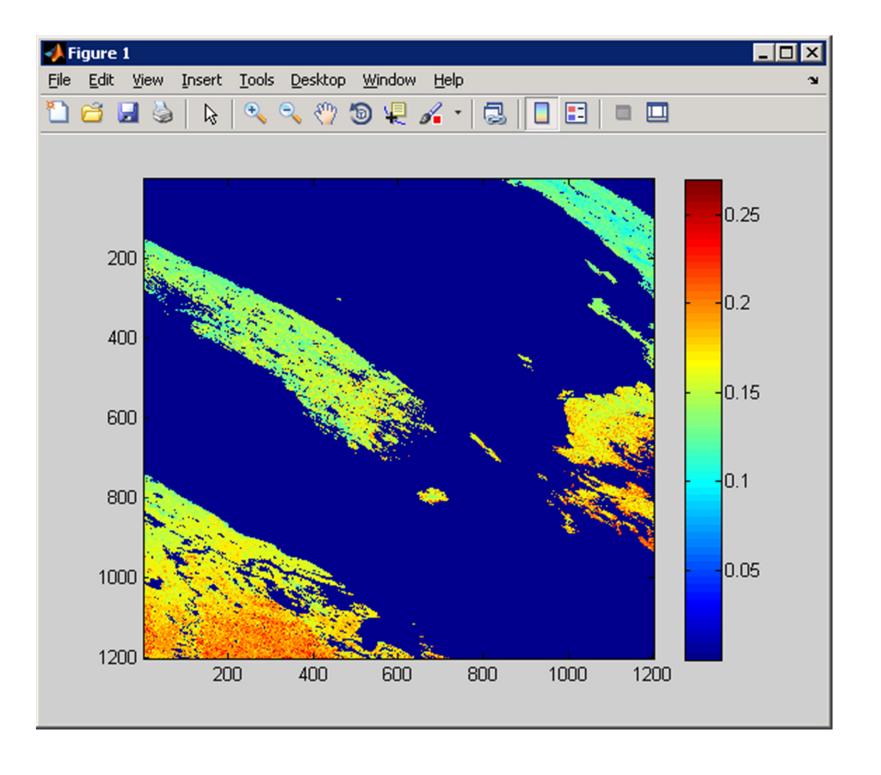
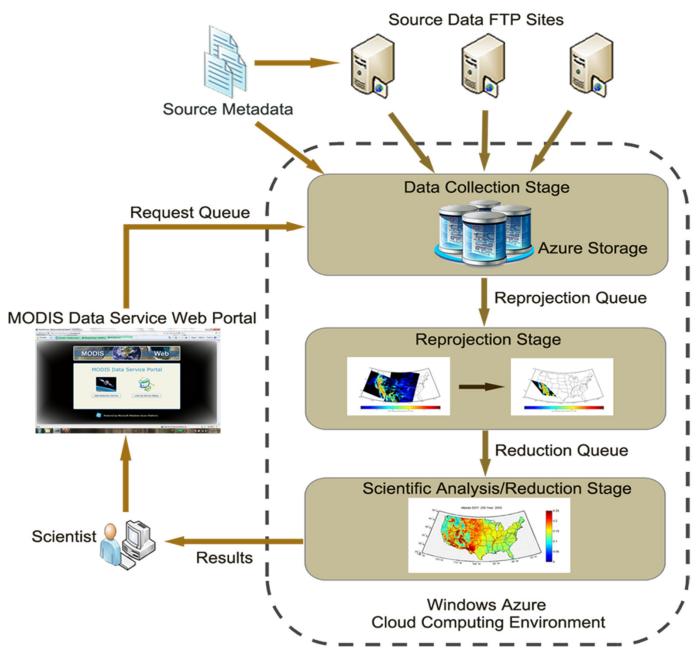
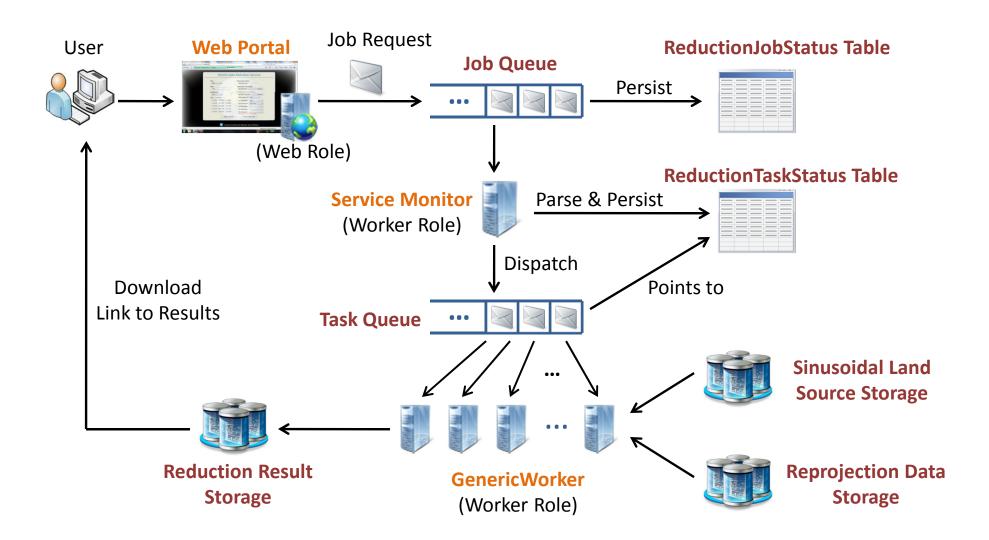
Cloud, HPC, or Hybrid: A Case Study Involving Satellite Image Processing

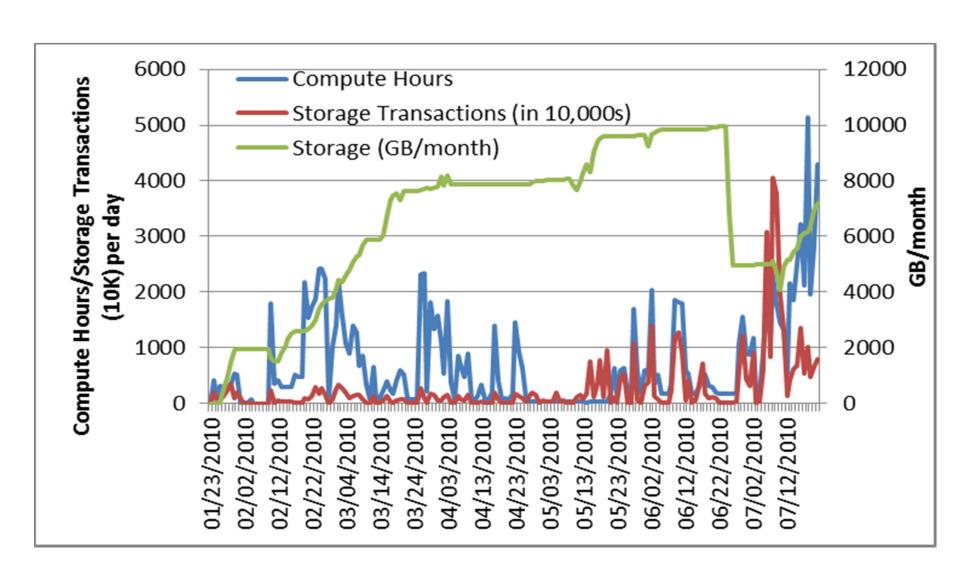

Marty Humphrey*
Zach Hill *
Catharine van Ingen**
Keith Jackson***
Youngryel Ryu****


** Department of Computer Science, University of Virginia

** Microsoft Research, Microsoft Bay Area Research Center, San Francisco, CA

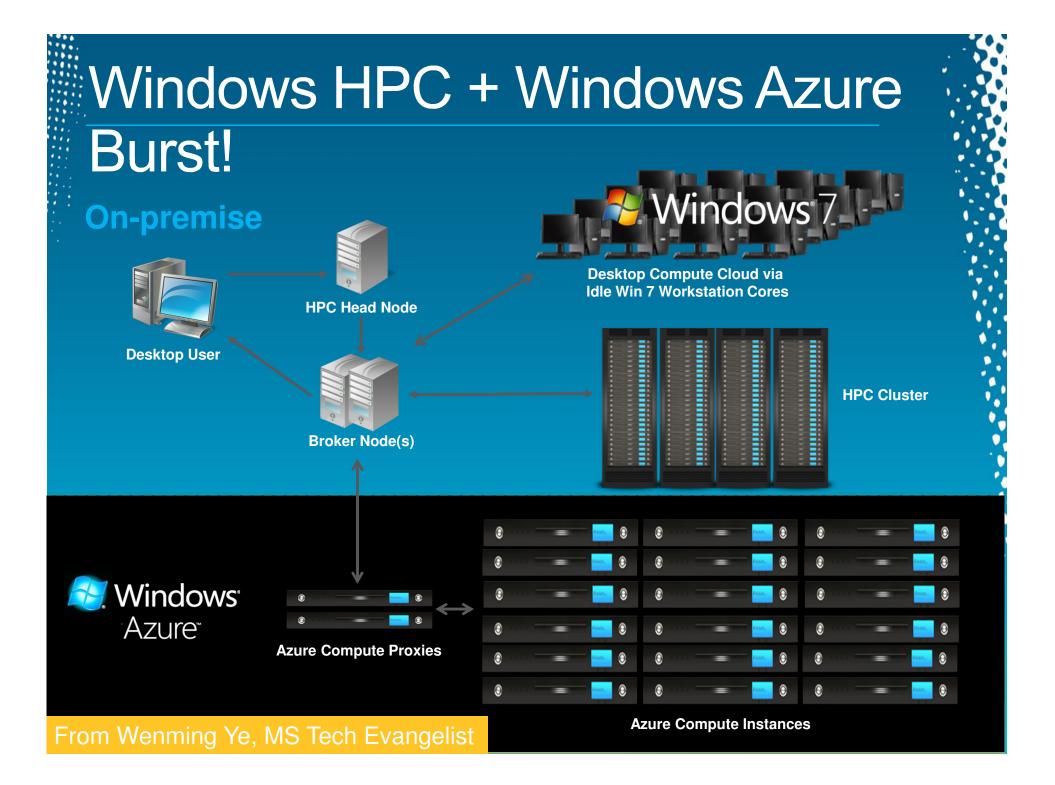
*** Lawrence Berkeley National Lab, Berkeley, CA


**** Harvard/Berkeley/Seoul National University



Data Processing Service Architecture

Internals



MODISAzure

Concerns, Limitations and Questions

- Dev cycle... not great
 - How to debug?
- Our own queuing system.. ugh
- Performance?
- Dynamic (?) scalability
- Our enterprise and "The Cloud": The great divide
- Let's "port" it to Win HPC (and more..)

MODISAzure: To Cloudburst or Not Cloudburst

- Dev/debug experience?
- Cost?
- Performance?
- Reliability?

• Speed to science?

Porting Our App from Windows Azure

- Platform-specific behavior
 - In-line : if ("host in Azure") { ...} Else { ... }
 - App.config
- Dev
 - Small cluster and RDP
- Issues
 - -8 / 16 threads trying to read/write a file
 - Built-in app "fault-tolerance": ugh
 - \$\$\$: no longer a concern

Wincluster (and Azure)

Chicago (~550 miles)

Latency: 21 ms

Download: 91.1 Mbps Upload: 30.1 Mbps

TOTAL REPUBLISHE NAME (\$100)

San Antonio (~1300 miles)

Latency: 43 ms

Download: 61.7 Mbps

Upload: 15.9 Mbps

 Dual core (AMD Athlon X2 2.8GHz)

• 4GB RAM

• C: 640GB (7200)

- Dual quad-core (AMD Opteron 2344 HE 1.7GHz)
- 16GB RAM
- C: 150GB (10000), D: 640GB (7200)

Adding Azure Node for MODIS

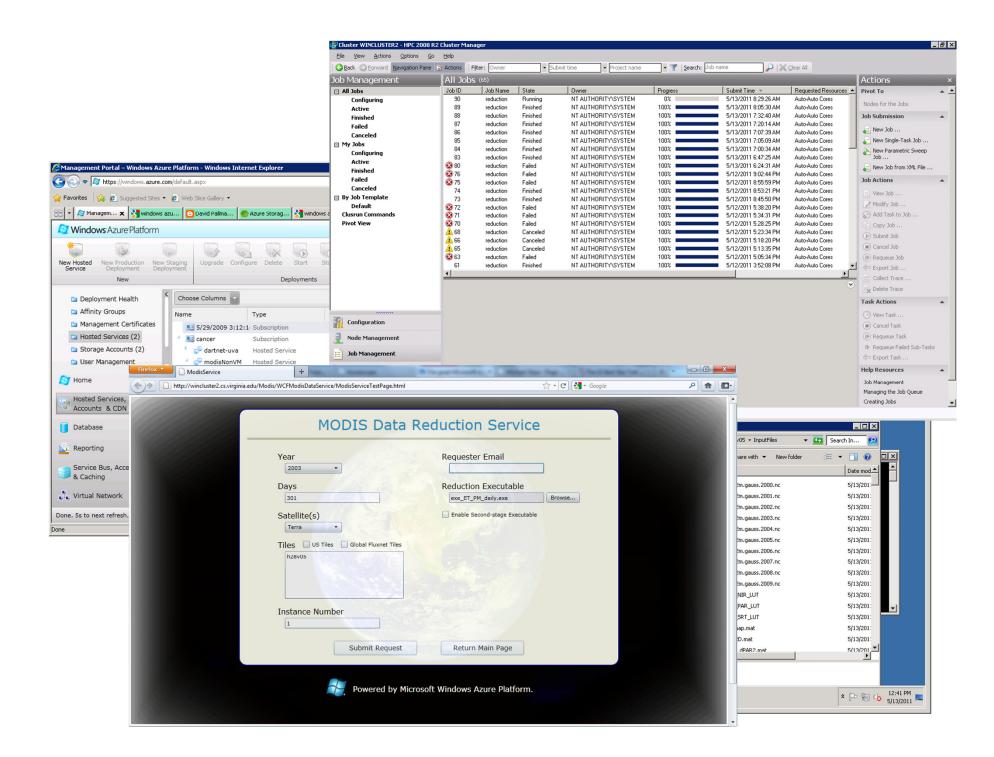
- Boot node (15-20 min)
- Install VPN code/endpoint (Connect)
- Create f: and hpcsync
- Install matlab runtime
- Overall: 35 min [manual]

Our packages

	Size	NC upload	SC upload
Modis app	1.33 MB	8.32s (7.9 – 8.9)	8.64s (7.4 – 10.8)
Hpc_client	17 MB	86.8 (28.2 – 128.2)	30.9 (25.5 – 35.2)
matlab	260 MB	628 (385.7 – 961.6)	295 (202.6 – 436.7)
Default input files	1.5 GB	2405 (1122 – 6948)	1391 (1130 – 2116)

Roll our own VM?

- Task 1: Install Hyper-V and build VM (13 steps)
- Task 2: Preparing Base Image for Deployment (16 steps)
- Task 3: Installing the Windows Azure VM Role Integration Components (13 steps)
- Task 4: Uploading the Disk Image to Windows Azure (8 steps)
- Task 5: Creating the Service Model (17 steps)
- Task 6: Creating the Hosted Service and Deploying the Package (10 steps)


Azure Compute Instances

Compute Instance Size	CPU	Memory	Instance Storage	I/O Performance	Cost per hour
Extra Small	1.0 GHz	768 MB	20 GB	Low	\$0.05
Small	1.6 GHz	1.75 GB	225 GB	Moderate	\$0.12
Medium	2 x 1.6 GHz	3.5 GB	490 GB	High	\$0.24
Large	4 x 1.6 GHz	7 GB	1,000 GB	High	\$0.48
Extra Large	8 x 1.6 GHz	14 GB	2,040 GB	High	\$0.96

Note: for \$1K I can *buy* an ex-large-equivalent node or rent an ex-large VM for 1042 hrs (43 days)

Azure Costs – pay as you go (note: "subscription" offers exist)

- Storage
 - \$0.15 per GB stored per month
 - \$0.01 per 10K storage transactions
- SQL Azure
 - Web ed.: \$9.99 per DB up to 1 GB /month
 - Business ed.: \$ 99.99 per DB up to 10GB /month
- Data transfers
 - \$0.10 per GB in
 - \$0.15 per GB out

Results

Single Day Computation

- 2003, DOY=301, h28v05, Terra
- ET PM daily: 2,543 KB
- Input: 219 files, 3.0 GB total
 - Pre-staged: 76 files, 2.49 GB total
 - HDF: 143 files, 517 MB total
- Temp files: 173 files, 18.1 MB total
- Output: 32 files, 358K total

2003, DOY=301, h28v05, Terra Execution Time (minutes)

	Stage-in	Compute	Total
local	0:38 (z:)	6.59	7:40
Medium (local)	0:46	1.73	3:36
Medium (blob)	10:52	1.73	13:36
Medium (UVa)	14:21	1.73	16:59
Large (local)	0:47	1.70	3:35
Large (blob)	11:01	1.70	13:36
Large (UVa)	14:29	1.70	16:37
Ex-Large (local)	0:36	1.75	3:33
Ex-Large (blob)	10:50	1.75	13:29
Ex-Large (UVa)	14:06	1.75	16:49

2003, DOY=301-316, h28v05, Terra

[w/ stage 2 reduction]

Total input: 216 files, 859 MB [+ pre-staged]

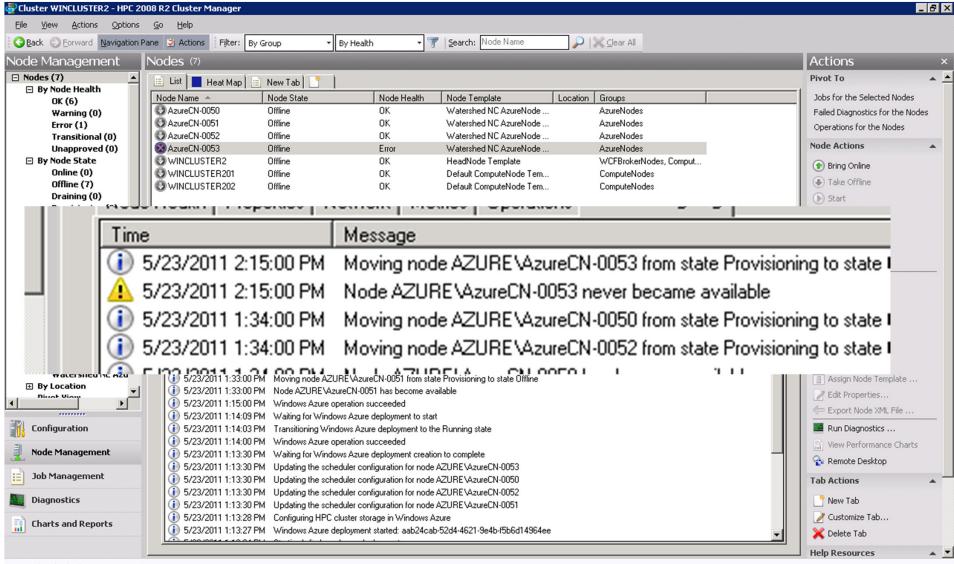
Total output: 118 files, 1.58 MB

	Execution Time (minutes)	Network (\$)	Storage (\$)	Compute (\$)	Total (\$)
Local (1x2x4)	22:34				
4 Medium (blob,cold)	19:19	\$ 0.08	\$ 0.45 per month	\$ 0.31	\$ 0.38
2 Large (blob, cold)	18:41	\$ 0.08	\$ 0.45 per month	\$ 0.30	\$ 0.38
1 Ex-Large (blob, cold)	20:39	\$ 0.08	\$ 0.45 per month	\$ 0.33	\$ 0.41

Note: Network cost is \$\$ to upload 216 files (once) to Windows Azure blob storage

2003, Full Year, h28v05, Terra

- Total input: 2517 files, 9.46 GB [+ pre-staged]
 - Cost to upload: \$ 0.95; cost per month to store: \$ 1.42
- 190 GB (301K files/links) total written by daily computations
- Total output: 1st stage: 11680 files, 126 MB; 2nd stage: 118 files, 5.79 MB


	Execution Time	Compute (\$)
Local (2x2x4 = 16 cores)	2 hrs 39	\$ 0
1 Ex-large (8 cores)	5 hrs 21	1 * \$0.96 * 5.35 = \$ 5.14
2 Ex-large	2 hrs 49	2 * \$0.96 * 2.82 = \$ 4.65
4 Ex-large	1 hr 32	4 * \$0.96 * 1.53 = \$ 5.88
Hybrid: Local + 4 Ex-large	1 hr 29	4 * \$0.96 * 1.48 = \$ 5.70
8 Ex-large	1 hr 5	8 * \$0.96 * 1.08 = \$ 8.32
Hybrid: Local + 8 Ex-large	1 hr 13	8 * \$0.96 * 1.22 = \$ 9.37

Cloudbursting Our App

- Cloudbursting fits well for us
 - better than Azure-only (dev experience)
 - better than Win HPC enterprise-only (generic cloud arguments)
- Win HPC only Azure nodes or Win HPC enterprise and Azure? (aka: should we even bother with our own existing HW?)
 - Disclaimer: 16 nodes, circa 2008, "personal cluster" (NOT your average case?)
 - Yes: they're "free"
 - No: ugh heterogeneity in code, wide-area run-time complexity (worst of both worlds?)

Cloudbursting Your App

- Generic cloud arguments apply
 - Don't leave VMs running unused, don't forget about stuff you've stored in the cloud, speed of light is not getting any faster...
- DON'T roll your own queuing system in the cloud!
 - Esp. if you need it to be multi-user
 - However, no policy to "only run the apps that 'make sense' in the cloud"
- You might start seeing time-outs in your code
 - And in the cluster boot as well

Data updated: 5/23/2011 1:15:01 PM

Cloudbursting Your App (cont.)

Does your app fit this pattern?

```
#!\bin\bash
scp foo.cs.virginia.edu:input.zip .
foo.exe
scp output.txt foo.cs.virginia.edu:
```

- App source code can get ugly (a la "#ifdef cloud")
 - UVa PhD student Zach Hill: CSAL
- Homogeneity is good
 - E.g., make the Azure nodes look like Enterprise nodes (e.g.,
 F:)
- Hmm... Dryad ("Linq to HPC") knows where your data is (to some degree) but HPC Scheduler does not
- But my app is MPI...

Summary

- MODISAzure: bag-of-tasks, large input, small computation, small output
- Good fit for Windows Azure cloudbursting
 - Good performance, good ease of use, good dev exp, good \$\$, good management exp, no cap-ex
- Need more studies on long-term reliability, how to get "fastest results for cheapest \$\$\$"
 - Hmmm.. "#ifdef cloud" or not?
- Border between enterprise and cloud is still too thick