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ABSTRACT

Predicting the movement of crowds in a city is strategically
important for traffic management, risk assessment, and pub-
lic safety. In this paper, we propose the novel problem of
predicting two types of flows of crowds in every region of
a city based on big data, including human mobility data,
weather conditions, and road network data. To have a prac-
tical solution for citywide traffic prediction, we first partition
the map of a city into regions using both its road network
and historical records of human mobility. Our problem is dif-
ferent from the predictions of each individual’s movements
and each road segment’s traffic conditions, which are com-
putationally costly and not necessary from the perspective
of public safety at a citywide scale. To model the multiple
complex factors affecting the crowd flows, we decompose the
flows into three components: seasonal (periodic patterns),
trend (changes in periodic patterns), and residual flows (in-
stantaneous changes). The seasonal and trend models are
built as intrinsic Gaussian Markov random fields, which can
cope with noisy and missing data. Whereas, the residual
model exploits the spatio-temporal dependence among dif-
ferent flows and regions, as well as the effect of weather.
Experimental results on three real-world datasets show that
our method is scalable and outperforms all baselines signif-
icantly in accuracy.
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1. INTRODUCTION

Predicting the movement of crowds in a city is strate-
gically important for traffic management, risk assessment,
and public safety. For example, 36 people died and 47 oth-
ers were injured amid the bloody stampede in the Shanghai
Bund in 2015, turning a New Year Celebration into a catas-
trophic accident. Massive flows of people streamed into a
strip region, which could not really hold them, to watch the
New Year’s Eve Light Show, making the region overloaded
and out of police control. Similar stampedes also happened
in the 2010 German Love Parade. If we can predict the ar-
rival of crowds in a region and know the crowd flows would
exceed the region’s safe capacity, we can launch emergency
mechanisms (e.g., sending warnings to people and conduct-
ing traffic controls) or evacuating people in advance.

Prior research on crowd movements has focused on the
predictions of each individual’s movement (e.g., [23, 26]),
and the traffic conditions on road segments (e.g., [16, 21]).
While these problems provide a detailed view of a city traffic,
they may have heavy computational costs due to the huge
number of roads, vehicles, and people in a big city, and are
also not necessary from the perspective of public safety at a
citywide scale. Further, predicting each individual’s move-
ment is difficult to achieve given the diversity of individual
life patterns and the randomness of human behavior.

Given the above limitations, in this paper, we investigate
a macro-level view of crowd movements by predicting two
types of flows of crowds in every region of a city based on big
data, including human mobility data, weather conditions,
and road network data. As shown in Figure la, a region
(such as 71) is bounded by major roads, and the two flows
are: 1) new-flow, the traffic of crowds originating from a
region at a given time interval (e.g., people start driving
from a parking spot); and 2) end-flow, the traffic of crowds
that is terminated in a region (e.g., people stop driving and
park their cars). Intuitively, new-flow and end-flow track the
origins and final destinations of the crowds. These two flows
thus summarize the movements of crowds and are enough for
traffic management and risk assessment.
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(a) Two types of flow to be predicted (b) Illustration of measurement of flow

Figure 1: Crowd flows in a region



The two crowd flows can be measured individually by the
number of vehicles driven on roads, or the number of people
traveling in public transportation systems, or the number
of pedestrians, or all together if data is available. The data
representing human mobility can be the GPS trajectories of
vehicles, or the mobile phone signals of users, or card swip-
ing data in public transportation systems such as the subway
or bike sharing systems. For example, in Figure 1b, accord-
ing to the GPS trajectories and measured by the number
of vehicles, the new-flow and end-flow of r; in the past 30
minutes are (2, 3) respectively. Likewise, the two types of
flows are (2, 2) in 72 in terms of mobile phone signals, mea-
sured by the number of pedestrians. If both the GPS and
phone signals are tracked, we can consider the crowd flows
of region r3 to be (1, 1). During a time interval, if a person
starts and ends her trajectory in the same region, she will
be counted in both the new-flow and end-flow of that region.
Note that our proposed framework can also be applied as is
to other definitions of crowd flows.

The challenges of our research are three-fold. 1) Multiple
complex factors: There are multiple complex factors affect-
ing the crowd flows, which can be captured thanks to the
advent of big data. For instance, the crowd flows in a re-
gion usually have a daily and weekly periodic pattern, which
might change over time, as well as instantaneous changes
due to noise, weather conditions, and other social events. 2)
Flow dependencies: There are dependencies between differ-
ent types of flows in a region (intra-region dependence) and
those among different regions (inter-region dependence) over
time. For example, the increase of end-flow in a region in the
current hour may raise its new-flow over the next hour. Sim-
ilarly, the end-flow of a region is influenced by the new-flows
of its neighbors. 3) City-scale prediction: While we need
the prediction instantly, a city-scale prediction is computa-
tionally intensive. Therefore, an efficient predictive model
is needed. In addition, different regions could have different
scales of crowd flows. Sparse flow data in some regions will
prevent us from learning a stable periodic pattern inherent
in crowd flows, thus reducing the prediction accuracy.

To tackle these challenges, we decompose each type of
flow in a region into three ingredients: seasonal, trend, and
residual flows, proposing a three-step predictive method to
capture each of them. The contributions of our research:

e To deal with data sparsity and construct a practical city-
wide solution, we first divide a city into low-level regions
using its road network, and then group adjacent low-level
regions with similar crowd flow patterns using graph clus-
tering. The obtained high-level regions have more stable
(thus easier to predict) crowd flows, and also provide a
meaningful and more manageable representation of the
citywide crowd flows.

e Based on the Intrinsic Gaussian Markov Random Field
(IGMRF), we propose a seasonal model to predict the
periodic flow, and a trend model to predict the change of
the seasonal pattern over time. Our IGMRF models are
robust to noisy and missing data, and scalable to big data.

e We propose a spatio-temporal residual model to predict
the instantaneous deviations from the periodic patterns
of flows, based on the historical flow data of a region and
those of its neighbors as well as weather information. The
model uses a Bayesian network to capture the transition
probability among the regions. We combine the seasonal

model, trend model, and residual model to obtain our
FCCF model (Forecasting Citywide Crowd Flows).

e Experiments' on three real-world datasets (taxicab and
bike data) show that our framework is scalable and out-
performs baseline approaches significantly in accuracy.

The rest of this paper is as follows: Section 2 overviews
our framework. Section 3 discusses the division of a city into
regions. Section 4 proposes the seasonal and trend models.
Section 5 proposes the spatio-temporal residual model. Sec-
tion 6 reports our experimental results. Section 7 discusses
related works and Section 8 concludes the paper.

2. OVERVIEW
2.1 Preliminaries

Regions: There are many definitions of a location in
terms of different granularities and semantic meanings. In
this study, we first partition a city into a number of low-level
regions by city roads, using a map segmentation method [25].
Consequently, each region is bounded by the roads, carry-
ing a semantic meaning of neighborhoods or communities,
as illustrated in Figure 1. These regions are low-level, that
is, they can be very small and have very little data for pre-
diction. Therefore, we propose to group adjacent low-level
regions with similar crowd flow patterns into high-level re-
gions using a graph clustering approach. We will discuss
the clustering step in Section 3. Denote the set of high-level
regions as R = {u1,u2, ..., um}, where m is the number of
high-level regions. We then use the high-level regions as the
minimal unit of location in the following study, though a
region can be a uniform grid or defined by the governments
in other applications.

Definition 1 (Crowd flows) The movement of an indi-
vidual can be recorded as a spatial trajectory T, which is
a sequence of time-ordered points, T : p1 — p2 — ... = p|7},
where each point p; = (ai,bi,t;) has a geospatial coordinate
position (a;,b;) and a timestamp t;, and |T| is the number
of points in T. Likewise, the movement of crowds can be
represented by a collection of trajectories P. Specifically, for
a region u, the two types of flows of crowd (crowd flows)
at timestamp t, namely new-flow and end-flow, are defined
respectively as

Tutl =|{T € P:(a1,b1) € u,t1 =t}
o = {T € P (a7, b)) € u, by =1}
where (a;,b;) € u means that point p; lies within region u.

Problem (Forecast Citywide Crowd Flows) ForVu €
R and V0 € {new, end}, given the historical crowd flows xﬁ’t
fort=0,....,n—1, predict xzyn.

2.2 A Case Study of Taxi Trajectories

We now analyze a case study of the Beijing’s taxi GPS
dataset BJ (detailed in Section 6.1). First, we partition
Beijing into 372 low-level regions based on its road network
as done in [25] and shown in Figure 4a. Since 372 regions
are too many to monitor at city scale, we further cluster the
low-level regions into 26 high-level regions with comparable
crowd flow volumes, as shown in Figure 4b. The region IDs
are also provided in this figure.

!Our data and code are available at http://cs.ucsb.edu/
“mhoang/data/fccf.tar.gz
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Figure 2: Beijing data (the regions are shown in Figure 4b). One
timestamp is 30 minutes. (a) new-flow of region 22 during two weeks
of May, 2015. (b, ¢) Trend of new-flow at 6am and 3pm for region
22 from March to June, 2015. (c, d) new-flow and end-flow of two
neighboring regions (regions 3 and 1) during June 03, 2015.

We obtain the crowd flows by tracking the trajectories
of taxis using their GPS signals. For example, Figures 2a
shows the new-flow in region 22 during May 4*"-17" 2015,
where each timestamp is 30 minutes. Clearly, the flows have
a periodicity of day and week—a seasonal effect. Further,
we can see a trend of change in this seasonal pattern over
time, which may differ per region and per time in day. For
example, as the weather got warmer, new-flows at 6am of re-
gion 22 in Figure 2b clearly got bigger on average. Whereas,
new-flows at 3pm in this region (Figure 2¢) got smaller pos-
sibly because it is less comfortable to travel outside when
the temperature is too high.

Neighboring regions can affect each other due to the crowd
flows among them. Figures 2d and 2e show an example of
two neighboring regions 1 and 3 at the top right corner of
Figure 4a. The new-flow of region 3 and the end-flow of
region 1 deviate from their seasonal patterns at the same
time and in the same direction (as marked by the blue and
red arrows), suggesting their dependence on each other.

2.3 Prediction Framework

We discuss the segmentation of a city map into regions in
Section 3. Then, we track and predict the crowd flows in
these regions. Based on the observations in Section 2.2, we
propose a prediction framework as shown in Figure 3.

Figure 3a shows the modelling framework for the crowd
flows of a region. Specifically, we decompose a crowd flow
time series ® = (%o, %1, ...,Tn—1) Over n timestamps into
three components: a seasonal component s capturing the
periodic pattern, a trend component y capturing the offset
from the periodic pattern for each timestamp in a period,
and a spatio-temporal residual component r capturing the
instantaneous changes. Thus,

r=s+y+r (1)

We use only temporal information to model s and y. The
seasonal model s is learned on the original flow x, and the
trend model y is learned on the residual & — s. After that,
the residual r is learned for @ — s — y.

Assume that the periodicity in & has a length of period
F, that is, st = St mod r Vt = 0,...,n— 1, then we can divide
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Figure 3: Framework overview.

x into a sequence of periods as shown in the first two lines
of Table 1 for n = 10 and F' = 4. In general, & will contain
ny = |n/F|+1 periods, where period j contains timestamps
in the range [jF,(j + 1)F — 1], for j =0,...,ny — 1.

Since the timestamps within a period may have different
evolutionary trends over time (see Figures 2b and 2c), we
build a seperate trend model for each of them. Therefore,
we decompose x into three components as in Table 1:

Tt = St mod F + Yt mod F,|t/F| + Tt (2)
where:
® St mod F is the seasonal flow at the (¢t mod F')-th times-
tamp within a period.
® Ui mod F,[¢/F] i the offset from the seasonal flow of the
(t mod F')-th timestamp in period [t/F].
e 7, is the residual flow at time ¢.

In particular, we model s as a time series of length F:
s = (so0,81,...,8r—1). For each i-th timestamp of a period
(:1=0,...,FF—1), we model its trend across different periods
as a time series y; of length ny: yi = (Yio, Yit, - Yiny—1),
where y;; is the offset from the seasonal pattern of the i-th
timestamp in period j. Finally, the residual r is modeled as
a time series of length n: r = (ro, 71, ..., "n—1).

Period 0 Period 1 Period 2
o Xy T2 xs3 T 5 T X7 xrg X9
S0 | S1 | S2 | 83 | So | S1 | S2 | 83 | S0 | Si
Y00 | Y10 | Y20 | Y30 | Yo1 | Y11 | Y21 | Y31 | Yo2 | Y12
To T1 T2 T3 T4 5 T6 7 78 T9

Table 1: Decomposed flow & = s + y + r for n = 10, F = 4.

Both s and y are built based on IGMRFs (Section 4),
scalable to big data, and robust to noisy and missing data.

For the residual r (Section 5), we first propose a Bayesian
network to model the transition probability of crowds among
regions. By applying this transition probability into r, we
obtain the residual transit flows among regions—the transit
features in Figure 3a—which capture the dependence among
neighboring regions. Finally, we combine the transit features
(inter-region dependence), the history of all types of flows
of a region (intra-region dependence), and the weather data
into a spatio-temporal residual model to predict r.

We use the trained models to make online predictions for
crowd flows of regions as described in Figure 3b.

For clarity, Table 2 lists the notations used in this paper.

3. FINDING REGIONS

We aim to divide a city into regions with two goals so that
they are useful for high level traffic management: (i) the
regions are are semantically meaningful, and (ii) the regions
have comparable traffic volumes.



R = {uy,ug,...,um} |The set of all high-level regions

m, n Number of regions, and number of timestamps
29, Crowd flow of region u at time t; 8 € {new, end}
@ = (zQ, s Ty _1) Vector representing a flow time series

Length of a period in @

ny = [n/F|+1 Number of periods in @

s=(sgs--rSp—_1) Seasonal component of @
Yi; = (Y505 - yi,nyfl) Trend component for the i-th timestamp in a period
= (rQ, s 1) Residual component of @
G =(V, &) The graph of an IGMRF
Q n X n precision matrix for an IGMRF of size n
K Precision parameter of an IGMRF
dmax Maximum transit duration between two regions
L History length

Table 2: Symbols and notations.

For the first goal, we use the map segmentation method
in [25] to partition the map of a city based on its road net-
work. For example, the map of Beijing city can be divided
into 372 low-level regions as shown in Figure 4a. Such re-
gions are bounded by the roads and thus naturally capture
the division of human activities, making them semantically
meaningful. However, the number of low-level regions can be
high, making it difficult to monitor all of them. In addition,
these regions have highly varying areas and traffic volumes.
On one hand, it is not straightforward for city managers
to decide how to distribute their work force across the city.
On the other hand, it is hard to predict the crowd flows of
a tiny region due to the sparsity of data for such a small
area. Many small regions are simply roundabounds, mak-
ing their existence less meaningful. As a result, we propose
to further group the low-level regions into bigger high-level
regions that have comparable traffic volumes and contain
low-level regions with similar crowd flow patterns. To do
this, we cluster the region graph as defined below.

Definition 2 (Region graph) A region graph is denoted
as G = (V,E,N,W), where

e Node set V = {v1,v2,...} is the set of low-level regions
obtained using the map segmentation method in [25]
Edge set E = {(vi,v;)|vi and v; are adjacent on the
city map}.

e Node weights N, where N,, = ::01 (xury +x$:“f) is
the sum of crowd flows in region v; during the historical

time period [0,n — 1].

Edge weights W, where Wy, o, is the similarity of crowd
flow patterns between regions v; and vj.

In this paper, we want to merge low-level regions with
similar rise-and-fall crowd flow patterns, i.e., the plots of
their crowd flows over time have similar shapes. Thus,
we define the edge weight between two low-level regions v;
and v; as the Spearman’s rank correlation coefficient be-
tween their crowd flows during a historical time period.
Specifically, each region can be represented as a vector v; =
(@50 o Ty 1, xf;?,%, e zij‘i,l). The correlation coeffi-
cients among the regions are computed on these vectors.

Figure 4c shows a subgraph of the region graph for our
Beijing dataset. Here, each node represents a low-level re-
gion while its size represents the node weight. There is an
edge between two regions if they share a boundary road.
The edge widths are proportional to the edge weights.

Next, we cluster the region graph into m high-level regions
R = {u1,u2, ..., um }, where each high-level region u; is a set
of adjacent low-level regions, with two goals:

e Edge cut minimization: ming Y v;cuy;v;ecu, W, 0,

= ~ U FUL
vi€uj TV Vg
S <14V € R,

where ¢ > 0 is a predefined imbalance factor.

e Cluster balancing:

T
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(a) Road-based (b) Region grouping
map segmentation using graph clustering

V|

|~

i

(c) Low-level region graph
for the area in the red box in Fig. 4a

(d) Region grouping for the
graph in Fig. 4¢

Figure 4: Finding regions in Beijing: (a) low-level regions based on

city roads, (b) high-level regions based on crowd flow patterns, (c,d)
the adjacency graph and region grouping for the red box in Figure 4a.
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Figure 5: Average daily crowd flows of 26 regions in Fig. 5b. The
region IDs are in the top right corners of the sub-figures.

The first goal helps us group highly similar low-level re-
gions together. Whereas, the second goal constrains the sum
of node weights in each cluster to be close to the attainable
average. In other words, we want to balance the total traffic
volumes among the clusters, which would be helpful for city
planning and traffic management.

We use the graph clustering algorithm in [10] to cluster
the region graph since it supports our two goals (we set
¢ = 0.1). To choose the number of clusters m, we use the
elbow method [14] on the edge cut: m = 26 for the Beijing
dataset and m = 15 for the NYC taxi dataset. The NYC
bike dataset has only 23 regions, and there is thus no need
to futher reduce the number of regions. Figure 4d shows the
resulting high-level regions for the corresponding subgraph
in Figure 4c. The whole high-level region map for Beijing is
shown in Figure 4b, with the obtained region IDs. Further,
Figure 5 summarizes the average daily crowd flows of the 26
high-level regions in Figure 4b. Clearly, these regions have
comparable total traffic volumes. We can also see some dis-
tinctive traffic patterns, suggesting that the obtained clus-
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Table 3: Temporal IGMRF models: G is the graph (n = 7) and Q is the precision matrix; x € R is the precision parameter to be learned.

ters are meaningful. Neighboring regions may have similar
patterns due to their geographhical proximity.

4. TEMPORAL MODELS

In this section, we build the seasonal model s and trend
model y based on Intrinsic Gaussian Markov Random Fields
(IGMRF) by capturing the temporal information in the crowd
flows. We first give a brief introduction to IGMRF.

4.1 Temporal IGMRF Models

To model a time series @ = (xo,Z1, ..., Tn—1) Over n times-
tamps, we treat & as a temporal IGMRF, that is, a random
vector & having an improper Gaussian density. The IGMRF
model fits our city-scale prediction problem well since it is
robust to noise and missing data, and scalable to big data.

The temporal IGMRF is specified by its precision matrix
Q and undirected graph G = {V, £}, where V and & are the
node set and edge set respectively. In essence, the structure
of G visually summarizes the conditional dependence among
timestamps, while the value of matrix @ decides the specific
probability density 7 (x) of the distribution of @. The second
column in Table 3 shows an example IGMRF with its G, Q,
and 7(x|k), where  is a parameter to be learned. In partic-
ular, each timestamp is represented by a row and a column
in Q, as well as a node in V. Non-zero entries in Q cor-
respond to edges between corresponding nodes in £. Each
zero entry in Q—or equivalently, the absence of an edge in
G—signifies that two corresponding timestamps are condi-
tionally independent given the other timestamps. While the
general form of @ is given in Table 3, we still need to learn
the parameter x € R from data to set a specific value for Q.

The formal definition of IGMRF [15] is given below. First,
let us define a symmetric matrix @ € R"*™ as symmetric
positive semi-definite (SPSD) iff £ Qx > 0 Va € R, a # 0.

Definition 3 (IGMRF) Let Q be a SPSD precision ma-
triz with rank n—k > 0. A random vector = (xo, ..., Tn—1)
is an IGMRF of rank n — k with parameters (pu, Q) iff x
follows an improper Gaussian distribution, that is, its prob-
ability density function w(x) has the form:

w(@) = (2m) "5 (@) ean (~ (e - W Q- ) )

Further, @ is an IGMRF wrt a labelled graph G = (V, &),
where V = {0, ...,n — 1} and

Qij 70 (1,j) €CEViI#£]

Here, |Q|* denotes the generalized determinant equal to
the product of the n — k non-zero eigenvalues of Q. The first
condition states that @ follows an improper Gaussian distri-
bution, the probabilistic nature of which makes the IGMRF
robust to noise and missing data. Whereas, the second con-
dition (Qi; # 0 only if ¢ and j are neighbors in G) is the

_n—k
2

Markov property that makes Q and G sparse, hence easier
to store and faster to compute as shown in [15]. We next
design @ and G based on the forward differences:

Definition 4 (Forward differences) Given a time series
x = (zo,...,Tn—1), the first-order forward difference at time
t is defined as

A-Tt:int-&-l—l't, tIO,...,n—Q

Gaussian assumption: To make Q and G sparse, we im-
pose the following assumption on x:

Az U NO,k7Y), t=0,..,n—2 (4)
where k € R is the precision parameter learned from data.
The graphs G for the Gaussian assumption is shown in the

second column of Table 3 in case n = 7. There is an edge in

G for and only for pairs of consecutive timestamps.
The Gaussian assumption reduces the numbers of edges
in G and non-zero entries in Q to O(n), making them very

sEarse and our solution scalable. Further, it imposes a smooth
change between consecutive timestamps in the time series,
making the IGMRF robust to noisy and missing data. To

find Q, we form the probability density 7(x) as in Equa-

tion 3: s
w(x|Kk) k(D 2eqp (75 Z(Awt)2>

t=0
K n—2

_ (n-1)/2 S Y

=K 81’1’( 2 t:O(JL’tJrl ﬁ?t) )
1

= k"D 2eqp <752TQm> (5)

where the n X n precision matrix Q is shown in the second
column of Table 3 (zero entries are not shown), and « is the
parameter to be learned.

Learning IGMRF: We learn the IGMRFs by the inte-
grated nested Laplace approximations approach [2]. In essence,
we find the parameter x using maximum a posterior (MAP)
estimation given some prior distribution (k) of k:

argflaxw(ﬂm) = arg}r{nax m(x|k)m(K) (6)

Note that the computation of an IGMRF can be sped
up using the Cholesky factorization Q = LLT, where L is
a lower triangular matrix. With the Gaussian assumption,
Q becomes sparse with O(n) non-zero entries, reducing the
factorization cost from O(n?) in general to O(n) [15].

4.2 1IGMRF Seasonal Models

Gaussian properties of crowd flows: Figure 6a shows
the histograms and the fitted normal distributions using
maximum-likelihood estimation for the forward differences
of the square root of new-flow in a region in BJ and BIKE
(see Section 6.1 for dataset descriptions). Visually, the fitted
normal distributions closely match the histograms. Thus,
we can use our Gaussian assumption for BJ and BIKE



to model the square root of new-flow. We note that the
square root of flows follow Gaussian distribution but the
raw flows do not. We obtain similar results for end-flows
and other datasets and report the complete results in Sec-
tion 6.1. Therefore, we propose to build an IGMRF seasonal
model for the square-root of crowd flows.

Seasonal model: For a periodic time series with period
length F; we design an IGMRF s = (so,$1,...,SF—1) as
a seasonal model, with an additional assumption on the
smooth change between srp_1 and so. The graph G thus
becomes circular: there is an additional edge between the
last timestamp and the first timestamp. Specifically, the
circular graph G is shown in the last column of Table 3. To
impose the circular property of G, we modify the forward
differences for ¢ =0, ..., F — 1 as follows:

As; = S(i+1) mod F — Si

Here the Gaussian assumption is As; % N,k Vi =
0,....,F — 1, and ks € R is the only parameter we need to
learn. The corresponding circular precision matrix @ can be
derived similarly to the case without the seasonal assump-
tion, and is given in Table 3.

4.3 IGMRF Trend Models

Gaussian properties of trend: After the seasonal pattern
is removed from the flows, we obtain the raw residual  — s.
Figure 6b shows the histograms and the fitted normal distri-
butions for the forward differences of these residuals for the
same flows in Figure 6a. Again, it is clear that Gaussian dis-
tributions can be used to approximate these histograms. We
have the same observations for all flow types and datasets,
as statistically shown in Section 6.1. Thus, we can build an
IGMRF trend model as follows.

Trend model: As discussed in Section 2.3, we propose to
add a trend y; to capture the change over time in the sea-
sonal pattern of the i-th timestamp in a period. In particu-
lar, we want to model a time series y; = (yi0, ¥i1, .., Yin, 1),
where n, is the number of periods. The temporal IGMRF
model in Section 4.1 can be used directly for this purpose.
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(a) Seasonal model for SQRT(new-flow)
Figure 6: Gaussian properties of new-flow of one region.

(b) Trend model for new-flow

5. SPATIO-TEMPORAL RESIDUAL MODEL

In this section, we utilize the (intra-region and inter-region)
dependencies among different flows and weather informa-
tion to predict the residuals »r = @ — s — y. Denote rﬁ’t
as the residual flow of type 6 at time t in region u, where
6 € {new,end}. We design our final spatio-temporal resid-
ual model to predict rﬁ)t as a regression problem:

6 T T 6 6 0
ru,t = au,96u7t + ﬁu,ﬂzu,t + (bu,wt + Uu,ht + Yu (7)

where the inputs are:

® J,,: Transit features of region u at time ¢, capturing the
inter-region dependence among flows (Section 5.1.2).

e 2,1 = (rﬁftlﬂi,rf}‘iiﬁ = 1,2,...,L)T: Historical residual
flows of region w at time ¢, capturing intra-region depen-
dence among different flow types, where L is a chosen
history length.

e w;: The weather condition w; at time ¢.
Model parameters (for region v and flow type 6): o0
and (By,¢ are coefficient vectors for du+ and zq¢; ¢Z7wt is a

coefficient for weather condition wy; of . is a coefficient for

u,h¢
the hour in day hy of time ¢; and ~f is an intercept.

Other factors: While we only consider weather and pub-
lic holidays here, if more data is available (e.g., local social
events in each region, traffic accidents, or traffic jams), we
can easily and similarly include it into the residual model r.

We next explain in details how to capture the inter-region
dependence and the effects of weather and holidays.

5.1 Capturing Inter-region Dependence
5.1.1 Bayesian Network Transit Model

The flows of neighboring regions can affect each other due
to the transition of objects among them. This inter-region
dependence can be naturally captured by a Bayesian net-
work transit model as shown in Figure 7a. For an individual
that is moving between regions, when she gets out of a region
R, we predict the next region R’ she will move to and the
time duration d that she will take to complete the transition.
We assume that the next region R’ depends on the current
region R, different hours in a day h, and different types of
days n. Similarly, the transit duration d is dependent on R,
h, n as well as R, where she is traveling to. Hour in day
h can take any integer value between 1 and 24. Days with
similar transit patterns are grouped into one day type. We
discuss how day types n are determined in Section 5.1.3.

Our Bayesian Network can be learned easily and fast by
counting since it has known structure and full observabil-
ity (R, R', h, and n are all pre-defined). Denote h; and
7: as the hour in day and the day type for timestamp ¢ re-
spectively. Once we have learned the conditional probability
functions p(R'|R, ht,n:) and p(d|R’, R, ht,n:), we can com-
pute the probability that an individual getting out from R
at time t will transit to R’ after d timestamps as:

9R,R’ t,d = p(R/|R7 hs, 77t) X p(d|R'7 R, by, 77t) (8)
5.1.2 Transit Features

To capture the influences among regions with regards to
their deviations from the expected flows (s +vy), we apply g
from Equation 8 to the residual flow » = & —s—1y. Here, we
assume that the transition probabilities g are the same for
both the temporal components (s+t) and the residual com-
ponent r. While this is a strong assumption, it eliminates
the need to model the flows between every pair of regions,
which is costly and more susceptible to noise. With this as-
sumption, we define the transit features in Equation 7 as
Out = (007", iﬁd)T, where ;7" is the sum of crowd flows
from other regions to u, and 5Zf§gd is the sum of crowd flows
from u to other regions in the last dmq. timestamps:

dmax
1= Y S X Gue ) (9)
d=1 vER
dmyaz
5 = Z Z(T:f,ezlid X Go,u,t—d,d) (10)
d=1 veR
We define a maximum transit duration dp,qz since most tran-
sitions take a bounded amount of time in real life.
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Figure 7: (a) Bayesian network transit model: At hour h of day type 7, an object takes d timestamps to move from region R to region
R’ on average. (b) Mapping timestamps into 2D-space based on transit patterns using PARAFAC. Each point is for one hour in a day.

5.1.3 Choice of Day Type n

To decide the day type m, we group days with similar
transit patterns using a data-driven approach. Denote Y €
Nnxmxmxdmaz a5 the (timestamp, source region, destina-
tion region, transit duration) tensor, where Viyqq is the num-
ber of trajectories that leave region u at timestamp ¢, and
arrive at region v at timestamps t+d. To compare the tran-
sit patterns at two timestamps ¢ and t2, we can compare the
two sub-tensors )y, ... and Vi,..., which are high-dimensional
and sparse. Thus, to avoid the curse of dimensionality, we
perform dimension reduction using PARAFAC tensor factor-
ization [11]. In particular, } can be factorized into four ma-
trices M € R™™?, H € R™*9, [ € R™*9, and J € RmazX1,
where ¢ is the number of lower dimensions, such that:

a
Yiwva = ZMtiHuilvini (11)

=1

Matrix M is the low-dimension representation of the times-

tamps (each row is one timestamp, and each column is one
dimension). We can use this low-dimension representation
to compare the transit patterns at different timestamps.
Figure 7b shows the mapping result of timestamps into a
2D-space (¢ = 2) for dataset BJ-B (Section 6.1). Times-
tamps are separated into different weekdays and holidays.
Each point in a subfigure is for one hour in a day (marked
as 1 to 24). From these figures, we can visually put the daily
transit patterns into five groups: (i) Monday to Friday, (ii)
Saturday, (iii) Sunday, and (iv) holidays. We thus use these
four day types for BJ-B. Similar results are obtained for
other datasets but not shown due to space limitation.

5.2 Effects of Weather and Holidays

Weather and holidays can affect crowd flows. For example,
Figure 8a shows that thunderstorm may increase the use of
taxi while Figure 8b shows that heavy rain may reduce the
crowd flows at a region compared to its seasonal pattern.
Figure 8b also shows that crowd flows during a holiday can
be significantly different from the flows during normal days.
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Figure 8: Effects of weather and holiday in region 2 in Beijing.

We include weather and holidays into our models in two
ways. First, we build a separate seasonal model for holidays
with the period of a day (Fhotiday = 1 day). Second, we add
a coefficient ¢Z,w , for each region u, flow type 0, and weather

condition w; at time ¢ in the regression (Equation 7).

6. EXPERIMENTS

6.1 Settings

Datasets: We use three different sets of data as summa-
rized in Table 4. Each dataset contains three sub-datasets:
trajectory, region map, and weather data, as detailed below.

BJ: Trajectory data is the taxi GPS data in Beijing in
2015. We categorize weather data into good weather (sunny,
cloudy) and bad weather (rainy, storm, dusty). With our
clustering framework in Section 3, we partition Beijing into
26 high-level regions (Figure 4a). Using Definition 1, we ob-
tain two types of crowd flows. Data for 350 timestamps were
missing for all regions due to system glitches. We choose
data from the last three weeks as testing data, and all data
before that as training data.

NYC: We partition NYC into 15 high-level regions using
its road network and traffic data. The trajectory data is
generated by taxis in NYC in 2013. Trip data includes: taxi
ID, pick-up and drop-off locations and times. The new-flow
and end-flow are thus the number of pick-ups and drop-
offs in a region respectively. Weather conditions include
good weather (sunny, or no available data) and bad weather
(foggy, rainy, snowy). We pick the last-week data for testing,
and data before that for training.

BIKE: Trajectory data is taken from New York City Bike
system in 2014. Trip data includes: trip duration, start
and end station IDs, start and end times. Following [12],
we group bike stations into clusters using their bipartitie
clustering method, and treat each obtained station cluster
as a region, instead of using our own clustering framework
in Section 3. For each region, the new-flow is the num-
ber of checked-out bikes, and the end-flow is the number of
checked-in bikes. We use data from Apr. 1°¢ to Sep. 10"
for training and Sep. 10" to 30" for testing.

Gaussian properties of crowd flows: To statistically
verify if a data sample follows a Gaussian distribution, we
perform the Kolmogorov-Smirnov test (KS-test). If the KS-
test returns a p-value greater than 0.01, the Gaussian hy-
pothesis is acceptable. Table 5 reports the proportion of
regions whose crowd flows follow Gaussian distributions for
each dataset. Note that seasonal models are tested on the
square root of flows, while trend models are tested on the

Dataset BJ NYC BIKE
Data type Taxi GPS Taxi pickup Bike rent
Location Beijing New York New York
Start time 3/1/2015 1/1/2013 4/1/2014
End time 6/28/2015 9/8/2013 9/30/2014
#holidays 10 20 9
Timestamp bin size 30 minutes 1 hour 1 hour
Trajectory data
##taxis /bikes 34K 33.6K 16K 6.8K
#trips/records 11.7M 206.6M 5.4M
F#effective timestamps 2,753 5,880 4,392
#Fmissing timestamps 350 0 0
Region map data
#roads/bike stations 193,663 193,663 32,210 344
#low-level regions 372 215 -
#high-level regions 26 15 23
Weather data
#good-weather timestamps 3,812 4,081 5,398
#tbad-weather timestamps 1,208 358 448
#missing timestamps 486 53 34
Temperature [-7,34]°C [32,90]°F [10,97]°F

Table 4: Datasets (holidays include adjacent weekends).



Dataset
Seasonal Trend | Seasonal Trend | Seasonal Trend

BJ ‘ NYC ‘ BIKE |

new-flow
end-flow

0.96 1 0.93 1 1 1
1 1 1 1 1 1

Table 5: Proportions of regions whose crowd flows satisfy the
Gaussian assumption.

residual of the corresponding seasonal models. We empha-
size that, for the seasonal models, the Gaussian assumptions
are poorly satisfied by the raw crowd flows.

Parameter settings: Each timestamp corresponds to 1
hour for NYC and BIKE, and 30 minutes for BJ. Due to
the differences in the crowd flows between weekdays and
weekends, and between different weekdays (e.g., see Fig-
ure 2), we choose F' = 1 week for the seasonal model s*
during normal days, and F' = 1 day for the seasonal model
s" during holidays. Log-gamma prior is used for the preci-
sion parameter k in Equation 6 as suggested in [15].

Evaluation metric: For evaluation, we use the Root Mean
Squared Error (RMSE), as defined below:

1
my

RMSE@®) = L3 J LS @, — a8 (2)
=1 u=1

where n is the number of regions, m is the number of times-
tamps, zz’t and i’ﬁyt are respectively the true and predicted
values of flow type 6 in region u at time ¢.

Experiments are run on a Debian machine with Intel i7,
3.50GHz CPU and 15GB RAM. The IGMRF models are
implemented using the R-inla package [2].

Baselines: Table 6 lists all compared methods. FCCF is
our final spatio-temporal model. SARIMA is the seasonal
ARIMA model, using only temporal data. We choose the
best parameters for the SARIMA models using the “forecast”
package in R language [6]. LmNei is a naive linear regres-
sion spatio-temporal model. VAR (vector auto-regressive
model) and STARMA (space-time auto-regressive moving
average model) are more advanced spatio-temporal models.
VAR captures the pairwise relationships among all flows,
and has heavy computational costs due to the large num-
ber of parameters. STARMA [7] has fewer parameters
thanks to the spatial constraints, but requires an ad hoc
definition of the weight matrices capturing the relationships
among flows from the same or neighboring regions. HP-
BC-MSI [12], the state-of-the-art prediction framework for
bike-sharing systems, is the most similar to our problem.
HP-BC-MSI predicts the in/new-flows for clusters of bike
stations instead of the noisy individual station flows. Fur-
ther, it first predicts the aggregated flow for the whole city,
and then distributes this flow into each cluster (hierarchi-
cal prediction). However, it does not decompose the flows
into three components as we do. To compare with HP-
BC-MSI, we also predict the flows for the same clusters
of stations by treating them as high-level regions. Finally,
we break down our spatio-temporal model to investigate the
contributions of each component.

6.2 Results

Complete framework: Table 7 shows the RMSE of all
methods. Our complete framework consistently and sig-
nificantly outperforms all baselines. Specifically, FCCF is
22% to 52% better than LmNei, 25% to 50% better than
SARIMA, 10% to 30% better than VAR, and 27% to
70% better than STARMA. VAR exploits the relation-
ship among flows and is clearly better than other baseline

Method [ Description
Temporal models

SARIMA Seasonal ARIMA model, frequency = 24.

S x = s", weekly seasonal model, where s" follows
Section 4.2 with F' = 168.

SH z = s = s + s, where s¥ is a seasonal model
(F = 128) for normal days, s™ is a daily seasonal
model (F = 24) for holidays (Section 4.2).

SHT x = s + vy, SH and trend model.

Spatio-temporal models

LmNei Linear regression of the historical flows of a region
and its neighbors, as well as weather information.

VAR(p) Vector Auto-Regressive model with lag p.

STARMA(p,q)] Space Time Auto-Regressive Moving Average
model [7], p and g are the AR and MA lags.

HP-BC-MSI (BIKE only [12]) Hierarchical prediction + bipar-
tite clustering + multi-similarity-based inference.
SHT+intra x = s+ y + r; r follows Equation 7 without transit
features aT(Su,J, and weather d)z‘w{
FCCFnoWea ® = s+y-+r; r follows Equation 7, without weather
FCCF z = ; + y + 7; r follows Equation 7.
Table 6: Baselines

Model BJ NYC BIKE

New End New End New End
SARIMA 21.20 18.85 || 132.82 142.27 || 20.50 19.38
ImNei 19.17 18.18 || 154.38 146.92 || 22.26 20.62
STARMA(3,1) || 42.46 19.57 || 287.34 161.20 || 26.94 21.01
VAR(5) 15.83 15.83 || 106.81 101.32 || 15.36 13.05
HP-MSI-BC 14.70 15.60
S 17.54 16.38 || 192.77 190.56 || 18.27 18.09
SH 17.18 16.34 || 159.90 155.10 || 17.56 17.33
SHT 16.60 15.80 || 156.06 153.84 || 15.24 14.84
SHTIntra 14.63 14.28 89.04 84.84 11.55 10.92
FCFCNoWea 14.19 14.14 87.93 84.45 10.83 9.83
FCFC 14.17 14.14 87.18 83.89 10.79  9.80

Table 7: RMSE.

methods. While both LmNei and STARMA use spatial
information, they are far worse than VAR, and even worse
than SARIMA, suggesting that the ad hoc assignments of
the weight matrices in STARMA or the naive way of in-
corprating spatial information in LmNei can actually hurt
performance. Moreover, this observation also hints that the
prediction of a future crowd flow depends heavily on its own
history. Finally, FCCF decreases the error by 26% for new-
flow and 37% for end-flow in BIKE compared to HP-BC-
MSI, the state of the art for prediction in bike-sharing sys-
tems, showing the clear benefits of our decomposing flows
into three components.

Temporal components: As seen in Table 7, the sea-
sonal model SH that considers holidays are clearly better
than the one without holidays (S). The accuracy is further
increased when trend is added (SHT). Our seasonal models
S and SH are better than LmNei and SARIMA for the
BJ and BIKE datasets, while worse for the NYC dataset.
This is possibly due to the different levels of noise in differ-
ent datasets. Specifically, the region crowd flows in the BJ
and BIKE datasets are significantly smaller than those in
BIKE, leading to noisier data. Thanks to its probabilistic
nature, our IGMRF models are robust to noise, and thus
give better prediction in the two more noisy datasets.

Spatial-temporal components: SHT+intra combines
the intra-region dependence into SHT, leading to an out-
standing improvement in accuracy. The addition of the tran-
sit features (FCCFnoWea) further reduces RMSE, which is
more significant for BIKE than for the other three datasets,
since bike trips are generally longer than taxi trips, and of-
ten take more than one 1-hour timestamp to complete. In



other words, the bigger the ratio between the average trip
duration and the timestamp duration, the bigger the impact
of inter-region dependence for short-term flow predictions.

Weather effect: The addition of weather (FCCF) im-
proves the accuracy for all datasets except the end-flow of
BJ, possibly due to the high number of timestamps with
missing weather data in BJ.

Multi-step-ahead prediction: To predict the crowd
flows for multiple steps ahead, we change the left hand side
of Equation 7 from rfm to 'rﬁ,t_,_A, for A € {1,2,3,4}. Fig-
ure 9a shows the results. Clearly, the farther in the future,
the harder the prediction and the higher the error.

Training period: Figure 9b shows the errors as we vary
the length of the training period from 1 month to all avail-
able months (4 months for BJ, 84+ months for NYC, and
5 months for BIKE). While more training data generally
leads to higher accuracy, the addition of more training data
after 3 months does not improve the results significantly.

Missing data: We evaluate the robustness of our frame-
work against missing and noisy data by making predictions
when a proportion (20%, 50%, and 70%) of the timestamps
is randomly removed from the training datasets for all re-
gions. As shown in Figure 9¢, even when 50% of the training
data is missing, the performance of FCCF is still excep-
tionally good. Specifically, FCCF with 70% missing data
is still better than VAR with complete data, and signif-
icantly outperforms SARIMA, LmNei, STARMA, and
HP-BC-MSI with complete data (as shown in Table 7).

Efficiency: Figure 9d shows the running times without
any parallelization. As can be seen, the total time for offline
training is less than 10 minutes for all three datasets. More
importantly, online prediction takes less than 1 minute for
all datasets, showing that our framework is practical for real-
time prediction of citywide crowd flows. In practice, we can
train the temporal models & and y in parallel for all flows.

6.3 Case Studies

Figure 10a shows the region map for lower Manhattan and
Brooklyn, New York, for BIKE in 2014. To show that our
framework can capture the sudden deviations of crowd flows
from their usual patterns, we investigate two anomalous case
studies: suddenly decreased and suddenly increased flows.

During a rainy day (Figure 10b, region R9, Sept. 13",
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Figure 9: FCFC: (a) Multi-step ahead prediction; Effects of (b)
fewer training data and (c¢) randomly missing data. (We plot
RMSE/10 for NYC dataset for clearer figures). (d) Running time
for training and predicting.

2014), the flows of bikers were significantly reduced. From
1pm to 3pm, the weather turned from sunny to foggy with
strong wind, making people wary of traveling by bike. Thus,
the true end-flow (red solid line) into region R9 became
smaller than its seasonal pattern (SHT, brown circles). From
4pm, it started to rain, leading to a big decrease of flows and
deviation from SHT. By including the recent history of R9,
SHT+intra (blue empty circles) better tracks the true flow
but is still far from the truth. FCCF (diamonds) further
notices the reduction of crowd flows from other regions into
R9 due to bad weather conditions, and improves the predic-
tion significantly compared to SHT +intra.

On Sept. 17", 2014, an enormous flow of people traveled
to Zuccotti Park in region R1 to celebrate the three-year an-
niversary of Occupy Wall Street protest at 8am. Figure 10a
shows the large crowd flows from different origins traveling
to R1 before 8am. As a result, the end-flow of R1 at 8am,
as well as the new-flows of these origins (e.g., R2, R3, R5,
RT) during the previous hours were anomalously higher. For
example, an increase in the new-flow of region R2 at 7am
(Figure 10c, red solid line) led to a later increase in end-flow
of R1 at 8am (Figure 10d, red solid line), as annotated by
the arrows. Model SHT+intra (blue circles), which only
considers the history of region R1, fails to predict this sud-
den increase at 8am, as pointed out by the red arrow in
Figure 10d. Whereas, FCCF (diamonds) captures the sud-
den increase in new-flows from other regions in the previous
hours and thus much better tracks the ground truth of R1.
Note that there is still room for improvement; for example,
if we had known that Occupy Wall Street would happen be-
forehand, we may include one more coefficient for local social
events in the residual model » to further improve prediction.

7. RELATED WORK

Human Mobility Prediction: Prior research [4, 18, 19,
26] has been done to predict an individual’s movement based
on their location history, in order to enable context-aware
computing that can facilitate the individual’s daily life, such
as suggesting driving directions, pushing promotion coupons,
or predicting human mobility under disaster scenarios. Un-
like such research, we forecast the aggregated crowd flows in
a region rather than millions of individuals’ mobility traces.
The latter is very difficult, computationally expensive, and
not necessary for the application scenario of public safety.
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Figure 10: Crowd flow prediction for BIKE, in NYC, 2014.



Traffic Condition Prediction on Roads: Another branch
of research has been conducted to predict travel speeds and
traffic volume on road networks. The majority of such re-
search [1, 8, 9, 17] focuses on the prediction on a single (or a
few) road segment(s), rather than a city-scale prediction. A
number of works also use Bayesian network approach [20, 22]
and Markov Random Fields [3] for road traffic forecasting.
Some recent studies [16, 21] try to scale up the prediction
throughout an entire city, with a diversity of models, such as
matrix factorization and tensor decomposition. [5] presents
research on developing models that forecast traffic flow and
congestion in a deployed traffic forecasting service.

Our method differs from the above problems in the fol-
lowing aspects. First, we study the crowd flows in a region
rather than traffic conditions on a road segment. The region-
based flows provide a macro-level view of city traffic, which
is important not only for traffic management but also for
public safety. The four types of flows we considered are only
meaningful within a region setting. In addition, people can
cross regions without being constrained by road networks,
for example, by walking or subway systems. Second, given
the four types of flows, our problem becomes more difficult,
as there are dependencies between different types of flows
in a region and dependencies between flows of different re-
gions. Third, we cluster regions into groups based on flow
patterns, predicting the crowd flows in a cluster. The latter
can deal with the data sparsity and help adjust the flow in
each individual region belonging to the cluster. That is, we
have flow prediction at both fine and coarse granularities.
Urban Computing: Recently, the proliferation of big data
in cities has fostered new research on urban computing [27],
which aims to tackle urban challenges (such as traffic conges-
tion and air pollution) by using data science and computing
technology. A branch of research also partitions a city by
major roads [25], and then studies the traffic flow between
regions, for example, detecting traffic anomalies [13] and
problematic urban design [28], or understanding the latent
function of a region [24]. Our research is also a step towards
urban computing, but different from them by the problem
setting. To the best of our knowledge, in the field of urban
computing, forecasting the crowd flows has never been done
at the scale of a city and in a data-driven way.

8. CONCLUSION

In this paper, we propose the novel problem of predict-
ing the flows of crowds in a city using big data, which is
strategically important for traffic management and public
safety. We propose a scalable prediction framework that ex-
ploits multiple complex factors affecting the crowds and de-
composes the crowd flows into three components: seasonal,
trend, and residual flows. Thanks to the IGMRF models
and the cluster-based adjustment, our framework is robust
to both noise and missing data. Experiments show that our
approach is scalable and outperforms baselines significantly.

While we treat each type of trajectory data separately in
our experiments due to the restriction of available data, the
crowd flows can be measured as an aggregation of all types
of trajectories if available (e.g., phone signals, GPS data,
and subway card swiping data). Our framework still applies
to such cases as is. Last but not least, if more information
is available (e.g., local social events, traffic jams, or traffic
accidents in each region), it can be easily incorporated into
our residual model 7 to further improve prediction accuracy.
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