

IT Systems Engineering | Universität Potsdam

InstantLab - The Cloud as Operating System Teaching Platform

Alexander Schmidt, Andreas Polze Operating Systems and Middleware Group

Cloud Futures 2011

Operating Systems and Middleware

Prof. Dr. rer. nat. habil. Andreas Polze Dipl.-Inf. Alexander Schmidt Hasso-Plattner-Institute for Software Engineering at University Potsdam Prof.-Dr.-Helmert-Str. 2-3 Alexander Schmidt, Andreas Folze | Cloud Future 2011 | June 2, 2011

- 1. Operating System Experiments the Windows Case
- 2. InstantLab
- 3. Demo
- 4. Research Questions
- 5. Conclusions

Windows Research Kernel (WRK)

- Stripped down Windows Server 2003 sources
 - Only kernel itself, no drivers, GUI, user-mode components
 - Missing components: HAL, power management, plug-and-play
- Released in 2006
- Freely available to academic institutions
- Encouraged by license:
 - Modification
 - Publication (of excerpts)

Alexander Schmidt, Andreas Polze | Cloud Futures 2011 | June 2, 2011

Structuring Experiments: The UMK Approach

- U-phase
 - $\hfill\Box$ Concentrate on OS concepts
 - Introduce OS interfaces
 - Systems programming
- M-phase
 - Observe concepts at run-time
 - Introduce monitoring tools
 - System measurements
- K-phase
 - Discuss kernel implementation
 - Introduce kernel source code (WRK/UNIX)
 - Kernel programming

Kernel Programming Experiments

- Debugging/Instrumenting the WRK
 - Boot phase
 - Process creation
 - Single-step debugging the WRK in a virtual machine
- Creating a new system call
 - Hide/Show a specified process from the system
 - Memorize hidden processes
 - Implement a system service DLL
- Memory management

Alexander Schmidt, Andreas Polze | Cloud Futures 2011 | June 2, 2011

Kernel Programming Experiments – Bottom Line

- Experiments comprise
 - Documentation
 - Source code
 - Workload generators
 - Measurement/visualization tools
- Experiment setup:
 - Install and configure test operating system
 - Build and deploy the sources
 - Configure kernel debugging infrastructure
- Virtualization helps, but
 - Variety of OS platforms, virtualization vendors among students
 - Hardware requirements

- 1. Operating System Experiments the Windows Case
- 2. InstantLab
- 3. Demo
- 4. Research Questions
- 5. Conclusions

Alexander Schmidt, Andreas Polze | Cloud Futures 2011 | June 2, 2011

The InstantLab Idea

- Provision of "canned experiments"
 - Virtual machine images (VMI) as foundation
 - Self-contained, pre-configured experiment in one VMI
 - Instantaneous execution of a lab or experiment on Cloud resources

Embrace The Cloud

- Virtualize laboratory environment
 - No physical machines in university, no maintenance
 - Compute resources in the Cloud
- Migrate exercises and demos into the Cloud
 - Provision of VM template(s) for each exercise
 - Instantiation on demand
- Facilitate experiments through remote display session
 - Run experiments in Web browser
 - Support of various platforms and compute power

- 1. Operating System Experiments the Windows Case
- 2. InstantLab
- 3. Demo
- 4. Research Questions
- 5. Conclusions

Alexander Schmidt, Andreas Polze | Cloud Futures 2011 | June 2, 2011

Facilitating Remote Access Hyperv Virtual Machine VNC Server Rails App Proxy Adapter Adapter Adapter Alexander Schmidt, Andreas Polze Lioud Futtures 2011 June 2, 2011

InstantLab Demo – Working Set Replacement Experiment

InstantLab Demo – Lab Management

Alexander Schmidt, Andreas Polze | Cloud Futures 2011 | June 2, 2011

Agenda

- 1. Operating System Experiments the Windows Case
- 2. InstantLab
- 3. Demo
- 4. Research Questions Cloud Reliability
- 5. Conclusions

Dependability – does it matter for Cloud?

Umbrella term for operational requirements on a system

 "Trustworthiness of a computer system such that reliance can be placed on the service it delivers to the user" [Laprie]

General question: How to deal with unexpected events?

Alexander Schmidt, Andreas Polze | Cloud Futures 2011 | June 2, 2011

Hardware Revolution in the x86 World

Classical Reliability Wisdoms Get Replaced

- Dramatic shift in single machine reliability aspects
 - SMP becomes heterogeneous tiled on-chip network
 - Decreasing structural sizes + dynamic frequency and voltage
 - Massive memory increase
- More fault classes, less error containment!
- Few research results from HPC perspective
 - □ Type and intensity of workload significantly influences life time
 - □ Failure rates depend on processor count, not hardware type

Alexander Schmidt, Andreas Polze | Cloud Futures 2011 | June 2, 2011

Research in the FutureSOC Lab

HPI FutureSOC Lab

 Collaboration with industry for software research on next-generation x86 hardware (32-65 cores, 1-2 TB RAM)

Our research @ FutureSOC Lab

- Failure prediction based on cross-level monitoring data analysis
- Pro-active virtual machine migration
- Fault injection based on UEFI firmware technology

CPU Level: Online Hardware Failure Prediction

Using X86 hardware performance events

- Instruction retirement, cache miss, branch miss-prediction, ...
 - Limited number of hardware counter units -> exploit event correlations
 - Threshold-triggered, time-triggered
- Applicable to major cellular multiprocessing platforms (Intel, AMD, SPARC, IBM Power)

Alexander Schmidt, Andreas Polze | Cloud Futures 2011 | June 2, 2011

Memory level: observations from our FutureSOC Lab

Severity |Event| Source Description Date 15-Jun-2010 13:47:12 | Info | No | BIOS | System boot (POST complete) 15-Jun-2010 13:45:53 | Major No | [0x00:00] | POST - 'MEM4_DIMM-2D' memory training failed 15-Jun-2010 13:45:53 | Major No | [0x00:00] | POST - 'MEM4_DIMM-1D' memory training failed 15-Jun-2010 13:45:53 | Major | No | [0x00:00] | POST - 'MEM4_DIMM-2B' memory training failed | No | [0x00:00] | POST - 'MEM4_DIMM-1B' memory training failed 15-Jun-2010 13:45:53 | Major 15-Jun-2010 13:45:53 | Critical | Yes | SMI | 'MEM4_DIMM-1D' Memory: Uncorrectable error (ECC) 15-Jun-2010 13:45:53 | Critical | Yes | SMI | 'MEM4_DIMM-1C' Memory: Uncorrectable error (ECC) 15-Jun-2010 13:45:53 | Critical | Yes | SMI 'MEM4 DIMM-1B' Memory: Uncorrectable error (ECC) 15-Jun-2010 13:45:53 | Critical | Yes | SMI 'MEM4 DIMM-1A' Memory: Uncorrectable error (ECC) 15-Jun-2010 13:45:40 | Critical | Yes | iRMC S2 | 'MEM4_DIMM-2D': Memory module failed (disabled) 15-Jun-2010 13:45:40 | Critical | Yes | iRMC S2 | 'MEM4 DIMM-1D': Memory module failed (disabled) 15-Jun-2010 13:45:40 | Critical | Yes | iRMC S2 | 'MEM4_DIMM-2B': Memory module failed (disabled) 15-Jun-2010 13:45:40 | Critical | Yes | iRMC S2 | 'MEM4_DIMM-1B': Memory module failed (disabled) 15-Jun-2010 13:43:43 | Info No BIOS System boot (POST complete) 14-Jun-2010 17:41:47 | Critical | Yes | IRMC S2 | 'MEM4_DIMM-1D': Memory module error 14-Jun-2010 17:26:17 | Major Yes | iRMC S2 | 'MEM4_DIMM-1D': Memory module failure predicted

The Meta Predictor - Bringing it all together Institut Application & Middleware Failure Predictors VMM Hardware Failure Predictors Ensemble learning: Boosts accuracy - which failure-prone situations can best be identified by either hardware, OS, VMM failure predictors? Domain knowledge - operating system vendors know their system best and can

Pluggable – domain predictors provided by an application vendor can easily be

provide the most advanced predictor on OS level

Alexander Schmidt, Andreas Polze | Cloud Futures 2011 | June 2, 2011

integrated into our anticipatory virtualization architecture

Ensemble-learning can combine predictions across all system levels

Hasso

Plattner

- 1. Operating System Experiments the Windows Case
- 2. InstantLab
- 3. Demo
- 4. Research Questions
- 5. Conclusions

Alexander Schmidt, Andreas Polze | Cloud Futures 2011 | June 2, 2011

Applying it to the Cloud

- Servers have evolved cloud will too
 - Ever growing number of CPU cores
 - Tremendous amounts of memory
- Reliability will become the most sought-after feature of future server systems
 - Higher density, integration levels in future CPUs will lead to multi-bit faults
 - Failure prediction and VM migration as promising concept
- Must have fault isolation boundaries (LPARs, blades)
- Cloud will embrace new programming and management models

