ≤ btk,∀ Adk ∈ Kt which is equivalent
to its linear program counterpart in expectation. The rationale behind this set of constraints is to
bound the total expected number of clicks for each campaign, while at the same time trying to stay
as close as possible to the bounds due to maximization in the objective function. Assume that in
the optimal allocation the budget constraint of campaign Adk is met. This means that the expected
total number of clicks for Adk will be a Poisson-distributed random variable with parameter btk and
in any particular instance of the problem the probability of realizing this expectation would be 0.5.
In order to increase the likelihood of reaching the target expected total number of clicks, a possible
option would be to use a higher budget limit. Let αk be our risk factor and Po(λk) be the Poisson-
distributed random variable having the smallest parameter λk such that Pr(Po(λk) > btk−1) ≥ αk;
btk and αk are known, and λk can be found using numerical methods. If we replace btk with λk in
the budget constraint and solve the linear optimization problem again, the expected total number of
clicks for Adk based on the new allocation would be greater than or equal to btk and will have an
upper bound of λk. Following the same strategy, one can derive new bounds for the user profile
constraints and replace Rilj terms with the corresponding parameters of the random variables.

So far, we have assumed that the visit probabilities of user profiles and their click probabilities for
each campaign are known. In reality, these probabilities are hardly known in advance and have to be
estimated. By noting that we can consider them as categorical and Bernoulli random variables, re-
spectively, it is possible to estimate their value by using maximum likelihood or Bayesian maximum
a posteriori estimation with conjugate priors of Beta and Dirichlet distributions (see [3] Sec. 2.1.3).
As we will see in the next section, in the latter case choosing good priors may have a significant
effect on the outcome. By estimating probabilities at each step (or periodically) and replacing the
actual values with their estimates, we can determine allocations (optimal up to the accuracy of the
estimations) and choose advertising campaigns to display. For maximum a posteriori estimates, the
mode of the posterior distribution can be used as a point estimate and a single instance of the prob-
lem can be solved, or several instances of the problem can be generated by sampling probabilities
from the posterior distributions, solved separately and then the resulting allocations can be merged
(e.g. by taking their mean; in this case the final allocations will likely be not bound to the initial
constraints). As in many online learning problems, one important issue that arises here is the need
for balancing the exploitation of the current estimates and exploration, i.e. focusing on less-certain
(e.g., with higher variance) parameters; possible approaches are discussed in [3] Sec. 2.1.3.

In the more realistic dynamic setting, the time horizon is no longer fixed, and furthermore new cam-
paigns may appear with time. We will consider two main cases in which either we have a generative
model or not, which given a set of parameters and the current state can generate advertising cam-
paigns during a specified time period. When a model is not available, only campaigns that have been
revealed are known and they impose a certain maximum time horizon Hmax. Although, it is possi-
ble to apply the proposed method and calculate the allocations for them, doing so would ignore the
possibility of the arrival of new campaigns that may overlap and intervene with the existing ones;
the resulting long-term policies may perform well if the degree of dynamism in the environment
is not high. On the contrary, one can focus only on short or medium-term conditions omitting the
known campaigns that start after a not-too-distant time H in the future. The resulting policies will
be greedier asH is smaller and disregard the long-time interactions between the existing campaigns;
however, they will also be less likely to be affected by the arrival of new campaigns (see the example
in [3] Sec. 2.2). For such policies, choosing the optimal value of the planning horizon is not trivial
due to the fact that it strongly depends on the underlying model. One possible way to remedy this
situation would be to solve for a set of different planning horizons H1, . . . ,Hu = Hmax (as the
planning horizons differ, the structure of the optimization problems would also be different from
each others) and then combine the resulting probability distributions of campaign displays, such as
by majority voting. When a model is available, it can be utilized to compensate for the uncertainty
in future events by allowing us to generate a set of hypothetical campaigns (for example, up to
Hmax), simulating what may happen in future, and include them in the planning phase. By omitting
allocations made for these hypothetical campaigns from the allocation scheme found by solving the
optimization problem, display probabilities that inherently take into consideration the effects of fu-
ture events can be calculated. Note that, this would introduce bias to the resulting policies which
can be reduced by running multiple simulations and combining their results as mentioned before.
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2 Experiments

Our approach was tested on a toy-model designed with experts from Orange Labs, the research
division of an important commercial web actor in France, to fit the real-world problem. We took
care that each advertisement campaign has its own characteristics that more or less appeal to the
different visits. The model assumes that each campaign Ak has a base click probability pk that
is sampled from a known distribution (e.g. uniform in an interval, or normally distributed with a
certain mean and variance). As clicking on an advertisement is in general a rare event, the base click
probabilities are typically low (around 10−4). The click probability of a user belonging to profile
Pi is then set to pi,k = pkγ

d−1 where γ > 1 is a multiplicative coefficient and the random variable
d is sampled from the discrete probability distribution with parameter n that has the following
probability mass function Pr[d = x] = 2n−x/(2n−1), 1 ≤ x ≤ n. When n is small, all campaigns
will have similar click probabilities that are close to the base click probability; as n increases, some
campaigns will have significantly higher click probabilities for some but not all of the user profiles1.
In the experiments we used two values for the γ parameter, 2 and 4; experts recommended use of the
latter value, but as we will see shortly having a higher γ value may be advantageous for the greedy
policy. The value of n is varied between 2 and 6. We opted to focus on core measures and therefore
omit some of the extensions that have been discussed in the text.

We begin with the static setting with full information, and consider a fixed time horizon of one day
assumed to be equivalent to 4 × 106 page visits. The distribution of user profiles is uniform and
the budget and lifetime of campaigns are also sampled uniformly from fixed intervals. In order to
determine the starting times of campaigns, we partitioned the time horizon into M equally spaced
intervals (in our case 80) and set the starting time of each advertisement to the starting time of an
interval chosen randomly such that the ending times do not exceed the fixed time horizon. The base
click probability is set to 10−4. We solved the optimization problem every 10000 steps. Fig. 2 (a)
shows the relative performance of HLP policy with respect to the HEV policy for different values of
the parameter n and budget for the case in which there is a single user profile and 40 campaigns with
an average lifetime of 1/10th of the time horizon; all campaigns have the same budget. We can make
two observations, all other parameters being fixed HLP is more effective with increasing budgets,
and the performance gain depends largely on the value of γ. For γ = 4, which is considered to be
a realistic value by experts of the Orange Labs, and reasonable budgets the greedy policy performs
well. A similar situation also arises when the number of campaigns is low, whereas increasing the
number of user profiles favors planning as presented in Fig. 2 (b). Next, we consider longer static
settings of over one week period with and without full information. The campaign lifetimes and their
budget were more realistic (2-5 days, 500-4000 clicks). 7-9 new campaign are generated on a daily
basis at the beginning of a run. We tested different values for the parameter n. There were 8 user
profiles with equal visit probabilities. In this setting although HLP policy performs better than the
greedy policy, the performance gain is limited (Fig. 2 (c)). While the greedy policy quickly exploits
and consumes new advertisements as they arrive, HLP tends to keep a consistent and uniform click
rate at the beginning and progressively becomes more greedy towards the end of the period (see [3]
Fig. 10). Fig. 2 (d) shows the effect of the planning horizon; since we are not in the dynamic setting,
using less information than available hinders the performance. Note that, this prominently depends
on the degree of interaction between the campaigns and in this and other experiments we observed
that being very far-sighted may not be necessary. Finally, we conducted experiments in the dynamic
setting with partial information where the probabilities are estimated online. We employed ε-greedy
exploration mechanism with different values of ε and maximum a posteriori estimation with Beta
priors. The results in Fig. 2 (e) show that HLP can perform better than HEV, however for both
policies the chosen hyper-parameters influence the outcome.

3 Related work

The oldest reference we were able to spot is Langheinrich et al. [6] who mix a linear program with a
simple estimation of CTR to select advertisements to display. In this work, no attention is paid to the
exploration/exploitation trade-off and more generally, the problem of the estimation of the CTR is

1Note that, the number of such assignments will be exponentially low; for fixed γ, the number of campaigns
with click probability p will be twice that of with click probability γp. This allows us to model situations in
which a small number of campaigns end up being popular in certain user profiles.
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Figure 2: (a) The relative performance of the HLP policy with respect to the HEV policy for different
values of n under the static setting with one profile and 40 campaigns. γ is 2 (bottom) and 4 (top). (b)
The effect of the number of user profiles (top) and campaigns (bottom) for n = 2, γ = 4 and other
parameters are kept constant. (c) The performance of the random (dark gray) and the HLP (light
gray) policies with respect to the HES policy under the 7 days static setting for different budget (500
to 4000), lifetime (2-5 days) and n values. The three sets of bars in each group corresponds to the
case where n = 2, 4 and 6 in that order. (d) The effect of horizon (1, 2, 4, 7, 14 days) in the 14 days
static setting with full information. Bottom line shows the HEV policy. (e) The performance of HEV
and HLP algorithms in the dynamic setting with partial information using ε-greedy exploration. The
numbers in paranthesis denote the values of the parameter of the Beta prior and ε.

very crudely addressed. Abe and Nakamura [1] introduced a multi-arm bandit approach to balance
exploration with exploitation under unlimited resources and with a static set of advertisements. This
was later improved in [11] where they address the problem of multiple advertisements on a single
page, and the exploration/exploitation trade-off using Gittins indices. Ideas drawn from their work
on multi-impression may be introduced in ours to deal with that issue.

Aiming at directly optimizing the advertisement selection, side information is used to improve the
accuracy of prediction in several recent papers [4, 5, 8, 12, 13]. However, all these works do not
consider finite budget constraints, and finite lifetime constraints, as well as the continuous creation
of new advertising campaigns; they also do not consider the CTR estimation problem. Very recently,
Li et al. [8] focuses on the exploration/exploitation trade-off and proposes interesting ideas that may
be combined to ours (varying ε in the ε-greedy strategy, and taking into account the history of the
displays of an advertisement). Though not dealing with advertisement selection but news selection,
which implies that there is no revenue maximization, and no click budget constraint, but merely
maximization of the amount click, [2, 7] investigate a multi-arm bandit approach.

A rather different approach is that of Mehta et al. [10] who treated this problem as an on-line bipartite
matching problem with daily budget constraints. However, it assumed that we have no knowledge
of the sequence of appearance of the profile, whereas in practice we often have a good estimate of
it. Mahdian and Nazerzadeh [9] tried then to take advantage of such estimates while still main-
taining a reasonable competitive ratio, in case of inaccurate estimates. Extensions to click budget
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were discussed in the case of extra estimates about the click probabilities. Nevertheless, the daily
maximization of the income is not equivalent to a global maximization.

4 Conclusion and future work

In this paper, we have provided insights on optimizing advertisement display, handling finite budgets
and finite lifetimes in various settings within realistic computational time constraints. Our experi-
mental results indicate that if there are few overlapping advertisements, or many advertisements
with long lifetimes and good click rates, then we should be greedy. Between these two extreme
solutions, one should consider the associated constraints. In particular, the lifetime of campaigns
seem important. As future work, one possibility is to solve the problem from the perspective of
the advertiser, i.e. help them to set the value of a click, and adjust it optimally with respect to the
number of visitors (equivalent to a local sensitivity analysis of the LP problem). A more difficult
issue is that of handling multiple advertisements on the same page where the correlation between
the advertisements becomes important. Finally, we are also willing to draw some theoretical results
on how far from the optimal strategy we are.
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Abstract

Online publishers rely on real-time bidding (RTB) markets to sell their remnant in-
ventory and increasingly to command higher prices for “premium” content. How-
ever, content providers have lagged advertisers historically in the sophistication of
their pricing models, as evidenced by the large increase in demand-side platforms
without corresponding investment on the sell-side. Informed advertisers collect
user-intent and demographic information in addition to the publisher context in
order to score the relevance of impressions. The resulting differential impression
pricing is only visible to publishers as a positive externality to revenue unless they
collect the same audience targeting information. In this paper, we introduce a
Bayesian hierarchical model of auction clearing price that can naturally account
for the presence of publisher-advertiser information asymmetry and quantify its
impact on price. Although the current model is simply exploratory, it suggests that
richer models of dynamic floor pricing may improve publisher revenue.

1 Introduction

Real time bidding (RTB) markets have emerged as the preferred medium for ad networks and large
advertisers to buy remnant inventory [3]. Individual publisher impressions are auctioned off in
real time to participating advertisers, allowing them fine-grained control over audience targeting. In
theory, publishers set floor prices in line with their view of the value of their inventory, and the degree
of risk they must take on selling media to potentially unknown third-parties. Advertisers bid on the
individual impressions, buying specific audience information, such as demographic, session history
and intender status, from third-party data providers and demand-side platforms (DSPs), leading to
information asymmetry between the demand- and supply-side. This presence of informed bidders
amongst advertisers bidding on particular inventory causes adverse selection [6], with publishers
raising floor prices across the board to avoid selling inventory at a perceived discount.

In this paper we explore the effects of informed bidders and information asymmetries between
the supply- and demand-side in RTB markets and the resulting effects on empirical ad market mi-
crostructure. We posit that quantifying the effects of information externalities on informed bidding
in aggregate can lead to more informed supply-side floor pricing, and hence increased publisher
revenue, without the need for publishers to identify what impression level information is being
specifically acted on by bidders. That is, the presence of differential pricing strategies, such as those
employed by DSPs can be inferred directly from the bid price distribution.

Towards this end, we develop a mean-shift latent variable model in the context of linear regression
to study publisher-advertiser information asymmetry, applying it to a large anonymized auction data
set. The fundamental model assumption is that additional information available to a subset of in-
formed advertisers, e.g. provided by DSPs, affects bid price additively, causing it to be overdispersed
when compared to the baseline model. Hence, markets undergoing significant adverse selection due
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to information asymmetries will appear to publishers as additional clearing price dispersion. Al-
though the underlying signals driving differential pricing may not be available on the supply side,
publishers can still pool their auction data to estimate its economic impact.

In addition to the basic model, we discuss several extensions, including the potential to improve
dynamic floor pricing mechanisms and produce more accurate estimates of marginal floor price.
Ultimately, pooling sell-side data will help give publishers more fine-grained control over their in-
ventory pricing and improve market efficiency.1

2 Mean-shift Mixture of Generalized Linear Models

We propose a simple generative model of auction clearing price pai as a function of floor price pfi ,
publisher id xpidi , and a latent externality indicator zi. Publishers set the floor price distributed over
their inventory as a noisy signal of quality, forcing higher correlation between pf and pa. Advertiser
willingness-to-pay is derived from a latent audience signal (unobserved information externality zi)
and site context.

Although the exact latent audience signal zi cannot be reconstructed from the data, an aggregate
estimate can be obtained by treating it as a latent variable in an overdispersed generalized linear
model (GLM) framework,

w|Σw � N p0,Σwq (parameter weights)
zi|x, µ0, µ1, σ0, σ1 � GMMp�|x, tµ0 ¤ µ1u, tσ0 � σ1uq (latent group indicator)
α|σα � N p0, σαq (price mean-shift)

pai |xi, zi,w, α � GLMp�|

�
xi
zi

�
,

�
w
α

�
q (regression)

where xi � tpfi , x
pid
i u. This model combines a standard GLM with a two-component, equal vari-

ance Gaussian mixture model (GMM) indicating whether the auction price has been mean-shifted
due to (unobserved) impression-level information. Such mean-shift mixture models are common in
outlier detection, and can be used to model over-dispersion due to unobserved factors [2]. GLMs
with latent factors can be fit using standard EM techniques; we adopt a Bayesian approach using
Gibbs sampling [cf. 5].

Using this framework, we derive three particular models of pa:

• Externality-free – Auction clearing price depends only on the observed variables,

pai � w0 � w0,xpid
i

� pw1 � w1,xpid
i
qpfi � εi

where w0,� are intercept parameters and w1,� are slope parameters. This model captures
the contribution of the floor price and publisher id to the prediction of the auction clearing
price.
• Aggregate Externalities – Audience pricing externalities are assumed constant across all

publishers, hence some percentage of each publishers inventory experiences a latent mean-
shift:

pai � w0 � w0,xpid
i

� α0zi � pw1 � w1,xpid
i

� α1ziqp
f
i � εi

where α0 and α1 are additional intercept and slope parameters respectively for mean-
shifted observations. This model captures additional price dispersion not accounted for in
the baseline externality-free model, i.e. separating the systematic/floor-dependent portion
of the bid from the additional unobserved audience segment signal.
• Publisher-dependent Externalities – Additional per-publisher coefficients are included to

address contextual pricing externalities,

pai � w0 � w0,xpid
i

� pα0 � α0,xpid
i
qzi � pw1 � w1,xpid

i
� pα1 � α1,xpid

i
qziqp

f
i � εi

This model captures per-publisher deltas on the aggregate externalities model.
1For example, empirically, floor prices in RTB markets may be set too high, reflecting unreasonably high

yield expectations for remnant inventory given the underlying market mechanics [8].
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Figure 1: Hourly autocorrelation for Erpf s and Erpas remains significant even for lags of a day or
more, indicating time-of-day effects acting on auction pricing. We account for these effects before
modeling other externalities by correcting for hourly residuals.

as well as variants that do not include publisher-specific effects (e.g. w1,xpid
i

).

Examining the fits produced by each of these models allows us to determine the extent of differential
pricing based on information externalities both across- and within publishers. If the model assigns
µ0 � µ1 or α � 0, then there is no additional price dispersion to be accounted for, and all price
differentials must be due to publisher context. Furthermore, if α�w0 in the aggregate externalities
model is less than w0 in the externality-free model, then additional audience information has a
negative impact on overall revenue, and vice-versa.

Finally, we note that this model is completely retrospective, and cannot be used to infer the existence
of externalities acting on impression auctions before they take place; rather its utility lies in its use
as a component for a differential floor-pricing model and demand-side weathervane.

3 Pricing Demand-Side Externalities

Dataset: 9M impression auctions from a real-time bidding market2 with 5K publishers and 70 active
advertisers3 over a 2 week span during July 2010. Publisher ID and floor price are observed for all
auctions; auction outcomes are observed in the form of the auction clearing price (second highest bid
or floor price, whichever is higher). Since price data is typically closer to log-normal (no negative
prices), we transform pa and pf into the log-domain. We also identify significant autocorrelations
in both pa and pf on an hourly scale (Figure 1), indicating that time-of-day plays a role in price
dispersion. To account for this potentially confounding effect, we fit a null model regressing on
hour and adjust pa and pf according to the residuals.4

Table 1 provides statistics from the top publishers by volume from our auction sample, and highlights
a wide variety in publisher strategies and inventory qualities. For example, all publishers except for
5 and 8 have dynamic floor pricing (nonzero floor price variance). Publisher 4 sets the highest floor
price, maintaining inventory sell-thru of 10% and also has the highest divergence between floor
and clearing price Eppa � pf q. The publishers with the highest floor prices also have the highest
correlation between pa and pf , indicating that advertisers are not willing to significantly overbid
the floor. In general, publishers with low correlation between pa and pf are experiencing the most
differential selection by informed bidders.

Table 2 summarizes the deviance5 and most salient parameter coefficients for each of the models.
The addition of the latent externality indicator zi significantly improves the model fit, lending evi-
dence for aggregate differential pricing based on unobserved information. However, the addition of
per-publisher externality effects does not significantly reduce deviance beyond the aggregate model,
indicating that advertisers may not be pursuing differential targeting based on publisher context.
Rather, they may be primarily targeting cross-cutting demographics and user cookies. Figure 2
summarizes the contribution of each component of the publisher-dependent externalities model to
the overall fit.

2Modified Vickrey (second-price) auction where the winning bidder pays the second highest price + $0.01.
3Winning at least one auction.
4The main results presented here do not depend on this correction.
5Dpyq � �2

�
logpppy|θ̂0qq � logpppy|θ̂sqq

�
, where θ0 are the parameters of the inferred model and θs are

the parameters of a model with perfect fit (one parameter per data point)
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Publisher n Nppa¡pf q Erpf s Erpas ρppa, pf q Eppa � pf q

0 1.6M 192K 125� 75 151.3� 96.8 0.72 45.1 � 79.9
1 1.5M 61.5K 35� 77 113.1� 110.4 0.53 66.1 � 89.3
2 219K 37.9K 568� 504 462.9� 258.1 0.82 150.2 � 199.0
3 174K 11.6K 111� 40 204.3� 167.2 0.51 100.1 �161.1
4 138K 12.8K 734� 396 632.1� 254.8 0.87 151.0 � 120.2
5 95K 35K 250�0 388� 130.0 - 138.7 � 130.0
8 44K 26K 0� 0 129� 169.9 - 129.3 � 169.9

Table 1: Examples of publisher impression price distributions for 7 of the top 10 publishers by
volume. n is total impressions, Nppa¡pf q is the number of successful (cleared) auctions, Erpf s is
the average floor price (CPM in cents), and Erpas is the average auction clearing price. ρppa, pf q is
the Spearman’s correlation between the floor and clearing price and Eppa � pf q is the expected lift
over the floor price. Errors are standard deviations.

Model Dpyq Erw0s Erα0s Erw1s Erα1s

Aggregate Effects Only
Externality-free 248736 3.21� 0.00 - 0.44�0.00 -
Aggregate Externalities 201443 2.57�0.00 1.32�0.01 0.39� 0.00 -0.09� 0.00

Publisher-Dependent Effects
Externality-free 174768 0.96�0.02 - 0.87�0.00 -
Aggregate Externalities 110254 0.85�0.01 2.22�0.01 1.13�0.00 -0.40�0.00
Publisher-dependent Externalities 106122 2.79�0.02 1.92� 0.01 0.31� 0.00 -0.26� 0.00

Table 2: Inferred model parameters and model deviance. The Aggregate Effects Only models do
not include per-publisher coefficients for the latent externality indicator zi, while the models under
Publisher-Dependent Effects do include such coefficients. Dpyq is the model deviance;w0 is the log-
price intercept; α0 is the intercept delta when zi � 1 (i.e. in the presence of a pricing externality); w1

is the log-price slope; and α1 is the is the externality slope delta. In the publisher-dependent effects
case, reported values for the slope and intercept parameters are averaged across all publishers.

Across all models, the base price w0 � α0zi is significantly higher in the presence of externalities,
as α0 ¡ 0. Furthermore, w0 � α0 in the externality model is greater than w0 in the baseline model,
indicating that additional information has a positive effect on auction revenue, at least for auctions
that result in a sale.

The slope coefficient w1 � α1zi is lower in the externality models, as α1   0. This result makes
intuitive sense: in auctions where externalities are found to affect bid price, clearing price is less
sensitive to floor price (i.e. slope is near 0). In other words, the floor price, or publisher context, is
less important as a signal of quality when advertisers have specific information about the particular
impression (e.g. auto-intender, or recently bought shoes).

                                 Df Deviance Resid. Df Resid. Dev
NULL                                             556421     403092
p_id                              19   218787    556402     184305
log(p_floor_price + 1)             1    30556    556401     153748
cluster.eq                         1    61055    556400      92694
p_id:log(p_floor_price + 1)       14     1646    556386      91048
p_id:cluster.eq                   15     5458    556371      85591
log(p_floor_price + 1):cluster.eq  1     2157    556370      83434

null
publisher id

floor price
per-publisher floor price

aggregate externalities
per-publisher externalities

0 150000 300000 450000 600000

27%

9%

5%

64%

6%

                                                Df Deviance Resid. Df Resid. Dev
NULL                                                           556421     503909
cluster.eq                                       1   202623    556420     301286
p_id                                            19   139436    556401     161850
log(p_floor_price.adjusted + 1)                  1    28191    556400     133659
cluster.eq:p_id                                 11     6733    556389     126926
cluster.eq:log(p_floor_price.adjusted + 1)       1     2223    556388     124702
p_id:log(p_floor_price.adjusted + 1)            19    17521    556369     107181
cluster.eq:p_id:log(p_floor_price.adjusted + 1) 10     1059    556359     106122

Figure 2: Residual deviance of linear model fit broken down over regression factors in the publisher-
dependent externalities model. Publisher ID and latent mean-shift components induce the highest
absolute reductions in deviance. Percentages show relative reduction in deviance with respect to the
previous model.
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4 Discussion

We have demonstrated the application of GLMs with a latent mean-shift parameter to quantifying the
effects of information externalities and informed bidders on revenue in RTB markets. Such models
are potentially useful to publishers interested in predicting the pricing dynamics of their remnant
inventory.

4.1 Limitations

The main limitation of the proposed model is that it cannot predict which particular auctions are sub-
ject to information externalities, rather, it can only capture the aggregate effects on price dispersion
retrospectively. However, publishers could potentially capture additional session and user features
in order to make such predictions. Our model can then be used to gauge how much price dispersion
is captured by such features.

Predictions from this model can be conflated with other causes of price dispersion, such as adver-
tiser budgets fluctuating during the sample period, or seasonal effects on price.6 In order to model
demand-side externalities more accurately, it would be necessary to hold publisher, site context and
the advertiser pool constant, observing price variation. However such controlled experiments are
untenable in live markets.

4.2 Future work

Demand-side Modeling: Standard models of auctions assume bidders are endowed with their own
private values over inventory and the auction clearing price is derived from the this set [cf. 4]. In this
paper we have limited ourselves to modeling publisher effects, but could easily extend the analysis
to include bidder preferences as well, bringing it more in line with traditional auction theory.

Supply-side Audience Targeting: There is significant market evidence for differential pricing based
on audience targeting [cf. 8], and a natural consequent is for similar targeting to take place on the
supply-side as well. Such dispersion due to dynamic floor pricing can be captured in our model.

Modeling Sell-through: Predicting sell-through (impressions sold) is also possible in the proposed
framework, and is potentially interesting as unsold inventory may have undergone adverse selection
due to information externalities.

Censored Models and Optimal Floor Pricing: In order to build models suitable for optimizing
floor pricing it is necessary to have an estimate of what advertisers would have bid if a floor price
were lower. Floor price can be treated as a dynamic left-censoring, where auction clearing price is
not observed if it is below the floor price. Tobit regression can be used in place of linear regres-
sion in the presence of censored variables, and could potentially be used to reconstruct the full bid
distribution [1]. Such models also allow straightforward temporal extensions [7].

Models of the full bid distribution would allow publishers to compute the marginal floor price and
hence derive optimal floor pricing strategies. Theoretically, the optimal floor price is simply the
second highest bid price (i.e. the market clearing price). However, in thin (demand-constrained)
markets with few bidders and poor price-discovery, the floor price acts as a pseudo-bidder and can
improve empirical supply-side revenue [9].

Pricing Risk: Finally, we envision extending our pricing models temporally in order to predict
future spot market demand and volatility, key components in controlling publisher risk.
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Abstract

Measuring the relevance between the query and paid search ads is an important
problem to ensure the overall positive search experience. In this paper, we study
experimentally the effectiveness of various document similarity models based
solely on the content analysis of the query and ad landing page. Our approaches
focus on two different aspects that aim to improving the document representa-
tion: one produces a better term-weighting function and the other projects the raw
term-vectors to the concept space. Both models are discriminatively trained and
significantly outperform the baseline approach. When used for filtering irrelevant
ads, combining these two models gives the most gain, where the uncaught bad ads
rate has reduced 28.5% when the false-positive rate is 0.1.

1 Introduction

Paid search advertising is the main revenue source that supports modern commercial search engines.
When a user issues a query to a search engine, the search result page consists the organic links,
as well as short textual ads on the mainline and sidebar. Although from the user’s perspective,
both organic results and paid search ads should respond to the search intent and provide relevant
information, their generation processes are very different. While presenting relevant Web pages
should be the only objective of the retrieval algorithm behind organic search, ad selection is heavily
influenced by the market behaviors of advertisers. Generally, advertisers create short textual ads
with a list of bid keywords and specified matching schemes. Only ads with keywords matching the
query have the chance to enter the auction process, which decides the final ads to show.

Although advertisers should select keywords that are highly relevant to their ads and landing pages,
naively trusting the auction and matching mechanism could allow showing irrelevant ads due to
different reasons. For example, inexact matching schemes (e.g., phrase and broad match) only
partially match the bid keyword to the query, which may be semantically distant. Another example is
that adversarial advertisers may game the system by bidding on lots of cheap but irrelevant keywords
to increase the traffic to their sites with relatively low cost. To ensure satisfactory user experience,
it is thus important to have an ad relevance judgment component in the ad selection pipeline. Such
component can be used simply as an ad filter, which only allows the ads with high relevance scores
entering the auction process. More ambitiously, a good ad relevance measure can be used to replace
the cumbersome keyword–query matching scheme and increase the ad coverage by selecting more
ads to participate in the auction.

Previous work on ad relevance follows the vector space model paradigm in information retrieval
and focuses on constructing suitable term-vectors representing the query and ad-text. For example,
Broder et al. [2] leverage the search engine and use the pseudo relevance feedback technique to
expand queries. Choi et al. [3] further enhance such approach by incorporating content from the
ad landing page when creating term-vectors for the ads. The relevance function of a pair of query
and ad is simply the cosine similarity score of the two corresponding vectors. The main advantage
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of this vector space approach is its computational efficiency when handling large-scale data in real-
time. For instance, ad selection beyond keyword matching can be done via inverted index, pre-built
offline on query and ad vectors. The content-based similarity score can also be combined later with
other signals (e.g., advertiser reputation or user click features) to evaluate the relevance of ads from
a pre-selected and much smaller candidate set.

In this paper, we aim to learn a better vector representation of queries and ads from simple content
analysis so that a pre-selected similarity function (e.g., cosine) can become a reliable relevance mea-
sure. Instead of exploring various unsupervised heuristics of term weighting and selection in previ-
ous work, we exploit the annotated pairs of queries and ads and adapt two recently proposed vector
learning approaches. The first approach, TWEAK [10], provides a simple means to incorporate
various term-level features and results in a much better term-weighting function compared to using
fixed formulas like TFIDF. The second approach, S2Net [11], maps the original term-vector repre-
sentation to a much smaller but dense concept vector space, which allows matching of semantically
related words, and improves the relevance measure even after dimensionality reduction. While both
approaches significantly outperform the TFIDF cosine baseline in our experiments on real-world
data, the best result comes from the combination of these two, which reduces the false-negative rate
by 28.5% when the false-positive rate is 0.1 in an ad filtering scenario.

The rest of this paper is organized as follows. Sec. 2 gives the problem definition and describes our
approaches in detail. Our experimental validation is provided in Sec. 3. Finally, Sec. 4 presents
some related work and Sec. 5 concludes the paper.

2 Problem & Approaches

Informally, the problem we are trying to solve can be described as follows. Assume that we are
given a set of query–ad pairs with human relevance judgement as training data. The goal here is to
learn a function that maps the query and ad to vectors, so that their similarity score (cosine in this
paper) can be used as a good relevance measure – e.g., the score of an “excellent” query–ad pair will
be higher than the “bad” ones. Because both queries and ads contain only a few words and may not
provide enough content, we expand them first to “documents” as the raw input. On the query side,
we applied the same query expansion method described in [8, 2]. Each query in our data set was
first issued to the Bing search engine. The top 100 search result snippets are concatenated to form
a corresponding “pseudo-document”. On the ad side, we used its landing page. Taking advantage
of the human judgement labels, we experiment with two new discriminative approaches to learn the
vector representation from documents. One can be viewed as an enhanced term-vector generation
process and the other produces a low-rank representation.

2.1 Learning Enhanced Term Vectors

The most widely used document representation for similarity measures is arguably the bag-of-words
term-vectors. Suppose V = {t1, t2, ⋅ ⋅ ⋅ , tn} is the pre-defined vocabulary that consists of a set of all
possible terms (e.g., tokens, words) that may occur in each document. The vector that represents a
document d is then [s1, s2, ⋅ ⋅ ⋅ , sn]T , where si is the weight of term ti. Such vectors are typically
very sparse as si is set to 0 when ti does not occur in d. Otherwise, si is often determined by some
fixed weighting formula such as TFIDF (e.g., si = tf(ti, d) ⋅ log(N/df(ti)), whereN is the number
of documents in the corpus). Because the term weights dictate the quality of the similarity function
operating on the term-vectors, here we adapt TWEAK [10] to learn a better weighting function by
incorporating more term-level information using our labeled data.

Suppose that each term ti from document d is associated with a short feature vector,
(�1(ti, d), �2(ti, d), ⋅ ⋅ ⋅ , �m(ti, d)), where �j is the function that captures some term-level infor-
mation, such as its position in the document or whether it is capitalized. The new term-weighting
function is a linear combination of these features, namely s′i = tw(ti, d) ≡

∑m
j=1 �j�j(ti, d),

where �’s are the model parameters. Because the human relevance judgement labels are defined on
pairs of queries and documents, we cannot use the non-existent “correct” term-weighting scores to
train the model. Instead, the difference between the label and similarity score based on the current
model will be back-propagated to tune the parameters in each training iteration. More detail on the
loss function and training procedure will be described in Sec. 2.3.
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2.2 Learning Concept Vectors

When applying an inner-product like similarity functions such as cosine or the Jaccard coefficient,
one major weakness of the term-vector representation is that different terms, regardless of how
semantically related they are, will not be matched. As an illustrative example, two semantically very
close term vectors {buy:0.3, pre-owned:0.5, car: 0.4} and {purchase:0.4, used:0.3, automobile:0.2}
will have 0 cosine score because they do not contain any identical terms. Obviously, having a better
term-weighting function will not fix this issue as long as the choice of active terms remains the same.

A common solution to this problem is to map the original term-vectors to some “concept space”,
so that semantically close words will be captured by the same concept [6, 7, 1]. Instead of using a
generative model, we aim to learn the projection matrix discriminatively by adapting a newly pro-
posed Siamese neural network model, S2Net [11]. Formally, given a set of term-vectors representing
queries or ads, we would like to learn a matrix An×k so that a term-vector s = [s1, s2, ⋅ ⋅ ⋅ , sn]T

will be mapped to a k-dimensional vector AT s, where k ≪ n. In this low-rank representation, the
association between each concept element and the original terms is described in the corresponding
column of A. Although the functional form of this model, the matrix A, is identical to the projec-
tion matrix used in latent semantic analysis (LSA) [6], the model generation process is completely
different. By tuning the model (i.e., all the k ⋅ n entries in A) to have a better similarity score from
the concept vectors, such dimensionality reduction technique can in fact increase the performance
significantly.

2.3 Model Training

Suppose sq and sa are the concept or term vectors of the query–ad pair (q, a). Then the co-
sine similarity score is simΛ(q, a) ≡ sq⋅sa

∣∣sq∣∣⋅∣∣sa∣∣ , where Λ denotes the model parameters (i.e.,
�’s in TWEAK and A in S2Net). Assume that we map the human judgement label of (q, a)
to y ∈ [−1, 1], then one simple loss function we can use is the mean-squared error, defined as
LMSE(y, simΛ(q, a)) = 1

2 (y − simΛ(q, a))2.

However, in either the ad filtering or ranking scenarios, the ranking order of the ads or query–ad
pairs is usually more important than the absolute score. We therefore use a pairwise loss function
for training the models instead. Given two pairs (q1, a1) and (q2, a2) where the former is annotated
as more relevant than the latter, let Δ be the difference of their similarity scores. Namely, Δ =
simΛ(q1, a1)− simΛ(q2, a2). The loss function L we use is: L(Δ) = log(1 + exp(−Δ)), where
 is the scaling factor that magnifies Δ from [−2, 2] to a larger range. This loss function can be
shown to upper bound the pairwise accuracy. It can also be regularized further by adding a term
like �

2

∑
j �

2
j or �2 ∣∣A∣∣

2. In the experiments in this paper,  is set to 10 and � is 0.01 for TWEAK.
S2Net is regularized using a simple early stop scheme tuned based on the validation set. Optimizing
the model parameters can be done using gradient based methods, such as stochastic gradient decent
or L-BFGS.

3 Experiments

In this section, we present our experiments of applying the above similarity learning models in the
ad relevance problem, including the data collection process, tasks and evaluation metrics, as well as
the detailed results.

3.1 Data & Tasks

The similarity models discussed above are evaluated on a proprietary dataset made available by
Microsoft AdCenter. The dataset consists of 12,481 unique queries that were randomly sampled
from the Bing search engine logs. For each query, a number of top ads ranked according to their
monetization values or cost per impression (CPI) are selected. Ads with higher CPI have higher
chance to be shown to search users, and thus are more sensitive to classification error. Ads with
invalid or unreachable landing pages are removed from the dataset. This results in a total number of
681,100 query-ad pairs in the dataset, of which 446,781 unique pairs of queries and landing pages
are found. Note that duplicates exist because multiple ads may point to the same landing page.
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Feature Remark
TF term-frequency
DF document-frequency
Loc the position of the first occurrence of the term
Len the length of the document
QF query log frequency

IsCap whether any occurrence of the term is capitalized
InQry whether the term is part of the query
InUrl whether the term is part of the URL

InAnchorText whether the term is in an anchor text
InHtmlTitle whether the term occurs in the title

InMetaDescription whether the term appears in the meta-description section
InMetaKeywords whether the term appears in the meta-keywords section

Emphasized whether the term is emphasized in some special fonts

Table 1: Term-level features used in the TWEAK model. The QF feature is the number of times the
term is seen as a query in search logs during an 18-month period. The logarithmic values of TF, DF,
Len and QF are also used as features. InQry is only used for the query side. InUrl, InAnchorText,
InHtmlTitle, InMetaDescription, InMetaKeywords and Emphasized are only used on ad landing
pages.

Each query-ad pair is then manually labeled using a scheme that describes the relationship between
concepts (or sets). In this scheme, each document is regarded as a concept, and the relationship
between two concepts is one of the five relations, namely same, subset, superset, overlap, or disjoint.
In our experiment, when the task is a binary classification problem, pairs labeled as same, subset, or
superset (23% of the dataset) are considered relevant, pairs labeled as disjoint (60% of the dataset)
are considered irrelevant, and others (17% of the dataset) are ignored. When pairwise comparisons
are needed in either training or evaluation, the relevance order is same > subset = superset >
disjoint.

The dataset is split into training, validation and test sets by queries. Ads selected for a particular
query always appear in only one of these three sets. This avoids the same query-landing page pair
being used in both training and validation/test sets, which would happen if one randomly splits
query-ad pairs in the dataset. In our experiments, 40% of the queries are reserved for training, 30%
for validation and the remaining 30% for testing. The validation set is used to tune some hyper-
parameters such as the number of training iterations and the weight of the regularization term.

As mentioned in Sec. 2, we use the search snippets to form “pseudo-documents” for queries and the
landing pages for ads as the raw input documents. Our vocabulary set contains 29,854 words and
is determined using a document frequency table derived from a large web corpus. Only words with
counts larger than a pre-selected threshold are retained. When applying the TWEAK model to learn
the term-weighting function, the features we used are summarized in Tab. 1.

We test our models in two different application scenarios. The first is to use the ad relevance measure
as an ad filter. When the relevance score of an ad is below a pre-selected decision threshold, this
ad is considered not relevant to the query and will be filtered before going to the auction process.
As this setting is close to the typical anomaly detection problem, we present the Receiver Operat-
ing Characteristic (ROC) curves of tested models to show the trade-off between false-positive (i.e.,
mistakenly removed good ads) and true-positive (i.e., filtered bad ads), as well as the corresponding
AUC scores as the evaluation metrics. The second one is the commonly ranking scenario as used in
organic search, where the ads with keywords that match the query are purely selected and ranked by
their relevance score. In this scenario, we use the standard NDCG scores as the evaluation metric.

3.2 Results

We compare four different configurations in our experiments. Served as our baseline, TFIDF is the
basic term-vector representation with the TFIDF weighting (tf ⋅log(N/df)). TWEAK has exactly the
same terms in each TFIDF vector, but the weights are determined by the linear function of features
in Tab. 1 with model parameters learned from the training data. Taking these two different term-
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Figure 1: The ROC curves of four different vector representations when the corresponding cosine
scores are used as ad filters. False-positive rate indicates the percentage of mistakenly filtered rele-
vant ads and true-positive rate is the percentage of successfully filtered irrelevant ads.

TFIDF TWEAK S2Net TWEAK + S2Net
AUC 0.861 0.888 0.892 0.898

NDCG@1 0.825 0.859 0.855 0.870
NDCG@3 0.854 0.883 0.883 0.893
NDCG@5 0.876 0.899 0.901 0.909

Table 2: The AUC and NDCG scores of the cosine similarity scores on different vector represen-
tations. The dimensionality parameter k is 1000 for S2Net. Except for the NDCG scores between
TWEAK and S2Net, the differences between any two methods in various metrics are statistically
significant.

vectors as input, we applied S2Net to learn the projection matrices to map them to a k-dimensional
space, denoted as S2Net and TWEAK+S2Net, respectively.

When the cosine scores of these vector representations are used as ad filters, their ROC curves (fo-
cusing on the low false-positive region) are shown in Fig. 1. It can be clearly observed that the simi-
larity scores computed based on the learned vectors indeed have better quality, compared to the raw
TFIDF representation. Among them, TWEAK and S2Net perform quite similarly, where S2Net has
slight advantage when the false-positive rate is below 0.15. Not surprisingly, our best result comes
from the combination of these two models. At the 0.1 false-positive rate point, TWEAK+S2Net can
filter 28.5% more irrelevant ads compared with TFIDF.

Similar trend is also reflected on the AUC scores and NDCG numbers, presented in Tab. 2.
S2Net has a higher AUC score compared to TWEAK, but is inferior in NDCG@1 and NDCG@3.
TWEAK+S2Net is a clear winning approach, and has higher scores in both AUC and NDCG. Again,
all the learning models result in stronger similarity scores than simply using TFIDF term vectors. All
comparisons except for the NDCG scores between TWEAK and S2Net are statistically significant.
For AUC, we randomly split the data into 50 subsets and ran a paired-t test between the correspond-
ing AUC scores of two methods. For NDCG scores, we compared the DCG scores per query of the
compared models using the paired-t test. The difference is considered statistically significant when
the p-value is less than 0.01 after the Bonferroni correction.

Although for efficiency reason, ideally we would like the dimensionality of the projected concept
vectors as small as possible. However, the quality of such representation usually degrades as well.
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TFIDF PCA1000 S2Net100 S2Net300 S2Net500 S2Net750 S2Net1000
AUC 0.861 0.848 0.855 0.879 0.880 0.888 0.892

NDCG@1 0.825 0.815 0.843 0.852 0.856 0.860 0.855
NDCG@3 0.854 0.847 0.871 0.879 0.881 0.884 0.883
NDCG@5 0.876 0.870 0.890 0.897 0.899 0.902 0.901

Table 3: The AUC and NDCG scores of S2Net at different k (dimensionality) values. TFIDF and
PCA (k = 1000) are used as baselines. The differences in AUC for any two methods, except
for S2Net300 and S2Net500, are statistically significant. For the NDCG scores, all S2Net models
outperform TFIDF and PCA statistically significantly. The differences among S2Net300, S2Net500,
S2Net750 and S2Net1000 are not statistically significant.

It is thus interesting to know the best trade-off point between these two variables. We conduct this
study by using the raw TFIDF term-vectors as input for the S2Net model with various k values,
and the results in terms of AUC and NDCG are shown in Tab. 3. In addition, we also compared
the results with the commonly used dimensionality reduction technique, PCA. As can be found in
the table, the performance of S2Net easily surpasses TFIDF when k = 300. As k increases, the
performance improves quite consistently as well. Notice that even with k = 1000, PCA is not doing
better than S2Net (k = 100), which uses only one tenth of the space, and is still inferior to TFIDF.

4 Related Work

Our approach on learning vector representation for similarity measures is very related to the work of
distance metric learning [5]. As the computational complexity of learning a complete Mahalanobis
matrix is at least O(n2), where n is the vocabulary size, directly applying them to the problems in
the text domain is not practical. Although learning a low-rank matrix has been suggested [4, 9], our
previous study has shown that the TWEAK/S2Net approach can perform better [11]. On the content
analysis side, Choi et al. [3] used the cosine score to judge the ad relevance, but applied document
summarization techniques to identify important portions in the ad landing page to construct the
vector. Such information can easily be incorporated in our model and could potentially improve the
performance.

5 Conclusions

In this paper, we explore the effectiveness of two recently proposed similarity models, TWEAK and
S2Net, for measuring paid-search ad relevance. Both approaches aim to learn new vector representa-
tions of documents to improve the quality of the target similarity score (e.g., cosine) operating on the
vectors. When used in the scenarios of ad filtering and ranking as relevance measures, the learned
vector representations lead to significantly better results compared to the typical TFIDF term-vector
construction. As the two approaches focus on different aspects and are complementary to each other,
we found that combining these two methods produces the most performance gain.

The promising results from this initial experimental study trigger several interesting research direc-
tion for the future work. For example, the current combination approach treats the TWEAK and
S2Net models separately and chains them in a sequential fashion. Training these two sets of model
parameters could be a more natural approach to further enhance the overall model performance. On
the feature side, improving the relevance measure by incorporating more information in the model,
such as ad-text, advertiser reputation and deeper query and landing page analysis is also on our
agenda.
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Abstract 

Digital online advertising is a form of promotion that uses the Internet and 
World Wide Web for the express purpose of delivering marketing messages 
to attract customers. Frequency capping is a term in digital advertising that 
means restricting (or capping) the amount of times (frequency) a specific 
visitor to a website or group of websites (in the case of ad networks) is 
shown a particular advertisement. Frequency capping is a feature within ad 
serving that allows the advertiser/ad-network to limit the maximum number 
of impressions/views a visitor can see a specific ad within a period of time. 
The advertiser or advertising network specifies a limit to the number of 
impressions you will allow per day, per week, or per month for an 
individual user.  Frequency capping is often viewed as a key means in 
preventing banner burnout (the point where visitors are being overexposed 
and response drops) and in maintaining a competitive quality score (a core 
component of expected CPM-based ranking).  Generally, the frequency 
capping policy for an ad is heuristically set by the advertiser or is 
determined heuristically by the ad network where the ad runs and is 
optimized for short term gain. In this paper we propose a data driven and 
principled approach that optimizes the life time value of site visitors. We 
propose to set frequency capping policies for different online marketing 
segments using Markov decision processes (MDP). Managing targeted 
marketing (customer relationship management) campaigns in this way can 
lead to substantial improvement in several business metrics such as click 
through rates and revenue.  Though the current proposed approach lacks 
evaluation at the time of submission it is hoped to complete a study using 
this approach and present the results at the workshop. 

 

1 Introduction 

Digital online advertising is a form of promotion that uses the Internet and World Wide Web 
for the express purpose of delivering marketing messages to attract customers. Examples of 
online advertising include text ads that appear on search engine results pages, banner ads, in-
text ads, or Rich Media ads that appear on regular web pages, portals or applications. Over 
the past 15 years online advertising, a $65 billion industry worldwide in 2008, has been 
pivotal to the success of the World Wide Web. That being said, the field of advertising has 
been equally revolutionized by new or transformed media sources such as the Internet, 
World Wide Web and more recently by the advent of social media sites and digital IP-TV. 
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This success has arisen largely from the transformation of the advertising industry from a 
low-tech, human intensive, “Mad Men” way of doing work (that were common place for 
much of the 20th century and the early days of online advertising) to highly optimized, 
quantitative, mathematical, computer-centric processes that enable highly targeted 
performance based advertising. In this spirit we propose a new data driven approach to 
tackling one aspect of digital advertising, that of creating frequency capping rules for ads 
shown to visitors (aka users, browsers, surfers) to a website. Currently, this is generally set 
heuristically based upon human background knowledge or experience. Frequency capping is 
a feature within ad serving that allows the advertiser/ad-network to limit the maximum 
number of impressions/views a visitor can see a specific ad within a period of time. The 
advertiser or advertising network specifies a limit to the number of impressions you will 
allow per day, per week, or per month for an individual user.  For example, a rule of the form 
3 views/visitor/24-hours means after viewing this ad 3 times, any visitor will not see it again 
for 24 hours. More elaborate capping policies are also possible and are generally composed 
of rules defined over multiple time periods. Frequency capping is often viewed as a key 
means in preventing banner burnout (the point where visitors are being overexposed and 
response drops) and in maintaining a competitive quality score (a core component of 
expected CPM-based ranking that has become a de facto standard for ad networks).  
Generally, the frequency capping policy for an ad is heuristically set by the advertiser or is 
determined heuristically by the ad network where the ad runs. And in some cases this carried 
out in an AB test manner where various policies are independently compared in a real world 
setting and assessed based upon business metrics such as CTR. Both approaches result in  
rules for all users and all ad types that focus on immediate short term gain, while ignoring 
the longer term value of having this visitor come back to this site, thereby leading to 
potentially great revenue opportunities. In this paper, we propose a data driven and 
principled approach to setting the frequency capping policy using Markov decision processes 
(MDP) that determines the best frequency capping policy for each user; it also focuses on 
the long term benefits of having such a visitor around. In summary this approach addresses 
two primary weaknesses of currently used practices: current approaches optimize for short 
term gains and largely ignore maximizing long term metrics (such as long term profits or 
CTRs), which is commonly known as the customer lifetime value (CLV); and in addition, 
current practices commonly set a policy at course levels for an advertiser thus leading to a 
one-size fits all type of capping policy that may be suboptimal. 

The proposed Markov decision process that we adapt here builds on previous work carried 
out in the direct marketing field by Jonker et al. [1] where they treated the problem of 
maximizing long term profitability as joint optimization of both customer segmentation and 
marketing policy determination. They applied the approach to an offline marketing problem, 
that of requesting donations via direct mail solicitations, with great success. The work 
presented here differs on two fronts: first we explore different market segmentation 
strategies combined with feature selection algorithms as means of building homogenous 
groups of consumers; secondly we extend it to an online advertising problem setting, that of 
determining impression frequency capping rules for online marketing segments using 
Markov decision processes (MDP) such that we optimize a global marketing objective such 
as click through rate. To the best of the authors’ knowledge this is the first application of 
MDPs to this particular problem. 

This paper is structured as follows: In Section 2 we discuss our methodology. In Section 3 
we describe the requirements for the experimental dataset. Section 4 discusses experiments 
while we close with conclusions in Section 5. 
 

2 Methodology 
In this study, similar in spirit to Jonker et al. [1], we adapt a population-based search 
paradigm called genetic algorithms to discover good site visitor segmentations and 
corresponding effective frequency capping rules for individuals assigned to those segments. 
Though this search algorithm is local in nature, sometimes leading to local optima, it 
generates surprisingly good results in practice in many domains [2]. This population-based 
search approach generates solutions to optimization problems, like the frequency capping 
problem presented here, using techniques inspired by Darwinian evolution (survival of the 
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fittest), such as inheritance, mutation, selection, and crossover. Here fitness is based upon a 
combination of two measures: a bootstrap sampling estimate of a business metric, generally 
a proxy for revenue or profit, such as CTRs, for each segment; and a segmentation 
complexity component that penalizes segmentations with too many segments. This metric 
jointly evaluates the quality of the segmentation and the business value of optimally 
determined frequency capping rule. Individuals (candidate policies), composed of a customer 
segmentation and an optimal frequency capping rule for each segment, are constructed using 
two steps: step 1 segments customers into homogenous groups using clustering (either based 
on unsupervised and supervised methods); and step 2 determines the optimal frequency 
capping rule for each group using an MDP.  
 
In direct marketing, the Recency, Frequency, and Monetary (RFM) variables are the most 
likely candidates as bases for site visitor segmentation (Bult and Wittink, 1996; Van den 
Poel, 2003; Viaene et al., 2001). The RFM variables measure consumer response behavior in 
three dimensions. The first dimension is recency, which indicates how long it has been since 
the customer has last responded. The second is frequency, which provides a measure of how 
often the customer has responded to received impressions. And finally, monetary value 
measures the amount of money (or clicks) that the customer has provided in response to the 
ad impressions. Various operationalizations of the RFM variables have been used in the 
literature.  Here we plan to extend the traditional RFM variables with other variables that 
characterize the ad, the advertiser, and the user (or browser), and the publisher. 
 
More formally, we define the RFM variables for our scenario as follows: 

• Number of impressions of this ad without a click by user (Recency) 

• How many times has this user been served ads from the topic of the ad before 

(Frequency) 

• How long do I know this user 

• How many times has this user been served before 

• How many times did this user click on any ads (Monetary) 

• CTR within the last 24, 48, 72, 168 hours over all displayed ads (Monetary) 

 

We add the following variables to our segmentation basis also: 

• Hour of day, Day of week 

• Taxonomic distance from user category(ies) to ad category 

• CTR of ad categories on the publisher category 

 
One can imagine using many other variables in this basis. Our planned study will explore 
some of these candidates.   
 
The goal of segmentation (for this paper) is to partition users into zones of self-similarity 
(homogenous groups) that can be described using a cluster center (the result of a k-means 
clustering [3] or SOM Clustering [4]) or a rule (a rule corresponds to one path from the root 
node to a leaf node of a learnt decision tree [5]). The segmentation step explores both 
unsupervised and supervised approaches to partition consumers into homogenous groups [6]. 
We consider unsupervised approaches such as k-means and supervised approaches such as 
decision-trees where the target variable is a business metric such as clicks or not clicks. 
Decision trees partition the set of users into subsets in which examples have similar values 
of the target variable, while clustering produces subsets in which examples have similar 
values of the descriptive variables. Variable selection and model parameter determination 
(such as the number of clusters), discretization of features (in the case of decision trees) will 
all be determined using genetic algorithms and will be expressed as part of the chromosome 
structure. Both components of the evaluation metric will naturally control for too many 
segments; this is discussed in more detail below. 
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The second step is concerned with determining an optimal frequency capping policy for each 
customer segment. The optimal policy is determined using an MDP as it models closely 
model the sequential nature of ad serving and optimizes for lifetime value of users. 
Modeling the problem this way avoids policies that optimize short term business gains and 
enables focusing on locating policies that optimize lifetime value of visitors. More formally, 
an MDP models the decision problem as inherently stochastic, sequential and fully 
observable. The solution to a MDP produces a policy or a "universal plan". A policy assigns 
to each state of the world (customer segment), an action (use a particular frequency capping 
rule to serve a particular ad) that is expected to be optimal over the period of consideration.  
An MDP can be defined as follows: 
 

A Markov decision process is a tuple, ( )HRTASM ,,,,=  where  

• S  is the set of all possible states (user segment in our case);  

• A  is the set of all possible actions (frequency capping rules);  

• T  is a transition function, 
)(: SAST ∆→×

, which specifies the probability 

distribution over the next states given the current state and action;  

• R  is a reward function, ℜ→× ASR : , which specifies the reward of performing 

each action from each state; and   

• H  is the period of consideration over which the plan must be optimal, also known 

as the horizon, ∞≤< H0 .  

 
The transition function as defined in a MDP is Markovian, that is, the probability of reaching 
the next state depends only on the current state and action, and not on the history of earlier 
states. Inclusion of the transition function allows MDPs to model and reason with non-
deterministic (uncertain) actions. Furthermore, the horizon may be either finite or infinite.  
Here we assume the horizon is infinite, resulting in policy that is stationary over time. 
 
Standard MDP solution techniques for arriving at an optimal policy revolve around the use 
of stochastic dynamic programming (Puterman, 1994) for calculation of the optimal policy. 
Bellman (Bellman, 1957), via his Principle of Optimality, showed that the stochastic 
dynamic programming equation, Equation (1), is guaranteed to find the optimal policy for 
the MDP. One standard MDP solution technique, called Value Iteration, involves iterating 
over Equation (1)-- calculating the expected value of each state -- until the value differential 
for each state reduces below a given threshold1.  
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where the function, ℜ→SV
n :  quantifies the long-term value, or reward, of reaching 

each state with n  actions remaining to be performed. 
 
Once we know the expected reward associated with each state, the optimal action for each 
state is the one which results in the maximum expected reward. 
 (2) 

 

                                                 
1 Note that the value function provably converges over time. 
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In Equation (2), 
*π is the optimal policy which as we mentioned before, is simply a mapping 

from states to actions, AS →:*π . We show the algorithm for computing the optimal 
policy in Figure 1. 
 

 

Algorithm: ValueIteration( M ,ε ) 

Input:       M   /* MDP to be solved */ 
                         ε   /* max. allowed error in value of each state*/ 

Output:   
*π   /*ε -optimal policy */ 

 
 /* Compute the value function */ 

Initialize ssV ∀← 0)('  

repeat 

for all Ss ∈  do 
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/* Obtain the optimal policy from the value function */ 

for all Ss ∈  do 
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      end for  

return 
*π  

end algorithm 

 

Figure 1: The Value Iteration algorithm for solving the MDP and computing the infinite 
horizon optimal policy. 

 
Setting ad frequency capping can be very naturally captured by means of a Markov decision 
process. These MDP models describe the migration of an individual visitor in terms of 
transitions between states. A state records the segment that the visitor belongs to at a 
decision moment. Migration between the states will occur as a result of the ad serving rule 
and the response of the visitor in a time period between two decision moments. For each 
visitor the states are recorded at a number of decision moments. Let a be the impression 
decision at a decision moment for all visitors who are observed in state s (where there are  
a=1, …, A actions and, s=1, …, S states (or segments)). The transition probability to observe 
a migration from state s to state t after an impression decision a is denoted by Ps,t(a). At each 
decision moment, action a triggers an immediate reward rs(a) for all visitors observed in 
state s at the decision moment. This reward is given by the response of the visitor till the 
next decision moment. The advertiser (a direct marketing firm) however may be more 
interested in long-term profits. Consequently, we model this reward as the long-term 
discounted reward as the objective for frequency capping optimization. Bitran and 
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Mondschein [7] show that this objective is closely related to lifetime value of the customers 
in mailing-based direct marketing studies. Other long or short term objectives can be used as 
desired. The Markov decision model can determine the optimal frequency capping policy by 
the well-known value iteration (described above) or policy iteration algorithm or by linear 
programming [8]. The parameters of the model that have to be estimated before the MDP 
optimization routine can start are the transition probabilities for each action a and the 
immediate reward in each state when action a is chosen. 
 
The estimation of the parameters of the Markov decision model introduces an estimation 
error in the expected utility (e.g., CTR) for each capping policy. Most critical is the correct 
estimation of the transition probabilities Ps,t(a). Sparse data sets are known to lead to 
unreliable estimates for transition probabilities. Similar to Jonker et al. [1], to address these 
problems in the parameter estimation, we use a bootstrap  technique [9]. More specifically, 
we want to assess the stability of a solution (a partitioning scheme and a corresponding 
optimal capping policy) by calculating the bootstrap mean and standard deviation of the 
expected utility. This is accomplished by drawing bootstrap samples from the dataset, 
followed by assigning the visitors to segments using the partitioning scheme under 
investigation and optimizing the capping policy for this segmentation. In our setting, we 
only accept a solution as ‘better’ if it outperforms a given solution, i.e.,if (mean–standard 

deviation) of the new solution is higher than the (mean–std.dev.) of the old solution then the 
new solution is deemed better; this is calculated in terms of a business metric such as CTR.  
 
The overall search to find an optimal policy (optimal frequency capping policy for an ad) for 
a site visitor is based upon genetic algorithms (GA) [10].There is a vast literature on GA, 
including studies on its theoretical and practical performance and many extensions of the 
basic algorithm [2]. For our application we consider the Simple Genetic Algorithm (SGA) as 
defined by Goldberg [2]. Although we realize that other, possibly more sophisticated GA 
formulations exist, we feel that SGA is best suited for our application because its simplicity 
will lead to a feasible running time of the algorithm. The genetic algorithm starts with a 
population of randomly selected solutions for the segmentation of the customers based on 
the segmentation variables. A solution can be denoted by the specification of partitions with 
regard to the segmentation variables. One then evaluates the goodness of each solution with 
respect to the current population. This evaluation consists of finding the optimal mailing 
policy for this segmentation and determining the expected performance of this policy. 
Solutions that result into a higher value are given more of a chance to ‘reproduce’ than 
others. For more details on GA see [10].  
 

3 Data  

In order to apply the proposed methodology we will need to collect data from ad serving 
preferably where different polices are explored across a visitor base; more precisely a broad 
set of policies (e.g., cap 24-hour frequencies at 1, 5, 10, 20 impressions) can be explored 
initially with more fine-grained policies (e.g., focus on capping 24-hour frequencies of 1, 2,  
4, 5, 6, 7 if the 1 and 5 polices work best) being explored once more is learned  from the 
initial grid search. Each user is assigned a user id that is stored locally on the visitors 
computer in a cookie (a text file) within the visitor’s browser. Cookies are also used to store 
the impression count directly or indirectly. The logged data will consist of impressions and 
clicks records that detail the following: 

 

• Date and time 

• User-id of user that was shown ad j 

• Ad id of the ad shown to user i  

• Click or not 

• Impression only 

• Number of ads shown 
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• Category of ad j 

• Category of user i 

• Demographic features;  

• Psychographic features such as intent of user (e.g., purchase);  

• Web Browser’s type 

• Geographic features 

Segmentation variables can be generated from the above log data. Though many features can 
be considered by our proposed GA-MD, it is very computationally intensive. To allieviate 
some of this computation, feature selection and discretization may need to be carried out in 
an independent first step using one-shot learning and clustering. The output of this step can 
then be used directly in building and evaluating each individual in the GA’s population. 

 

4 Experiments  and Results  

We plan to use the above GA-MDP based methodology to discover an optimal policy and 
compare it with incumbent approaches (which are largely heuristic-based) and report our 
results at the time of the workshop. 

 

5 Conclusions 

We have proposed a principled and data driving approach to setting frequency capping rules 
within the field of online advertising that focus on the lifetime value of site visitors. 
Generally, the frequency capping policy for an ad is heuristically set by the advertiser or is 
determined heuristically by the ad network where the ad runs. Our approach to setting 
frequency capping policies for different online marketing segments using Markov decision 
processes. Managing targeted marketing (customer relationship management) campaigns in 
this way can lead to substantial improvement in several business metrics such as click 
through rates and revenue.  Though the current proposed approach lacks evaluation at the 
time of submission it is hoped to complete a study using this approach and present the 
results at the workshop. 

This approach can also be extended to leverage more downstream user behavior such as 
dwell time on ads or associated landing pages or to transaction behavior (such as the amount 
of purchases a site visitor generates). 
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Predictive Client-side Profiles for Keyword Advertising 

 

 

Abstract 

Current approaches to personalizing online advertisements rely on estimating us-

er preferences from server-side logs of accumulated user behavior. In this paper, 

we consider client-side ad personalization, where user-related information is al-

lowed to be stored only within the user’s control (e.g., in a browser cookie), ena-

bling the user to view, edit or purge it at any time. In this setting, the ad personal-

ization task is formulated as the problem of iteratively updating compact user 

profiles stored client-side to maximize expected utility gain.  We compare the 

performance of client-side profiling to that of full-history server-side profiling in 

the context of keyword profiles used to trigger bid increments in search advertis-

ing.  Experiments on real-world data demonstrate that predictive client-side pro-

files allow retaining a significant fraction of revenue gains due to personalization, 

while giving users full control of their data. 

 

1   Introduction 

Personalization has become a core component of modern web applications, where its uses vary 

from re-ranking search engine results to item recommendations in domains ranging from news to 

online shopping. Traditional uses of personalization center on customizing the output of infor-

mation systems for each user based on attributes stored in their profile.  Profile attributes may be 

explicitly or implicitly obtained, where explicit attributes are volunteered by the user or computed 

deterministically (e.g., user-submitted demographics, or IP-based location).  Implicit user attributes 

are inferred based on logs of the user’s prior behavior, e.g., of their past searching, browsing or 

shopping actions.  A wide variety of personalization approaches have been proposed in recent 

years; notable examples include methods that leverage correlations between the behavior of multi-

ple users (i.e., collaborative filtering), and approaches that use past behavior to assign users to one 

or more pre-defined categories (e.g., to behavioral targeting segments).  

Raw behavior logs used to infer implicit user attributes are typically stored in the online service’s 

datacenter (server-side), where they are processed to compute each user profile in a compact repre-

sentation chosen for the application at hand.  Examples of such representations include categories 

for behavioral targeting [3][21] and low-dimensional latent topics for collaborative filtering meth-

ods based on matrix decomposition [13]. The resulting profiles are used in subsequent interactions 

with the user to adjust the output of the application to user preferences. 

Server-side aggregation is being increasingly questioned by consumer advocates due to the fact that 

it does not provide users the ability to view or control the data associated with them. As a result, 

there has been a rising interest in privacy-enhanced approaches to personalization, with one such 

approach being category-based profiles constructed and maintained entirely on the user’s machine 

(client-side) for personalizing search results [18][20]. However, the trade-offs involved in moving 

user profiles client-side remain unclear. 
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In this paper, we formalize the problem of constructing client-side profiles based on the general 

framework of maximizing expected personalization utility.  For many personalization utility func-

tions that can be formulated as coverage problems, profile construction is a submodular optimiza-

tion task, allowing efficient approximation algorithms with strong guarantees.   We focus our atten-

tion on the utility of keyword profiles in search advertising accumulated via bid increments:  key-

word bid increases that allow advertisers to differentiate their campaigns for users with a strong 

interest in the topic.   For this setting, we compare the performance of online, client-side profiling 

to full-history server-side profiling.  Experiments on real-world data demonstrate that client-side 

profiling retains a significant fraction of server-side profiling revenue gains, while allowing users to 

opt out of server-side logging and gain full control of their behavioral history. 

It is important to note that the presented approach is not a privacy-preserving ad delivery mecha-

nism [7][6][19]:  such mechanisms require installation of additional client software from users and 

significant changes to existing infrastructure and mechanisms from ad platforms. Our approach also 

does not aim to provide users statistical privacy guarantees such as those pursued by research in k-

anonymity and differential privacy [14].  Instead, the goal of the paper is to describe a methodology 

for continuing to serve personalized advertising to users who have opted out of server-side logging, 

and to analyze the gap in personalization utility between client-side and server-side approaches in 

the context of search ads. 

2   Advertising Personalization  

Let   be the finite set of user behavior items,   be the domain of item descriptors, and       

be the domain of observed events. For example, in search advertising,   is the set of all advertiser-

bid keywords that are matched to user queries, and      contains vectors of features associated 

with a keyword being matched to a query. Then, every user query   can be represented as an ob-

served event   (   ) where     is the most relevant ad keyword for the query, and     is a 

vector of features capturing such event properties as the timestamp, keyword similarity to the que-

ry, user location, etc. 

Let   be the domain of all sequences of observed events, and   be the domain of profile represen-

tations. A profile construction function        takes a sequence of events observed over a time 

period  ,    (          )        and produces a user profile    . This definition can be triv-

ially extended to include explicit or time-independent attributes such as demographic data. 

The objective of profile construction is to maximize some utility function that captures the increase 

in performance for the task at hand (the benefit of personalization). The utility function   is com-

puted post-hoc by evaluating performance of the system over a future interval on a profile con-

structed during a preceding time interval,        . The optimal profile construction function 

   maximizes expected utility:             , (     (   ))-, where the expectation is com-

puted over the probability distribution of behavior across all users, while    and    are time inter-

vals over which the profile is constructed and used, respectively.  

A number of utility functions have been considered in prior work on personalization, e.g., measur-

ing improvements in web search result accuracy has been performed via gains in average precision 

[20] or click probability prediction [3][5][21]. The value of information approach [9] provides a 

general probabilistic framework for computing the utility of personalization.  

2.1   Keyword-based Profiles 

Although the above formulation applies to arbitrary domains, we will now focus on the search ad-

vertising setting where both observed events   and profile representation   correspond to bidded 

keywords.  Unlike display advertising, modern search and contextual ad platforms associate adver-

tisements with bids on individual keywords, which are then matched against queries or page con-

tent (either exactly or approximately). Hence, user profiles comprised of keywords can be naturally 

integrated with existing advertising systems and campaigns. To be useful in advertisement selec-

tion, ranking and pricing, such profiles contain the keywords in which a user has shown historical, 

as well as predicted future interest. By allowing advertisers to target users based on their keyword 

profiles, pay-per-click campaigns can be refined for users for whom they are likely to be more ef-
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(a) Server-side profiles: The server stores the 
entire user history h, which is augmented 

with the query q, compacted into a user 

profile p, and used to serve results. 

 
(b) Client-side profiles: history storage and 

compaction are performed on the client, with 
the profile sent to the server at delivery time. 

 
(c) Online client-side profiles: The client 

stores only the compact profile, which is sent 

to the server along with the query. The server 
returns the updated profile and the results. 

Figure 1: Comparison of server-

side, client-side, and online client-

side profiles. 

fective. For example, a diving equipment store may be 

willing to pay more for users who are predicted to have 

a long-term interest in specialized diving keywords, 

since they are more likely to purchase high-end items.  

Requiring the ad keyword to be a part of a user’s pro-

file is limiting, since profile size is small, while the 

number of keywords that express any particular intent 

is large. E.g., an advertiser bidding on “grass seed” 

may wish to target users with corresponding long-term 

interests, but would then miss users whose profile con-

tains "lawn repair". Note that the specificity of the in-

terest rules out using lower-granularity approaches 

such as segments or categories. This problem is a key 

task for the ad selection phase of advertising delivery, 

where it is solved by constructing a weighted directed 

graph,  , with vertices representing all keywords and 

edges connecting keywords that should be matched.  

Building such graphs is a well-studied problem for 

online advertising [7][10][17], as it enables non-exact 

matching of keywords to queries (known as "broad" or 

"advanced" matching). Directed links allow e.g. “Bos-

ton mortgage” to point to “mortgage” to indicate that a 

user interested in the former will be interested in the 

latter, while the opposite is not generally true. 

Given a user profile of k keywords,   *        +, 
we consider a current context (query or webpage) key-

word   to match the user profile if it is either contained 

in it, or is a direct neighbor of at least one of the profile 

keywords. Because utility is typically an additive func-

tion of individual context matches, finding the optimal 

profile is an instance of the maximum coverage prob-

lem: selecting a fixed-size set of profile keywords max-

imizing a set-based objective function. While the prob-

lem is NP-hard in general, personalization utility being submodular guarantees that the greedy algo-

rithm of Nemhauser et al.[14] produces a (    ⁄ )-approximate solution.  

3   Online Client-side Profiles 

The general definition of profile construction in Section 2 presumes that the profile is constructed 

based on the complete history of user behavior over the previous time period,    . Currently, this 

history is stored server-side and updated as necessary. To give users full control over their infor-

mation, the history and profile must be stored on the client, potentially incurring prohibitive local 

storage costs. Profile construction would happen either on the client (requiring additional browser 

components to be installed to enable computation in the browser [7][6][19], presenting a significant 

barrier to wide adoption) or the server (requiring the history to be communicated to the server 

whenever the profile is to be updated, thus incurring significant communication overhead). 

Given these concerns, we consider the scenario where the history is not stored, and the (relatively 

small) user profile is stored on the client. The compact profile is sent to the server along with the 

current context (query or webpage id). The profile is then utilized on the server, updated and re-

turned along with the ads served. This scenario is supported by current web browsers natively via 

cookies.  

Updating client-side profiles online changes the problem from one of constructing a profile given 

the full user history to one of revising the present profile based on the current context. The corre-

sponding profile construction function for updating the profile on per-event basis is then defined as 

              , with the profile update at  th observation computed as           (       ). 
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The corresponding utility,        , aggregated over interval    is then computed as 

       (     )  ∑  (       )      
 where    is the initial empty profile. 

To alleviate the myopia suffered by the incremental update, we augment the profile with a cache of 

m recently seen keywords which are not a part of the profile, yet are retained alongside it client-

side. Selecting the optimal k profile keywords from the up to k+m+1 known keywords is still sub-

modular and may still be approximated using the greedy algorithm. 

4   Method 

We apply online client profiles to the bid increment setting, where advertisers are given the option 

to have their bids increased for users that have a particular profile attribute. Conceptually, the bid 

increment indicates expectation of the ad being more effective when shown to or clicked by such 

users. Bid increments are already commonplace in display advertising platforms, where they are 

based on either demographic attributes, or broad, loosely defined categories [21].  In keyword ad-

vertising, the bid increment is charged if the advertising keyword matches those in user’s profile. 

This notion integrates naturally with existing keyword campaigns in search and contextual advertis-

ing. The corresponding utility function is the total bid increment amount for clicks in matched set-

tings. Note that this utility function underestimates the actual increase in revenue, as it does not 

account for revenue increases resulting from improved re-ordering of the ads due to bid increment. 

Because a higher bid can only increase the ad’s position in a second-price auction, it makes corre-

sponding clicks more likely, hence amplifying the gains. The utility formulation also does not ac-

count for expected gains in revenue due to cost-per-click increases for non-matched ads. 

4.1   Utility Computation 

Estimating the bid increment utility of a set of keywords requires computing the probability that, in 

the next time step, the user will click on an ad for one of those keywords or their graph neighbors. 

This is done by estimating the expected future clicks individually for each keyword involved, then 

combining these (according to the keyword graph) to compute overall utility.  

We employ a machine learning approach for this estimation: a parameterized function is trained on 

historical data to minimize the difference between observed clicks and those predicted by the func-

tion, based on a set of features. Historical data comes from users who do not opt-out of server-side 

profiling (some number of such users can always be retained via incentives). The features are func-

tions of the keyword, context and/or user that assist the model in predicting whether the user will 

click on an ad for the keyword in the future.  Our model incorporates three feature sets: 

 User Prior Features based on the counts of past searches and ad clicks for the user, which can 

be stored alongside the cache and profile client-side and incremented continuously; 

 Recency Features based on recency of past occurrences for each considered profile/cache 

keyword, captured via 10 geometrically increasing lookback windows; 

 Time-weighted Frequency Features based on heuristic time-decay functions that assume that 

the probability of a future click decreases with time, yet increases with the count of past occur-

rences. 

Logistic regression based on the L-BFGS optimizer was chosen as the learning algorithm for utility 

prediction as it outperformed a number of other learners in pilot studies.   Once the utility predic-

tion function is trained, online profile construction is performed by considering every keyword 

(profile, cache, and context, including search queries and advertisements shown) and their children 

as candidates for inclusion in the profile, using predictions of their expected clicks in the subse-

quent time interval.  Iteratively, the keyword with highest incremental utility is added to the profile, 

where incremental utility is the sum of the keyword’s and its neighbors’ expected clicks, subtract-

ing those already covered by keywords selected in earlier iterations.  Because the utility function is 

submodular and monotone, this algorithm is guaranteed to find a profile with utility that is at least 

    ⁄      of optimal. 
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5   Results 

Experimental evaluation of the proposed approach for constructing compact keyword profiles was 

performed using advertising system logs from the Bing search engine over a two-week period. The 

first week’s data was used for training of the utility predictor as described in Section 4. The training 

set contains the candidate keywords and their features, extracted over the week-long period, with 

labels (clicks) obtained from the subsequent one-day interval. Although this reduction of utility 

prediction to a standard supervised learning task neglects the online setting (i.e., the pool of candi-

dates during online client-side construction is significantly smaller), it provides a reasonable batch-

setting approximation, leaving truly online approaches as an interesting direction for future work. 

The experiments relied on the keyword graph used for matching related keywords in production. 

With the utility predictor trained on past data, we evaluated the efficacy of online client-side profil-

ing on a held-out set of over 20,000 users during the subsequent week. Profiles constructed in the 

server-side setting (using the complete user behavior history) were compared to those constructed 

in the online client-side setting (using a small cache of user behavior). Figure 2 illustrates the rela-

tive performance of client-side personalization with respect to server-side personalization for dif-

ferent profile sizes, demonstrating that even modest cache sizes provide performance that is compa-

rable to server-side profiling with complete history. Indeed, for a profile size of 20 and a cache size 

of 40, online client-side profiling captures 98% of the revenue gain of server-side profiles, while 

giving full control of data and privacy to the user.  Such settings are reasonable as they allow fitting 

both the profile and the cache with corresponding features into the cookie size limit of 4 kilobytes. 

Figure 3 compares the performance of a sample client-side profiling setting to that of server-side 

profiling, and also to the maximum achievable performance.  The latter corresponds to an oracle 

selecting the optimum profile from the user’s complete history of past behavior to obtain maximum 

future utility presciently, thus bounding the amount of improvement that could be obtained with 

more sophisticated features or learners.  

 
Figure 2: Client-side profiling accuracy (w.r.t. 

server-side) for different profile sizes  

 
Figure 3: Comparison of client-side, server-side 

and maximum achievable accuracy 

As these results demonstrate, our overall approach to constructing keyword profiles achieves a sig-

nificant fraction of the maximum possible performance (83% of the oracle, for profiles of size 20). 

The oracle’s upper bound of 22% of matched clicks captures the low overall predictability of future 

ad clicks.  Finally, we note that if advertisers opted for a 25% bid increment (an average of compa-

rable increments seen in existing targeting experiments), client-side keyword profiling would in-

crease overall search engine revenue by over 6%, a sizeable gain that can be realized in a privacy-

friendly way. 

6   Related Work and Conclusions 

Previous work on profile construction for ad personalization has focused on display advertising, 

where profiles consist of high-level categories also known as behavioral targeting segments [3].  As 

an alternative to predefined segments, Yan et al. [21] evaluated whether clustering methods to iden-

tify groups of users that show similar CTR behavior. Le et al. [12] also investigated clustering users 
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based on their browsing behavior, observing that users who visit the same web pages have similar 

interests and thus click on similar ads. 

Personalization for search advertising was previously considered only in the context of modifying 

clickthrough prediction estimates. Chen et al. [4] propose a latent-topic model for user-dependent 

CTR prediction, where each user is represented by a mixture of automatically derived topics. Simi-

larly to other work on behavioral targeting to date, latent topics provide a relatively low targeting 

granularity, and are also not as transparent as keyword based profiles. Recent work on user-

dependent CTR prediction for sponsored search by Cheng and Cantú-Paz [5] used two types of user 

features: demographic categories, and features derived from the user’s historical CTR behavior for 

a given advertiser or query, presuming complete server-side history.   Compared to that work, key-

word profiles provide orthogonal benefits of making personalization explicit to advertisers via bid-

increments, while allowing for user transparency and client-side storage.  Combining prior work on 

personalizing CTR prediction with keyword profiles and deriving advertiser-side mechanisms for 

pricing increments are two interesting directions for future work.  

In contrast to ad personalization, search result personalization has been a topic of active research 

for many years. Kelly and Teevan [11] provide a survey of techniques that build profiles of users 

based on their past behavior, using a variety of signals that include query history [16], browsing 

activity [13], or a combination of the two [1][18]. 

To our knowledge, this work is first to consider the problem of online construction of client-side 

keyword user profiles.  Our framework allows making profiling transparent to users with little stor-

age or communication overhead.  Initial results demonstrate that maintaining client-side profiles 

incrementally through caching and greedy optimization enables ad platforms to allow users to opt-

out of server-side logging without significant losses in revenue from personalization based on com-

plete user history.  While a number of interesting research challenges remain in developing better 

online learning algorithms for this problem, we believe our general approach has significant poten-

tial for improving personalized advertising. 
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