InstantLab 2.0 - A Platform for Operating System Experiments on Public Cloud Infrastructure

Prof. Dr. Andreas Polze / Christian Neuhaus
with Rehab Alnemr, Lysann Kessler, Frank Schlegel

Cloud Futures, Berkeley, May 7th 2012
Many years experience in Windows-based OS classes

InstantLab 2.0 employs Windows Research Kernel (WRK)

- Stripped down Windows Server 2003 sources
 - Only kernel itself, no drivers, GUI, user-mode components
 - Missing components: HAL, power management, plug-and-play
- Released in 2006
- Freely available to academic institutions
- Encouraged by license:
 - Modification
 - Publication (of excerpts)
Structuring Experiments: The UMK Approach

- **U-phase**
 - Concentrate on OS concepts
 - Introduce OS interfaces
 - Systems programming

- **M-phase**
 - Observe concepts at run-time
 - Introduce monitoring tools
 - System measurements

- **K-phase**
 - Discuss kernel implementation
 - Introduce kernel source code (WRK/UNIX)
 - Kernel programming

The burden of running OS experiments

- Teaching operating systems requires chances for hands-on experience and demonstrations on live systems
- Providing these experiments is hard:
 - Changes of the underlying hardware and software make it hard to reproduce results
 - Considerable set-up work is required

Solution

InstantLab 2.0
InstantLab 2.0: Challenges & Solutions

• **Problem #1:**
 • Changes of hardware and software make it hard to reproduce experiment results (after more than 5 years of WRK in class)

 • **Solution:**
 • Run experiments in virtualized environments
 • Set of „canned“ experiments available via MSDN AA

• **Problem #2:**
 • Users (lecturers/students) need to set up and maintain experiment environment

 • **Solution:**
 • Experiment provisioning on cloud infrastructure
 • But: Which provider? Public/private?
Everything in the cloud, flexible choice of providers

- U/M experiments are easy
- K experiments are best run in private cloud
- User/Experiment management is big challenge
K experiment with two interconnected VMs – running kernel debugger and system under test.
InstantLab 2.0: Making it public

- So far: InstantLab accessible by invitation only
 - Our students (undergrad OS class)
 - A few connected schools

- The current trend: making teaching material available online

- InstantLab 2.0:
 Make experiment resources available to the public
 - Using public cloud infrastructure (easy)
 - On a self-service platform (tough)

InstantLab 2.0: Everything Self-Service

- InstantLab 1.0: Limited group of known users
- InstantLab 2.0:
 - Potentially thousands of users
 - Users we don’t know nothing about!
 - Problem:
 - How to manage and administer all these people?
 - How to decide who gets to use which resources

- Our Solution: A self managed version of InstantLab
 - Access control to resources based on trust relationships
 - Fully-automatic provisioning of experiments
How to distribute resources
(sponsors may be want to address certain target groups)

- Experiments on public cloud infrastructure consume resources and cost real money!
- Resources for a public teaching programme are limited
- Access control to experiment resources should:
 - ... foster earnest and competent users
 - ... limit misuse and wasting of resources.

Reputation and Trust

- How to rate a user as „beginner“, „advanced“ or „expert“?

- Behavior of user on the platform constitutes a user’s reputation:
 - Evaluation of completed experiments
 - Community interactions (e.g. contribution to support forums)
 - Online lessons and quizzes
 - Referrals and recommendations

- Reputation, interpreted by one’s own weighting and calculation scheme constitutes trust
Trust-based Access Control – the idea

Trust:
- is real-valued: e.g. \(t = 0.73 \)
- multi-dimensional:
 - correct computation, reliability, benevolence
- can be applied between machine entities and humans

Building and Maintaining Trust Levels

The trust value for every InstantLab users:
- ... is set to an initial value.
- ... is updated by transactions with this user.
Making Access Control Decisions

- Access to experiment resources requires a certain level of trust

<table>
<thead>
<tr>
<th>Experiment Repository</th>
<th>Kind of Experiment</th>
<th>Req. Trust</th>
</tr>
</thead>
<tbody>
<tr>
<td>user mode experiments</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>metering experiments</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>kernel experiments</td>
<td>0.95</td>
<td></td>
</tr>
</tbody>
</table>

\[t \geq t_{\text{min}} \]

\(t \geq t_{\text{min}} \)

user mode: yes
metering: yes
kernel mode: no

Resource allocation – Trust revisited

- Reputation influences Community
- Community gives privileges
- Trust activates
- Public increases
- Private increases
- Public
- Private
Our private cloud – OpenNebula

- Private + Public Cloud
 - C12G Labs, Microsoft, CERN
 - 4CaaSt, BonFIRE, CERN, CESGA, D-Grid Resource Center Ruhr, Deltacloud, RESERVOR, SARA, StratusLab

Authentication

- OpenID
- OAuth
- Windows Live ID
Connecting with the Cloud

Future SOC Lab @ HPI – our private cloud

- Vision was to establish an open research platform for tomorrow’s IT landscape, start: June 2010
- Industry partners
 - Fujitsu
 - Hewlett-Packard
 - SAP
 - EMC
 - VMware
 - NetApp
 - Intel SCC

Application areas:
- Large Databases
- Consolidation, Virtualization
- High-Performance Computing

Testbed:
- MultiCore MultiThreading
- Hardware, huge memories, NehalemEX-based, GPU computing

- HP ProLiant DL980 G6: 64 Cores, 1-2TB
- Fujitsu Primergy RX600S: 32 Cores, 1TB

Steering committee from industry and academia
Conclusions – InstantLab 2.0

- Maintaining OS experiments for teaching is cumbersome
 - Virtualization may be the answer in provider side
 - Consumer still has to maintain experiment environment
- Putting experiments on the cloud lifts burden on consumer side

- Not all clouds are equal
 - In particular, none of the public clouds allows requesting co-located VMs or even worse – co-located physical machines
 - Need generic architecture for public/private clouds

- Everything has to be self-managed – otherwise it won’t scale
 - Notion of Trust and Reputation is crucial
 - Adopt techniques established for social networks