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Abstract—In this paper, we consider a model for cognitive
interference channel with two flows, a primary and a secondary
flow. The objective for the secondary flow is to maximize its
own rate by only the utilizing the temporal white spaces caused
by the burstiness in primary flow’s transmissions and without
adversely affecting the primary flow’s utility. The key aspect
analyzed in this paper is the lack of knowledge about start and
stop times of primary flow’s transmissions. Thus, the secondary
flow has to periodically sense available temporal opportunities.
We propose a class of protocols which divide the secondary’s
transmissions in many small bursts (thus making the secondary
flow paranoid about overlapping on primary’s transmissions).
Furthermore, since the secondary cannot sense while transmitting
(we assuming half-duplex radios), it has to reduce its transmission
power for each subsequent symbol in each component burst.
Thus, the proposed power profile for the secondary is significantly
different from that in a regular interference channel, where both
flows have the same ‘‘status.”

I. INTRODUCTION

Cognitive wireless systems are a new paradigm to deploy
new wireless services without having to replace the legacy
devices. Much like any new area, many variations have been
proposed and studied in the literature [3]. Some of the earlier
work [7], [6], [4] in opportunistic spectrum allocation for
cognitive flows were motivated by studies done by FCC [2]
showing vast spectral inefficiencies existing in current systems.
Many aspects of cognitive radio have been studied including
how the knowledge of the primary message at the secondary
can be used to code the secondary packets for maximizing
its rate [1], [10], finding the information theoretic capacity
of the secondary flow with causal or non causal information
about the primary transmission [5], or the stability of the
queues at both the flows for maximal secondary rate which
guarantees a primary throughput [8], etc. The key issue in
cognitive systems is the lack of complete information about
the current deployments and spectral usage. This lack of
knowledge can exist at many time-scales and about different
operating parameters of the legacy system. In this paper, we
consider a class of single-band interference channel, where the
cognitive flow aims to operate during the silence periods of
the primary flow, with the aim to cause least disturbance to
the ongoing flow.

We consider the topology in Figure 1, where Tx1-Rxl
represents the ongoing primary flow. The transmissions by
primary flow are assumed to be bursty (like communication
over a walkie-talkie), which leads to white spaces in time. Our
objective is to exploit the temporal white spaces for injecting
secondary flow’s traffic while causing controlled amount of

interference to the primary flow. The unknowns captured in
our analysis is that of the start and stop times of the primary
flow transmissions.
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We first propose a multi-burst transmission scheme where
the secondary flow alternates between sensing and sending at
fast intervals, and in effect breaks the long packet into smaller
packet bursts. Second, we show that the optimal solution to
the proposed problem formulation of rate-maximization under
distortion constraints leads to a decaying power profile for
secondary’s bursts. That is, the secondary must reduce its
power for each subsequent symbol to accommodate for the
increasing probability of primary flow starting its transmission.
We completely characterize the solution for the special case
of 2-symbol long bursts and numerically solve for higher
dimensional cases.

We show that for smaller packet arrival rates for the primary
or for a loose interference constraint (i.e. primary allows more
interference), the secondary user is limited by the average
power constraint and in such a case the power available to
the secondary is distributed evenly between all the symbols of
the packet. However when the rate of the primary’s arrival is
high (hence fewer temporal opportunities) or the interference
constraint is strict, the profile takes an exponential-like form,
where the power of each subsequent secondary’s symbol re-
duces dramatically. We also show that the multi burst strategy
outperforms a single burst scheme which performs no sensing
and constantly sends at a constant power. Instead of sensing
if the primary is present or not in a particular band, one can
also do “soft sensing” and send packets not only when the
channel is idle but continuously as a function of the sensed
information [9]. This can be thought of as a mix between
our single burst and multi-burst strategies, although [9] has no
notion of a power profile.

A two-flow cognitive interference network.

II. PROBLEM FORMULATION

In this section, we first describe the interference channel
model and then formulate the optimization problem for the
proposed class of protocols.



A. Interference Channel

We consider the interference channel shown in Figure 1,
which consists of two flows, Tx1-Rx1 and Tx2-Rx2. The
channel inputs and outputs are related as,

Yi = X1 +Xo0+ N (D
Yo = Xi+ Xo+ N, (2)

where X, Xo are channel inputs, Y;,Y5 are the channel
outputs and N7, N, are the Gaussian noise at the receivers.

The transmission time is assumed to be slotted. We assume
that the primary traffic is bursty according to Poisson arrivals
with rate . All transmissions by the primary are assumed
to be of equal length of M symbols; we label each M slot
transmission as a packet whose arrival distribution (probability
mass function) is given by f(k) = 6_;!)‘k. The primary is
assumed to have an average power constraint of P;.

Due to the bursty nature of the traffic, primary flow does
not send data continuously and hence is silent in between
transmissions. These silence periods are used by the secondary
flow to inject its own traffic. However, we assume that neither
the start or stop times of primary packets (each of which is
M time-slot long as stated above) is known to the secondary
flow transmitter. We further assume that the secondary flow
nodes are equipped with half-duplex radios, which can either
send or receive but not both simultaneously.

B. Objective

Our objective is to use the silence times between primary
packet transmissions to allow secondary flow to send its data,
while ensuring that those transmissions do not “adversely”
affect the primary flow transmissions.

To make the problem concrete, we consider the following
class of secondary transmissions. We assume that all secondary
bursts are of length K symbols. Each packet uses the same
power profile such that power Po(k) is used in in time-
slot £ = 1,..., K. Since the secondary flow is ignorant of
the start and stop times of the primary packets, cognitive
schemes will (most likely) alternate between sensing for a
primary transmission and sending their own packets. Since the
secondary’s radios are half-duplex, sensing takes time away
from transmission of data and hence loses spectral efficiency.
We assume that L symbols are sufficient for perfectly sensing
primary’s transmissions. If the secondary senses before every
packet transmission, then it takes N = L + K symbols to
send a packet. Secondly, assuming that we code over the same
power levels over multiple bursts, it is same as sending K
packets. Finally, the pre-log factor as a result of time lost due
to primary transmissions is given as ol since

ftAe"\t 1+ =1 and E[B] =

E[I] _ 1
T+E[B] — 1+AM’

M, where, B and I

are the busy and idle times for the prlmary As a result, the
transmission efficiency is ijf Il<.1.+£\M = N(1+)\M) . .

We measure secondary’s utility using mutual information
for Gaussian codes, only for those symbols when the pri-
mary transmissions are off. This, essentially, assumes that

the secondary receiver has genie-aided information about the

primary’s transmission times to consider only those times-
symbols which have no primary interference.

B 1 i Py(k)
Us = oNa+ D) glog (1 TN ) ®)

The loss in primary flow’s performance is measured by in-
crease in its SINR. If the primary transmission starts when the
secondary was transmitting, the secondary would not detect it
till the next sensing state. Hence, the SINR seen by the primary
depends on how many symbols of the last secondary packet
interfere with the primary packet and is given by,

P P (M- 1
SINR = vyg—
N, T < N +P2(K)+N1)+ +
'YKPI M- K 1 1 )
+ R e ve
M ( N, B(E)+ N Py(1) + N;

“4)
where v is the probability that the primary interferes with
k symbols of a secondary packet. The primary SINR is
constrained to stay above nP;/Nj.

Finally, the secondary user has an average power constraint
of P5. As a result, the power constraint on each packet is given
by P = P,N — (1 — e K*) (see Remark 2). With the above
setup, the optimization problem can be described as

> (K
szarggq(agg—ZI < ))’

K
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° ;Pg(k)+N1 =7
K
ZPz(k)
k=1

where, ap = vk + ...
is given by Lemma 1.

< P,and Py(k) > 0,k € [L, K], (5)

+ i1, p = EBFLIM and

C. Protocol Classes

We compare two protocols. First is the sense and transmit
protocol described above, where the secondary user is “para-
noid” and does not send unless it is sure that the medium
is silent. The second class will be continuous transmission
policies, where the secondary does not sense and sends con-
tinuously at constant power P, for the same SINR constraint.

III. SECONDARY POWER PROFILE

In this section, we first derive some results which form the
building blocks for our main results.

A. Basic Properties

Lemma 1 (Probability of interference): If the primary
packet arrival process has a Poisson distribution with rate A
and the secondary follows a power profile given by P (k) for
1 < k < K, the probability that the primary packet interferes

with k time symbols of the last secondary burst , is given by,
1 Me LA _em NN 2
g — k=0

T = ek/\(%) 1<k<K



Proof: See Appendix A. ]
Remark 1: 1t is easy to show that the ;s sum to 1.
e Nt — 1
R
o e(K—H) _ e _ Me= I — e—N)\)’ ©
1—eNA 1—eNA
K K
and therefore, > v =70+ Y. 7 = 1.
k=0 k=1
Lemma 2 (Average secondary bursts): If  the  primary

packet arrival process has a poisson distribution with rate
A, the average number of successful secondary packets of

length K tl%at c?n be sent during an idle channel is given by,
—(N—-1)X

Elps] = §— =~ and the average total number of packets is
—(L—1)A
glVen by, [ ] = 1—6771\”‘
Proof: See Appendix B. ]

Remark 2: Let the power alloted to a packet be P. On
an average the number of packets lost due to interference is

}E[zjﬁ =1—e KX Hence, P = P,N — (1 — e K.

B. Main Results

Theorem 1: The solution to Equation 5 always exists. The
partial characterization of the solution is given as follows.
When the SINR constraint is inactive, the solution is given

by, P»(k) = £, k € [1,K] and when the average power
constraint is inactive and N1 = Ny = Ny, the solution is given
by, PQ( ) NO W ),PQ(Z):O, ZG[Q,K}

Proof: See Appendix C. ]
The key challenge in solving the general case arises from
having to solve a high-order polynomial equation. For the
special case where the secondary’s burst is only two symbols
long, the resulting polynomial is quadratic and can be solved
as follows. In this case, we assume one extra symbol is used to
sense the channel. Also for simplicity, consider N1 = Ny = 1.
For such a case the optimization problem can be restated as,

Py =arg r(na>)( log(1 + z) +log(1 + y)

T,y
2 Y1+ 72
+

r+1 y+1

s. t. >+ 2y - (1-nM,

and x +y < @)

2
Elp]

As in Theorem 1, this can also be split into different cases,
when the SINR constraint is inactive, when the average power
constraint is inactive and when both the constraints are tight.

The SINR constraint 2 + 'Y;i;*"’ = p has an x-intercept of
= 7 -1 and y- 1ntercept of Yo = % —
1. Similarly, the average power constraint has x-intercept x; =
P and y-intercept y; = P. Note that both ¢y > 0,yo > 0 and
that xp > yo. Therefore the average power constraint is slack
when xy < 7. i.e. when,

To = 72—%1—77)M

Y2
—— —1<P 8
o (—mM ®
P 1—e?
j(P_’_l)l_e,g/\ >(1_77)Ma (9)

P 1—e?
>n<1l- . 10
K (M(P+1)> JRp— (19)
. L . ~ B _
In this case, the solution is given by z = 772—(12—71)M l,Ly=0

which is directly obtained from Theorem 1.

The SINR constraint is slack when either p < 0 or when
it lies above the average power constraint. i.e. when, P —
r+1< p”i%. This can be simplified to get the condition,

pr® + (1 + ;Jj;)x + (y2—p)(P+1) > 0. This holds for all x
if the discriminant of this quadratic equation is negative. i.e.
when

(71 +pP)* < 4p(y2 — P)(P +1).

In this case, the solution is given by, x =y = g.

Finally, the solution when both the constraints are tight is
found by solving the two constraints simultaneously which
gives rise to the following quadratic equation, px? + (y; —
pP)x +v1 +7v2 — p(1+ P) = 0. Hence the solution is given
by the root of the quadratic which gives the higher rate.

C. Single Burst Transmission

Now let us consider the case when the secondary does not
sense for idle channels and sends at a constant power level
of P, as a function of the rate of the packet arrivals and the
SINR constraint. The SINR constraint dictates that + N =
17N =P < (E — 1)N;. As the secondary is not sensing or
waiting for idle channels, there is no rate penalty as a pre-log
multiplier in this case. However, as the secondary is sending
packets all the time, it also sees interference from the primary.
Hence the rate achieved by the secondary, is now given by,

; lo 1+ i +L lo 1+ L

2L+ M) B\ TN, ) o) B\ T R AN, )
The fraction of idle time and busy time of the channel is
derived in Section II-B. We will numerically compare the

performance of this scheme with the multi-burst scheme in
the next section.

IV. NUMERICAL RESULTS

Even though it is difficult to find closed form solutions
for the general case, we can numerically find the solution to
see how the performance of the secondary system gains from
the decaying power profile. To understand the shape of the
power profile let us first look at the constraint set of the 2-d
power profile as shown in Figure 2. For lower packet rates
of the primary (A = 0.6), the average power constraint is the
determining equation for the secondary. This can be seen from
the fact that the SINR constraint lies above the average power
constraint in Figure 2. Hence the solution lies at point A. But
for higher packet rates of the primary, the optimal solution lies
at the intersection of both the constraints at point B.

Figure 3 shows the dependence of the secondary rate with
respect to the rate of primary packet arrivals. For smaller
values of 7, i.e. when the primary allows for large interference,
the determining equation for the secondary is the average
power constraint and in this case all the curves for n < 0.7
coincide on the solid curve shown in Figure 3. The curve for
1 = 0.95 changes slope at the point where the determining
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Fig. 2. Constraint sets for a three burst secondary packet size for different

primary packet statistics, n = 0.87, Po =7 and N1 = Ng = 1.

equation changes from the average power constraint to the
intersection of both the constraints. It can be clearly seen that
the multi-burst system outperforms the single burst scheme.
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Fig. 3. Primary achievable rate for the multi-burst and the single burst
strategy under the same interference constraints as a function of .

Figure 4 shows some of the power profiles for P, with
N =3and N = 4, for L = 1. For the 2-d case, at lower values
of 7, the the power profile is uniform as the only constraint
is the average power constraint as seen in Figure 2 too. For
higher n and A, the profile starts to look like an exponential
decay.

(a) ®) (

Fig. 4.  2-d power profiles with parameters: (a) n = 0.85, X = 0.4, (b)
n = 085X =028 (¢)n =09\ =04 (dn =09\ = 0.8 and
similarly for (e), (f), (g) and (h) for 3-d power profiles.
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V. CONCLUSIONS

We analyzed the interference channel with a primary link
having bursty data and a secondary link which intelligently
injects packets into the temporal white spaces by sending small
burst of packets with a power profile matched to the packet
arrival rate of the primary. We formulated the general problem
as an optimization problem with SINR and average power
constraints and derived the parameters of the system. For the
special case of a 2 symbol power profile, we saw that the multi-
burst strategy outperforms a single burst non-sensing scheme.
We saw that when the only constraint on the system is the
average power constraint, the power profile distributes equally
between all the time symbols but when the SINR constraint
or both of them are tight, the power profile is skewed toward
the start of the packet.

APPENDIX A
PROOF OF LEMMA 1

We will denote the inter-arrival time, expressed in symbols as 7.
Hence, if T € (4,94 1],Ts = i+1, and ps = L%J By definition, ps
secondary bursts can be sent before the next primary packet arrives
and in some cases, the (ps + 1) secondary packet interferes with
the primary data. Let 72 denote how many symbols are left after
the p’"* secondary burst. Note that T'F can take values only between
0 and N — 1. Just after the p® burst, the secondary listens for L
symbols, hence if the primary packet starts during this interval, there
will be no interference. i.e. 7o = Pr[T € [0, L]]. If the primary
packet starts just after the L symbols, the secondary user will get to
know about the primary packet only when it senses next and hence
the primary will interfere with the whole secondary burst.

Therefore, vy = Pr[TY = L + 1] and with a similar argument,
Y, = Pr[TF = L+ K —k+1] = Pr[TX = N—k+1], for 1 <k <
K. Note that TF = N —k+ 1, if T; = iN — k + 1, for any integer
1 > 0, where T is the number of symbols since the last primar
packet ended. If we consider time to start from ¢ = 0, then the it
time slot is when n — 1 < t < n. Hence, for the above values of TSL,
iN —k—1<T < iN — k, where T is the inter-arrival time which
has an exponential distribution. Therefore, for any 1 < k < K,

o o iN—k
W= PriN—k—-1<T<iN—kl=> A e Mar
i=1 =l N k-1
S —NX/_ A
i e et —1
=Mt —1) ) e =M <71 _(eim )) . (an
=1
Similarly,

Y= PriiN <T <iN+L—1]+

=0

iPr[(i+1)N—1§T< (i+1)N]

_ Z [eﬂ-z\u _ e GN+L=DA L —((+DN=DA _ 67(”1)1\“}
=0

=1- (12)

1—e-NA
APPENDIX B
PROOF OF LEMMA 2
Let T and Ts be as defined in Appendix A. The inter-
arrival time has an exponential distribution with parameter A
(fr(t) = e Mt > 0). Any packet that arrives during a given time
slot is sent over the channel by the primary user in the next time slot.



To find E[ps], we have to first find the probability distribution of p,.
Keeping in mind that if the last secondary burst interferes with the
primary, it is not counted in p, notice that,
ps=0if Ts =0,...,N—1
=Te[0,N—1]
ps=1if Ts=N,...,2N —1
=Te(N-1,2N —1]

ps =i if Ty = iN, ...

AN —1
= Te(iN—-1,(+1)N —1] (13)
(i+1)N—-1
Hence, Pr(ps = i) = e T
iN—1
— ¢~ N=DXA _ ~((+DN=D)A
— VAN (VD (14)
Therefore, E[ps] = Z iPr(ps = 1)
i—0
0 .
_ Z je A (X ef(Nfl)A)
=0
:(e’\ — e_(N_l)’\) Z ie VA
i—0
e NA( — gm(N=DA) =(N=DX
- (1—e N2 =l (15)

Now, in order to calculate the total number packets sent on average,
notice that we only calculated the packets that did not interfere with
the primary transmission. During any idle interval, if the primary
doesn’t interfere with the secondary at all, then the average number
of packets that the secondary can send is o >, iPr(ps = ). If the
primary interferes with one time-slot of the secondary packet, then
the secondary sends one extra packet and similarly for all other cases.
Note that because there is no error in sensing, the secondary always
sends at most one packet which interferes with the primary. Hence,
the total number of packets is given by,

Epi] = v E[ps] +n(Ep] + 1) + ... + v (E[p] + 1)

=Mo+v+...+v)E[ps] + (11 + .- +7K)
e~ (L=
= Elps]+ 1 =) = 77— =%~ (16)

In the last step we used the fact that vo +. . .
Lemma 1.

+~x =1 as shown in

APPENDIX C
PROOF OF THEOREM 1

The optimization problem can be re-written as, For simplicity of
notation put z = P»(k) and lets call utility function f(z), the SINR
constraint g1 (x) and the average power constraint gz (). As f(x) is
a strictly concave function and the constraint set is compact (since
g1(x) < p and g2(x) < P are closed and bounded sets), by the
Extreme Value Theorem, Equation 5 has at least one solution. Also,
as f((x)) is concave, g1((x)) is concave and g2((x)) linear, the
KKT conditions are necessary and sufficient for this problem.

As there is a non-negativity constraint, the modified Lagrangian is
given by,

Z(x) = f(x) = p1g1(x) — p2g2(x)
o Ti K ak a
:;10g(1+ﬁ2)+ﬂl§m_ﬂ2;mk (17)

Therefore, the KKT conditions for this modified Lagrangian are given
by (k=1,...,K and ¢ = 1,2),

Zi(x") 0,3 > 0 and . (Zo(x7) ) =0,

9i(x") < ciypi > 0 and A; (gi(x7) —¢i) = 0; (18)
i.e. 1 — Hak pe <0,z >0
Txp+ N (xR + N1)? -
1 ﬂl
and — - =0,
Tk <$k + N2 (xp+ N1)? MQ)

K o K a
k> > 0 and - -0
ka+N P h anc i <Z$k+Nl+p) ’

K

Zxk<Pu2>Oand,u2 (Zxk— >:0. (19)
k=1

To solve these K + 2 simultaneous equations for x1,..., Tk, 1, 42,

let us consider different cases.

Case I: SINR constraint is inactive
The SINR constraint is inactive when g1 = 0 and p2 # 0. This
can happen when either the right hand side of the SINR constraint
is negative (p < 0) or when g¢;(z) lies completely above go(z).

From Equation 19, po = ﬁ =...= m, which implies,
Py (k) =

%ﬁ,t],ie{l,Q,.,,,K} and p2 =

Case II: Average power constraint is inactive
The average power constraint is inactive when p1 # 0 and po = 0.
When N1 = Ny = Ny, using Equation 19, p; = ”13710 =...=
%, which implies, P> (k) = % — N, and p1 = ?. However,
note that this is in fact the minima of the curve (bordered Hessian
of the Lagrangian is negative), hence, the maxima lies on one of the
endpoints. The intercepts of the SINR constraint with the axes are

__K
P+KN3*

. 0 __ a; — a; _
given by z; = —p,%,“.,%+% No = No(al_(1 AT 1).
Note that 2§ > 2% > --- > 2%. Hence, the maxima is obtained at
X = (x(l)aov 50)
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