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Abstract—Future wireless infrastructure networks will dynam-
ically access spectrum for maximum utilization. However, the
fundamental challenge is how to provide stable spectrum access
required for most applications. Using dynamic spectrum access,
each node’s spectrum usage is inherently unpredictable and
unstable. We propose to address this challenge by integrating
interference-aware statistical admission control with stability-
driven spectrum allocation. Specifically, we propose to proactively
regulate nodes’ spectrum demand to allow efficient statistical
multiplexing while minimizing outages. Admitted nodes coordi-
nate to adapt instantaneous spectrum allocation to match time-
varying demand. While the optimization problem is NP-hard,
we develop computational-efficient algorithms with strong ana-
lytical guarantees. Experimental results show that the proposed
approach can provide stable spectrum usage while improving its
utilization by 80–100% compared to conventional solutions.

I. INTRODUCTION

Continuous wireless innovation and development require
easy and reliable access to radio spectrum. However, exist-
ing regulations allocate spectrum to each technology/network
statically in peak-demand based long-term leases. Overtime,
most of spectrum has been assigned but their utilization is
as low as 10-15%. The ideal solution is dynamic spectrum
access (DSA). Under this new model, wireless nodes request
spectrum dynamically, adapting to time-varying demand. By
multiplexing spectrum usage across time and space, DSA can
significantly improve its utilization.

While providing efficient spectrum utilization, DSA, how-
ever, faces a critical problem of unstable spectrum usage.
In DSA networks, wireless nodes coexist and must share
spectrum to avoid interference [4]. Because of network and
traffic dynamics [14], their achieved spectrum usages fluctu-
ate and are inherently unpredictable and unstable. Frequent,
unpredictable fluctuations in spectrum usage will not only
severely disrupt communication links, but also lead to frequent
service interruptions. To meet critical service agreements,
service providers are forced to significantly over-provision the
network, leading to unnecessary financial penalties and under-
utilization of spectrum.

In this paper, we seek to achieve efficient and stable
spectrum access, targeting commercial wireless infrastructure
networks such as WiMAX. We consider a large deployment
of wireless access points (APs) in a city or large campus.
Each AP has time-varying spectrum demand, and must obtain
desired spectrum consistently and continuously to meet critical
service agreements. The spectrum allocation is interference-
driven. APs in close proximity interfere with each other

and cannot use the same spectrum concurrently, while well-
separated APs can reuse the same spectrum. The problem is
particularly challenging because of the combinatorial interfer-
ence constraints.

We propose SPARTA, a new DSA architecture to provide
efficient and stable spectrum usage by integrating proactive
planning with reactive adaptation. First, SPARTA introduces
a novel statistical admission control algorithm to proactively
prevent congestion of spectrum demand while addressing
interference constraints. Specifically, SPARTA determines the
volume of supported demand at each AP based on its distri-
bution statistics and local interference condition. As a result,
SPARTA can exploit both time and spatial multiplexing to
maximize spectrum utilization while providing a probabilis-
tic guarantee of usage stability. Next, SPARTA introduces
an efficient allocation algorithm to quickly adapt admitted
APs’ spectrum usage to match their time-varying demands.
Together, these two components achieve stable spectrum usage
while achieving efficient spectrum utilization.

SPARTA’s proactive planning and reactive adaptation com-
ponents can be placed at different network entities to enhance
scalability. A central server can perform proactive planning pe-
riodically to regulate APs’ long-term spectrum demand, while
admitted APs coordinate among themselves in a distributed
manner to adapt instantaneous spectrum allocation.

Our work makes three major contributions:

• Interference-aware statistical admission control – We
develop an effective-rate based demand shaping algorithm
to determine which APs to admit and the volume of their
spectrum demands under a given outage rate. We build
analytical bounds on the algorithm efficiency in terms of
its distance to the optimal solution.

• Stability-driven distributed spectrum allocation – We
propose a computational-efficient algorithm to adapt in-
stantaneous spectrum allocation to time-varying demand.
APs coordinate and perform local actions to optimize the
global spectrum allocation. While the optimization prob-
lem is NP-hard, the proposed algorithm has polynomial
complexity and can achieve the level of stability promised
by the admission control component.

• Integrated evaluation – We examine SPARTA using both
network simulations and analytical evaluations. We also
explore the impact of traffic statistics, network topology
and admission granularity. Both experimental and ana-
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Fig. 1. A dynamic spectrum access system: (left) Network topology: APs are randomly located in a wide area, with uniform traffic statistics. (center) The
CDF of node spectrum outage rate at different network size. (right) A sample trace of spectrum demand and assignment at a node over time.

lytical results verify that SPARTA achieves efficient and
stable spectrum access, and significantly outperforms the
conventional peak-rate based mechanism.

II. BACKGROUND AND RELATED WORK

In this section, we briefly present the features of dynamic
spectrum access, the problem of unstable spectrum access and
related work.
A. Dynamic Spectrum Access

In DSA systems, nodes do not have statically assigned
spectrum, but dynamically compete for spectrum based on
current demand. There are multiple complementary ways to
implement DSA systems, applicable to different scenarios.
Nodes can use a single spectrum band but adjust transmit
power to minimize interference [7], [11]. Alternatively, con-
flicting nodes can use different orthogonal channels to avoid
interference, and optimize channel allocations to maximize a
predefined system utility [3], [4], [19], [20], [21], [22]. A
recent survey [2] provides an overview of existing solutions.
The Problem of Unstable Spectrum Access. Existing
DSA proposals assume static network topology and spec-
trum demand, optimizing instantaneous system utility such
as throughput and fairness. Across time, nodes access spec-
trum opportunistically, making it difficult to obtain desired
spectrum consistently. To further explore this problem, we
examine individual node’s spectrum usage across time by
deploying a large set of nodes (APs) randomly in a wide-area
( Figure 1(left)), each with time-varying spectrum demand.
We allocate spectrum channels to maximize the network-
wide proportional fairness [4]. Figure 1(center) examines the
cumulative distributed function (CDF) of the spectrum outage
where a node experiences an outage if its assigned spectrum is
less than its demand. Not surprisingly, individual outage rate
increases significantly with the network size. Figure 1(right)
plots a sample trace of the spectrum allocation and demand at
a particular node over time. Clearly, spectrum outage becomes
a norm rather than an exception.

B. Related Work

The problem of spectrum allocation is often modeled as
resource scheduling problems [12]. The system must allocate

spectrum channels to active nodes/links to avoid interference.
However, existing proposals on spectrum/channel allocation
[3], [4], [12], [19], [20], [21], [22] assume static spectrum
demand and do not address stability. Recent work [23], [24]
proposes algorithms to dynamically allocate spectrum to match
demands. However, it is best-effort and does not provide
any stability guarantee. Our work differs from these existing
works by integrating admission control with dynamic spectrum
allocation to achieve stable and efficient spectrum usage.

Our proposed approach differs from conventional statistical
admission control proposals [17] by being interference-aware.
Most proposals are designed for routers or cellular networks
where traffic multiplexing happens at a single point (routers or
base stations). In this case, the optimization problem is subject
to a simple linear constraint, where the total demand does not
exceed the route/base station capacity [15], [16]. Motivated by
these results, our proposal focuses on the spectrum allocation
problem with a set of combinatorial interference constraints.
Our unique contribution is to find efficient solutions to the
corresponding NP-hard problem. To our best knowledge, we
are the first to address the stability problem in DSA systems.

III. ACHIEVING STABLE SPECTRUM ACCESS

In this section, we first define the problem of providing
stable dynamic spectrum access, and then present the high-
level concept of SPARTA.

A. Problem Definition

We consider a large infrastructure network with N APs
and M channels in a time horizon of [0, T ]. In the following,
the notions of APs and nodes are interchangeable. To make
the problem tractable, we make several assumptions. First,
using OFDM, the spectrum is divided into a set of orthogonal
channels. Second, nodes can utilize multiple non-continuous
channels concurrently. Third, we focus on channel assignment
and assume fixed transmit power. The interference condition
is modeled by a set of combinatorial constraints [3], [13],
[21] among nodes. Finally, although nodes can modify their
spectrum usage at any time, we assume the time is divided
into small slots and nodes can only modify spectrum usage at
the beginning of each slot.

We introduce the following notations:
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Fig. 2. High-level structure of the proposed approach. A spectrum
server admits nodes and determines their spectrum demand. Admitted
nodes coordinate to determine spectrum allocation in each time slot
matching their time-varying demand.

• Spectrum demand Dn(t): the amount of spectrum node
n requests at time t.

• Demand shaping <n(.): the shaping determined at the
time of admission. The admitted demand at time t is
<n(Dn(t)), and 0 ≤ <n(Dn(t)) ≤ Dn(t).

• Spectrum allocation An(t) =
∑M

m=1 an,m(t): The
amount of spectrum n gets at time t, where an,m(t) ∈ {0,
1} and an,m(t) = 1 means channel m is allocated to n.

• Interference constraints cn,k,m: the conflict constraint
between node n and k on channel m. cn,k,m = 1 means
node n and k should not use channel m at the same
time. That is, an,m(t) · ak,m(t) = 0, if cn,k = 1. For
simplicity, we assume that the channels have identical
interference characteristics, and hence cn,k,m = cn,k.

The optimization problem can be defined as: given
{cn,k}N×N and the statistical distribution of Dn(t), find
{<n(.)}N and {an,m(t)}N×M , to

max
N∑

n=1

U

(
1
T

T∑
t=0

<n(Dn(t))

)
subject to

Prob {An(t) < <n(Dn(t)} ≤ θn, (1)
an,m(t) · ak,m(t) = 0, if cn,k = 1, (2)
∀ n, k ∈ [1, N ],m ∈ [1,M ]

where θn represents the maximum outage rate at node n,
U(.) represents the utility function used by the admission
control module. In this paper, our goal is to maximize the
total admitted demand, where U(x) = x. Our results can be
easily extended to other utility functions.

The above problem can be divided into two sub-problems:
1) at time 0, defining spectrum shaping {<n(.)}N , and 2) from
time 0 to T , performing instantaneous spectrum allocation
in each time slot to find {an,m(t)}N×M . Because of the
combinatorial interference constraints, both sub-problems are
NP-hard.

B. A Simple Solution: Peak Demand based Static Access

We can simplify the above problem by using the peak
demand based admission. Let Dmax

n denote a node n’s peak
demand over time, Dmax

n = maxt∈[0,T ] Dn(t). The system
treats each (bursty) demand as if it is a constant traffic at a
rate of Dmax

n and assigns spectrum to match its peak demand.
The system can also shape the peak demand of n by a factor

of rn. Therefore, the problem reduces to

max
N∑

n=1

U(rnDmax
n ) =

N∑
n=1

U(
M∑

m=1

an,m) subject to

an,m · ak,m = 0, if cn,k = 1,∀n, k ∈ [1, N ],m ∈ [1,M ].

This problem becomes a throughput maximization problem,
which can be solved by using efficient heuristics [21]. Despite
of the algorithm simplicity, most assigned spectrum sits unused
overtime, leading to severe under-utilization of spectrum. This
observation motivates us to search for a new solution to cope
with the time-varying demand.

C. The SPARTA Architecture

As shown in Figure 2, SPARTA consists of two components,
addressing each of the two sub-problems.
• A central entity performs interference-aware statistical

admission control to regulate spectrum demand and pre-
vent outages. Instead of using the peak demand, this
components operates on the statistical distribution of the
spectrum demand at each AP, and exploiting time and
spatial multiplexing to admit more APs into a system
than is possible when assuming that each admitted AP is
fully loaded with its peak demand.

• Admitted APs perform stability-driven distributed spec-
trum allocation to determine instantaneous spectrum us-
age to match their time-varying demands. This compo-
nent applies a distributed, low-complexity algorithm for
quick adaptation. With sufficient backbone bandwidth,
this algorithm can also run at a central entity who
collects demands in each time slot and allocates spectrum
accordingly.

Overall, the unique contributions of SPARTA are the de-
velopment of computational-efficient algorithms for both ad-
mission control and spectrum allocation, and the integration
of both components to maximize stability and utilization in
spectrum usage. In the following two sections, we will describe
these two components in details.

IV. INTERFERENCE-AWARE STATISTICAL ADMISSION
CONTROL

Our design is motivated by prior work on statistical admis-
sion control using effective rate [15], [16]. However, because
of the combinatorial interference constraints, the original so-
lution cannot be directly applied to DSA networks. In this
section, we propose an interference-aware statistical admission
control that exploits both the time and spatial multiplexing
nature of input spectrum demand. Our work assumes perfect
knowledge of the statistical model of each AP’s spectrum de-
mand and the global interference constraints. We will discuss
the practical implication in Section VII.

A. Background on Effective Rate

In wired networks, the problem of admitting bursty flows
has been addressed by a concept known as the effective
rate [1], [6], [15], [16]. By computing an appropriate effective
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rate of a flow, routers can treat the flow (with bursty traffic) as
if it is a constant traffic at this effective rate during the active
period of the flow. Routers then determine the feasibility of
admitting a set of flows by ensuring the sum of their effective
rate is no more than the total available bandwidth subtracting a
factor. Similar concept has been applied to wireless networks
where a base station determines whether to admit a user.

Let Xi (1 ≤ i ≤ N) represent a random variable, whose
value is the amount of bandwidth requested by node i in a
time slot. The router admits all N nodes if

Prob{
N∑

i=1

Xi > C} ≤ e−γ , (3)

where e−γ represents the outage rate, a system parameter,
and C represents the total amount of bandwidth. Define the
effective rate [15] of node Xi as:

αi(s) =
1
s

log E[esXi ], 0 < s < +∞. (4)

Since ∀s, Prob{∑N
i=1 Xi > C} ≤ es(

∑
i α(s)−C), it is easy

to show that (3) reduces to a deterministic measure

if ∃s,
N∑

i=1

αi(s) ≤ C − γ

s
. (5)

While the original design of effective rate assumes indepen-
dent traffic, many have applied and validated the concept using
real network traffic traces [9], [10].

B. Effective Rate based Spectrum Demand Shaping

The original effective-rate design relies on the linear con-
straints of (3). However, in DSA systems, the interference
constraints (described in (2)) are combinatorial and non-linear.
To address this challenge, we propose to use linear constraints
to approximate the original non-linear interference constraints,
and perform demand shaping on each constraint (shown in
Table I). We must design such approximation judiciously to
avoid producing weaker constraints that lead to interference or
overly restrictive constraints that degrade spectrum utilization.

We propose a linear approximation using the geometric
order. We introduce the notion of left of. Let two nodes i
and j locate at coordinates (xi, yi) and (xj , yj). Node i is to
the left of node j if xi < xj . If xi = xj , then the node with
the smaller index is considered to be to the node to the left.
Using this geometric order, we propose Node-L Constraints.
Let Ân(t) be the total amount of spectrum allocated to node
n under this new constraint. The new constraint is

Ân(t) +
∑

k∈In

Âk(t) ≤ 1, ∀n. (6)

where In is the set of conflict peers of n in the original
constraint who are left of n. This approximation reduces the
original combinatorial constraints into N linear constraints.

Our prior work [8] has shown that the Node-L constraints
are stricter than the original combinatorial constraints and
hence lead to a conflict-free but sub-optimal spectrum alloca-
tion. Further, analytically this sub-optimal solution is at most
a distance of 3 from the optimal solution.

TABLE I
DERIVING EFFECTIVE-RATE BASED ADMISSION CRITERIA VIA LINEAR

CONSTRAINTS APPROXIMATION.
Linear Effective Rate-based

Interference Constraints Admission Criteria
Original

∑
i∈I1

Xi ≤ C ∃s1,
∑

i∈I1
αi(s1) ≤ C − γ

s1
Interference

∑
i∈I2

Xi ≤ C ∃s2,
∑

i∈I2
αi(s2) ≤ C − γ

s2
Constraints · · · · · ·∑

i∈IK
Xi ≤ C ∃sK ,

∑
i∈IK

αi(sK) ≤ C − γ
sK

Under the Node-L constraints, the spectrum shaping prob-
lem can be defined as

max
{<n}

N∑
n=1

U

(
1
T

T∑
t=0

<n(Dn(t))

)
subject to (7)

∃ sn,
∑

i∈In

α<i
i (sn) ≤ C − γ

sn
, ∀1 ≤ n ≤ N,

where C is the total volume of spectrum, and α<i
i (.) is the

effective rate of the demand with shaping <i.
We note that using Node-L constraints, each individual

node’s outage rate is bounded by the outage rate of the con-
straint. And we can directly define γ = −ln(minn θn). This is
because each node n maps to a constraint in the above problem
(7), which maps to a constraint in (6). By properly allocating
channels (as described in Section V), a node only experiences
an outage if the corresponding constraint is violated. This
means a node’s individual outage rate is bounded by e−γ ,
the probability of any constraint being violated.

For simplicity we consider two admission policies:
• Binary shaping where <n(x) = rnx and rn ∈ {0, 1},

i.e., a node is either fully admitted or declined.
• Continuous shaping where <n(x) = rnx and rn ∈ [0, 1],

e.g., a node can be partially admitted.
For both policies, solving (7) is still challenging as it

requires complex non-linear optimization. Under arbitrary
demand statistics, there is generally no closed form for α(s).
Further, the fundamental challenge is how to determine rn and
sn. In particular, given α(.) and rn, computing sn in each con-
straint is already computationally expensive. Yet for dynamic
spectrum access, long delay in admission can severely degrade
the system performance. The interdependency between rn and
sn makes the whole optimization even more challenging.

To make (7) tractable, we propose to choose sn based on
APs’ demand statistics. In the following, we investigate the
impact of parameter sn and then propose analytical results
on deriving sub-optimal sn values under different demand
statistics. After choosing sn, we develop efficient solutions
to find sub-optimal rn values.

C. Searching for the Optimal s

We simplify the problem by using a uniform s, i.e. sn = s,
∀n. We show that the use of uniform s is optimal under uni-
form node traffics for binary admission. Next, when APs have
non-uniform demand statistics, we present several heuristics
to choose the uniform s. Finally, we analyze the impact of
using a uniform s.
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The following three theorems assume binary demand shap-
ing.

1) Uniform Traffic Statistics
Theorem 1 If nodes have uniform demand patterns, then
there exists a 0 < ś < +∞ such that the system utility can
be maximized by choosing sn = ś,∀n.
The proof of Theorem 1 is in the Appendix. From the proof
we can see that the optimal value of s does not depend on the
topology of the network.

2) Non-Uniform Traffic Statistics
Theorem 2 Let t1, t2, ..., tJ represent the set of demand
statistics among APs in the network. Let śj represent the
optimal s if every node has demand statistics tj . If every
constraint must use the same s, then the optimal uniform s
is bounded:

min{ś1, ś2, · · · śJ} ≤ sopt ≤ max{ś1, ś2, · · · śJ}. (8)

The proof of Theorem 2 is in the Appendix.
Using Theorem 2, we have two heuristics to choose a

uniform s. We can always use numerical search in the above
range. Or, we can choose s based on the average demand
statistics. In particular, when the demand follows the On/Off
traffic model, we choose s as if traffic is uniform with the
average peak rate h and average mean rate m. We will compare
these heuristics in Section VI.

The following theorem shows that the performance degra-
dation for choosing a uniform s under non-uniform spectrum
demands is bounded.

Theorem 3 Let tj and śj as defined in Theorem 2. Define
the performance degradation function

gj(s) =
C − γ/s

αj(s)
/
C − γ/śj

αj(śj)
g(s) = min

j
gj(s), gj(s) ≤ 1.

If a utility U can be achieved by choosing possibly non-
uniform sj , then U can also be achieved by choosing a uniform
sj = s given a total spectrum capacity of C/g(s).

Theorem 3 means we can bound the degradation of using
uniform s under non-uniform traffic by examining the impact
of s under uniform traffic. The proof can be found in [5].

D. Fast Algorithm for Continuous Demand Shaping

After determining a uniform ś, we develop an efficient
optimization mechanism to determine <n. Using the On/Off
traffic model as an illustration, we describe the algorithm for
continuous shaping in the following, and the algorithm for
binary shaping in Section IV-E.

Assuming the spectrum demand follows the On/Off model,
we can compute the effective rate of AP i as:

αri
i (s) =

1
s

log[1 +
mi

hi
(es·hi·ri − 1)], (9)

where hi is the peak rate, mi is the mean rate, and ri is the
demand shaping factor. The optimization problem reduces to

max
{rn}

N∑
n=1

U (rnmn) subject to (10)

∃ sn,
∑

i∈In

αri
i (sn) ≤ C − γ

sn
, ∀1 ≤ n ≤ N,

Let xi = αri
i (s). We can calculate ri from xi, ri = Fi(xi),

and reduce (10) to

max
{xn}

N∑
n=1

U (Fn(xn)mn) subject to (11)

∑

i∈In

xi ≤ C − γ

s
, ∀1 ≤ n ≤ N,

Because Fn(.) is non-linear, solving (11) can be com-
putationally expensive. We propose a low-complexity local
search algorithm using the concept of “Feed Poverty” [4]. The
algorithm runs iteratively. In iteration k, the algorithm will

1) Choose node i, increase its effective rate: xk
i = xk−1

i +
∆x.

2) Adjust the effective rate of other nodes who share the
same constraints with i until all the constraints are
satisfied.

3) If the total system utility increases, apply this improve-
ment, go to iteration k + 1. Otherwise, discard the
improvement, go to iteration k + 1.

The algorithm terminates if no more local modifications can
improve the system utility. Because the system utility is finite
and each improvement increases the utility, the algorithm is
guaranteed to terminate. Clearly, the algorithm performance
depends heavily on the choice of node i in step 1. One must
carefully pick i based on the utility function U(.). For example,
if the goal is to maximize proportional fairness or max-min,
the system should choose the node with the worst rnmn [4].

In addition, the algorithm performance also depends on how
to adjust the effective rate of other nodes to satisfy all the
constraints. We propose to use the following two policies:

(1) Proportionally amortized decrease – For each constraint I
which contains xi, if increasing xi violates I , the algorithm
must decrease the effective rate of other nodes in I . A simple
way is to decrease every other node by ∆x

n−1 , where n is the
number of nodes in the constraint. However, this mechanism
requires every node’s effective rate to be at least ∆x

n−1 . Instead,
we propose to use proportionally amortized decrease which
amortizes the total amount of the decrease proportionally
among nodes in the same constraint. Assuming the violated
constraint is

∑
n∈I xn ≤ C ′, and i∗ ∈ I is the node to be

improved at stage k, our adjustment is defined by

xk
n = xk−1

n (1−
∑

n∈I xk−1
n − C ′ + ∆x∑

n∈I\{i∗} xk−1
n

), ∀n ∈ I \{i∗} (12)

(2) Tightest constraint first – Because each node i participates
in multiple constraints, increasing xi can violate multiple
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constraints. We need to optimize the ordering of constraint ad-
justments to avoid unnecessary ping-pong effect. We propose
to adjust constraints in decreasing order of their tightness. We
define the tightness of a violated constraint

∑
i∈I xi ≤ C as

Tightness(I) =
∑

i∈I xi − C∑
i∈I\{i∗} xi

. (13)

E. Greedy Algorithm for Binary Demand Shaping

Using binary shaping, the value of rn is either 0 or 1.
We propose a simple sequential strategy: starting from an
empty admission, iteratively admit nodes one by one. At
each iteration, randomly choose a node and check whether
admitting it will violate the constraints. If not, admit it,
otherwise, select another node. The process repeats until no
nodes can be admitted.

V. STABILITY-DRIVEN DISTRIBUTED COORDINATION

After determining <n(.), the optimization problem re-
duces to determining instantaneous spectrum allocation in
each time slot t, {an,m(t)}N×M , to match spectrum us-
age to time-varying demand. Specifically, given {cn,k}N×N ,
{<n(Dn(t))}N , find {an,m(t)}N×M , such that

Prob {An(t) < <n(Dn(t))} ≤ θn, (14)
subject to an,m(t) · ak,m(t) = 0, if cn,k = 1,∀m.

Similarly, because of the combinatorial interference con-
straints, the problem is NP-hard. More importantly, the solu-
tion must be computational-efficient to provide quick adap-
tation to varying demands. We propose a low-complexity
distributed algorithm where admitted APs determine spectrum
allocation using local coordination [25]. Using the same ge-
ometric ordering in the admission control phase, each AP n
applies the following procedure to choose spectrum channels.

1) Mark all the channels that are used by its neighbors who
are in front of n in the ordering as “unavailable”; mark
all the channels that are used by its neighbors who are
behind n in the ordering as “busy”; mark the rest as
“idle”;

2) Select channels from the set of “idle” channels. If the
set is not sufficient to meet n’s demand, take channels
from the set of “busy” channels. Neighboring nodes who
are using these “busy” channels will exit from these
channels and mark them as “unavailable”.

3) Stop if n’s demand is satisfied or if the “idle” and
“busy” sets become empty.

The following properties show that the proposed algorithm
can guarantee stability as promised by the admission control
component, and that the algorithm complexity is bounded.
Property 1 The above algorithm guarantees that each node’s
individual outage rate is lower than the theoretical bound θn.

This is because an AP n experiences an outage only if the
constraint In (cf. (6)) is violated. Because the probability of
violation is bounded by θn, so is the outage rate of n.
Property 2 The expected total number of spectrum adaptation
is upper-bounded by O(N2) if the ordering of adaptation is

random, and upper-bounded by N if the ordering is optimized.
(The proof follows a similar concept of those in [25] and hence
omitted due to space limit.)

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

We now evaluate SPARTA using network simulations. We
randomly deploy APs in an 1×1 area. We use a simple distance
based measure to determine interference constraints, i.e. two
nodes conflict if their distance is within d = 0.2. While this
is a simple approach to produce the conflict condition an,k, it
will not limit the scope of our proposed approach. By default,
we assume that nodes’ demand follows the On/Off model
with mean m and peak rate h. We also examine the impact
of having non-On/Off models. We use the utilization-based
system utility function, that is, U(x) = x. By default, we set
h = 1, m = 0.15. Based on these settings we calculate the
default sopt = 1.6.

We examine three approaches;
• PRA-B – peak rate admission using binary shaping. The

system admits APs based on their peak demands and
assigns channels to APs statically, and rn ∈ {0, 1}. We
apply the local coordination mechanism [4] to determine
rn and spectrum allocations.

• PRA-C – peak rate admission using continuous shaping.
It is the same as PRA-B except rn ∈ [0, 1]. We apply
the topology-based optimization [21] to determine rn and
spectrum allocations.

• SPARTA-B – SPARTA with binary shaping.
• SPARTA-C – SPARTA with continuous shaping.
• No Adm – no admission control and APs contend for

spectrum in each time slot.
We use two performance metrics. Spectrum utilization refers

to the total amount of demand supported per time slot. Node
outage rate refers to the probability of outage for a node. In
a time slot, an admitted node experiences an outage if its
achieved spectrum usage in a time slot is less than its demand.

A. Effective Rate vs Peak Rate Admission Control

We compare the spectrum utilization of SPARTA and PRA,
when APs have uniform spectrum demand statistics. We
examine both binary and continuous shaping policies. We
note that PRA optimizes based on the original interference
constraints, while SPARTA optimizes over the simplified
Node-L constraints. Next, we show that despite the Node-
L constraints are more restrictive, SPARTA still achieves
significant improvements over PRA.

Figure 3 shows the spectrum utilization as a function of
the network size. Both SPARTA and PRA result in loss of
spectrum utilization compared to the system without admission
control. However, they can reliably guarantee the outage rate to
below 2% while the system without admission control suffers
from an average outage rate of 60% for a network size of
500 and 20% for 300. Clearly there is a fundamental trade-
off between stability and spectrum utilization. Furthermore,
compared to PRA, SPARTA increases spectrum utilization by
80–100%.
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Fig. 3. Spectrum utilization of different shaping schemes.

In the same graph we also compare the performance of the
binary and continuous spectrum shaping. Continuous shaping
is slightly better because of the increase in granularity. We
note that as the network size increases, the difference between
the two shaping policies becomes more visible for SPARTA.
This is because continuous shaping allows a higher degree
of multiplexing, and hence the impact of granularity becomes
more visible.

B. Impact of Shaping Aggressiveness

To verify the efficiency of SPARTA’s demand shaping
algorithms, we define a notion of admission aggressiveness.
A system has an admission aggressiveness of u if it admits
demands that are u times the demands derived by the admis-
sion algorithm. For a given aggressiveness of u, we examine
the actual outage rate p(u). A demand shaping algorithm is
efficient if argmaxu{p(u) ≤ p} → 1 where p is the target
outage rate used by the admission algorithm.

Figure 4 examines the CDF of node outage rate for SPARTA
under different values of u for γ = 2 and γ = 3, corresponding
to target outage rates of e−2 = 0.13 and e−3 = 0.05. We see
that SPARTA is highly efficient for γ = 3, argmaxu{p(u) ≤
p} ≈ 1.2; but becomes weaker for γ = 2. This is because the
formulation of effective rate tends to over-estimate the outage
probability, especially for small γ values. Previous studies on
wired networks have observed a similar trend [17].

C. Impact of Non-Uniform Demand Patterns

We examine the use of uniform s when spectrum demands
have non-uniform statistics. In particular, we assume that each
AP’s peak demand rate h and mean demand rate m are
uniformly distributed between [H1,H2] and [R1, R2], respec-
tively. For SPARTA, we compare two options to compute
the s, a) an exhaustive search of the optimal s to maximize
the spectrum utilization, and b) a heuristic based s using
the medians of the peak rate and mean rate in the range of
[H1,H2] and [R1, R2].

For a total capacity of 10 and a deployment of 1000 APs,
Figure 5 compares the spectrum utilization under five combi-
nations of On/Off demand patterns listed in Table II. Results
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Fig. 4. CDF of node outage rate for different shaping aggressiveness: (upper)
γ = 2, (lower) γ = 3.

in Figure 5 shows that both SPARTA approaches achieve
significant improvement over PRA, as high as 60%. More
importantly, the performance of the heuristic s is very close
to the optimal s, making it favorable for its low-complexity.
We also observe that for a given peak rate range, lowering
the mean rate leads to higher gain in SPARTA, because of the
increased degree of multiplexing.

D. Impact of Non-ON-OFF Demand Patterns

We examine the performance of SPARTA and PRA when
spectrum demands follow the semi-exponential model. The
probability density function and the calculated effective rate
for semi-exponential demand are

f(x) =
{

λ
1−eλh e−λx : x ∈ [0, h]

0 : x ∈ (h,+∞)
(15)

α(s) =
1
s
log

(
λ

(1− e−λh)(s− λ)
(e(s−λ)h − 1)

)
(16)

where h is the peak rate of the demand and λ decides the
burstyness of the demand. Given h, a larger λ will result in
a lower mean rate. We set h and λ uniformly distributed in
[H1, H2] and [λ1, λ2], as shown in Table III. We compute
the heuristic s using the median of [H1,H2] and [λ1, λ2].
Figure 6 compares the performance of SPARTA and PRA.
Similar conclusions are drawn.

E. Impact of Network Topology

To examine the impact of network topology, we evaluate
SPARTA and PRA under both random and clustered topolo-
gies. The clustered topology simulates a “hot-spot” area where
a large number of APs are placed in a small area such as a
city center. We produce the cluster by first deploying a cluster
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TABLE II
TRAFFIC CHARACTERISTICS IN DIFFERENT DATA SETS.

I II III IV V
[H1,H2] [0.5,1] [0.5,1] [0.2,3] [0.2,3] [2,3]
[R1,R2] [0.2,0.4] [0.05,0.7] [0.2,0.4] [0.05,0.7] [0.2,0.4]
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Fig. 5. Comparison of SPARTA and PRA under different traffic character-
istics, assuming On/Off demand patterns.

sub-area of radius 0.4 on the 1 × 1 area, with w nodes in
the cluster area and 1000−w nodes uniformly over the entire
area, as shown in Figure 7. By varying w, we can examine the
impact of the clustering degree on the system performance.
Figure 7 illustrates the spectrum utilization under different
cluster degree w. As w increases, the spectrum utilization
decreases because the level of interference increases. Similarly,
SPARTA improves the spectrum utilization significantly.

VII. PRACTICAL CONSIDERATIONS

In this section, we discuss several practical issues for
implementing SPARTA.

Identifying Interference Constraints – The server perform-
ing demand shaping needs to collect the global interference
constraints. There are multiple mechanisms to obtain this
information. We list three complementary mechanisms.

(1) The server performs network measurements to collect
interference constraints. Cellular networks use a similar mech-
anism to examine interference conditions among base stations.

(2) Individual nodes scan radio signals to find interfering
nodes and report their findings to the server.

(3) Clients associated with nodes sense radio signals and
provide feedback on findings of interfering nodes [18]. This
mechanism has been shown to help refine the interference map.

Identifying Demand Statistics– The proposed solution also
requires information on demand statistics. We argue that this
is possible because nodes who request spectrum are mostly
components from infrastructure networks, such as cellular and
WiMAX base stations, mesh access points. Most networks
perform network planning to optimize node placement and re-
source allocation. When demand statistics are multi-timescale,
nodes can report different effective-rate statistics across time
and re-negotiate their spectrum demands. Similar approaches
have been verified in the context of wired networks [17].

VIII. CONCLUSION

In this paper, we consider the problem of providing stable
and efficient spectrum access in dynamic spectrum networks.
We propose SPARTA, a new DSA architecture that treats

TABLE III
TRAFFIC CHARACTERISTICS IN SEMI-EXPONENTIAL PATTERNS.

I II III IV V
[H1,H2] [0.5,1] [0.5,1] [0.2,3] [0.2,3] [2,3]
[λ1,λ2] [1,3] [2,5] [1,3] [2,5] [1,3]
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Fig. 6. Comparison of SPARTA and PRA under semi-exponential demand
patterns.

stability and efficiency as the first priority. SPARTA combines
proactive planning with reactive adaptation to match spectrum
allocation to time-varying demands. Given a target outage
rate, SPARTA introduces an effective-rate based admission
control component to allow time and spatial multiplexing
of spectrum demands, and a distributed coordination based
spectrum allocation component to adapt instantaneous spec-
trum allocation to match time-varying demands. Using both
analytical verification and experimental simulation, we show
that SPARTA can guarantee stable spectrum access while
maximizing spectrum utilization. Our future work is to refine
and experiment SPARTA designs using measured spectrum
demand traces.
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IX. APPENDIX

A. Proof of Theorem 1

We prove Theorem 1 by showing the fact that by properly
taking a uniform ś the constraint clause in (7) is maximally
loosen. In other words, if there exists a set of rn which can
satisfy the constraint in (7) by taking a set of sn, then this set
of rn can also satisfy the constraint in (7) by taking all sn = ś.
Therefore by taking a uniform ś we maintain the optimality
of the solution to (7).

When node traffics are uniform, i.e., αi(.) = α(.). We can
rewrite the constraint in the optimization problem (7) as

∃ sn,
∑

i∈In

αri(sn) ≤ C − γ

sn
, ∀1 ≤ n ≤ N

Because ri ∈ {0, 1}, the constraint reduces to

∑

i∈In

ri ≤
C − γ

sn

α(sn)
, ∀1 ≤ n ≤ N (17)

Here
∑

i∈In
ri is the number of admitted nodes that are in

constraint In. We can see that since the right side of the above
equation only depends on sn, we can optimally loosen the
above constraint by taking a sn which maximizes the right
side. Note that this optimal value of sn does not depend on
n. Therefore, to optimize (7), a uniform optimal ś is sufficient
for uniform node traffics.

We can see that ś only depends on C, α(.), and γ, and does
not depend on the topology of the network.

B. Proof of Theorem 2

Proof: For simplicity we prove the theorem in the case
that there are only two types of different traffics, denoted t1
and t2. It’s straightforward to extend it for J > 2.

For any constraint in the form as (7), we prove that if there
is a s which is not in the range [min{ś1, ś2},max{ś1, ś2}],
and the constraint holds, then we can replace s with a s′ in the
range [min{ś1, ś2},max{ś1, ś2}] such that the constraint still
holds. This means that under no cases do we need to pick up
a s value from outside the range [min{ś1, ś2},max{ś1, ś2}].
In other words, the optimal s value can be found in the range
[min{ś1, ś2},max{ś1, ś2}].

The constraint can be written as

k1α1(s) + k2α2(s) ≤ C − γ

s
(18)

where k1 and k2 are the number of nodes having traffic t1
and t2, respectively. For any s < min{ś1, ś2} (the case s >
max{ś1, ś2} can be treated similarly), we can show that ś1

can replace s and the constraint still holds, i.e.

k1α1(ś1) + k2α2(ś1) ≤ C − γ

ś1
. (19)

From the property of effective rate we can prove that

C − γ/ś1

α1(ś1)
≥ C − γ/s

α1(s)
and

C − γ/ś1

α2(ś1)
≥ C − γ/s

α2(s)
(20)

Put (20) into (18) we can get (19).
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C. Proof of Theorem 3

Proof: We can prove this result by proving the following
property: “If a constraint n is satisfied by choosing sn, i.e.,

∑

i∈In

αi(sn) ≤ C − γ

sn
(21)

then it can also be satisfied by choosing s and increasing the
capacity to C/g(s).”

By showing this property, it is straightforward to show that
because any satisfiable constraint can be satisfied by a uniform
s and capacity C/g(s), any achievable utilization value can be
achieved by a uniform s and capacity C/g(s).

From (21),

1 ≥
∑

i∈In

αi(sn)
C − γ/sn

≥
∑

i∈In

αi(śi)
C − γ/śi

=
∑

i∈In

αi(s)
C − γ/s

· gi(s) ≥ g(s) ·
∑

i∈In

αi(s)
C − γ/s

.

≥
∑

i∈In

αi(s)
C/g(s)− γ/s

, (22)

which is equal to
∑

i∈In

αi(s) ≤ C/g(s)− γ/s.


