Introducing Cloud Computing into STEM Curriculum Using Microsoft Azure

B. Ramamurthy
Computer Science and Engineering Dept.
University at Buffalo
bina@buffalo.edu
http://www.cse.buffalo.edu/faculty/bina
Introduction: A Golden Era in Computing

- Powerful multi-core processors
- General purpose graphic processors
- Superior software methodologies
- Virtualization leveraging the powerful hardware
- Wider bandwidth for communication
- Proliferation of devices
- Explosion of domain applications
Topics for Discussion

- People involved in this project
- Challenges in introducing Cloud Computing
 - Educational imperative
 - Efficacy of existing methods
 - Cloud models
- General approach introducing cloud computing to STEM curriculum
- A Transformative Pedagogy
- Demo 1: Name2Face: Addressing CSE audience
- Demo 2: Digital Biology: Addressing broader STEM audience
- Features of Azure and Challenges
- Summary
People on this project

- This is a work in progress.
- Damian: an **undergraduate** sophomore honors student who chose to work on this project as his **summer research**
- Suchismit: a **graduate** student with deep theoretical background who wants work with cloud computing **research**
- Ying: an enthusiastic **female graduate** student who likes to implement **projects on the cloud**
Challenges in introducing Cloud Computing

- More people are familiar with cloud computing when compared to the Internet during its infancy
- Educators as well as students want to learn and use the “cloud” and “cloud computing”
- However,
- CSE and STEM (Science, Technology, Engineering and Mathematics) curriculum is quite rigid steeped in tradition and standards
- Current curriculum is so overloaded there is very little opportunity for new material
- Server-side and large-scale application development is indeed a challenge with storage needs, ports, web servers, firewall and vulnerabilities
- Educators are overwhelmed preparing for the dense content of the existing curriculum, newer concepts take a backstage
Educational Imperative

- Need a highly effective learning approach/pedagogy for introducing emerging concepts to undergraduates
- Concepts: parallelism, algorithms for knowledge discovery, services-oriented design, large-scale data-intensive analytics, design for high-performance and automatic load balancing, large-scale storage and monitoring for access control and performance.
- *Cloud computing* encompasses these concepts.
- Need to provide broad access to these concepts irrespective of the discipline
- Need to excite and *engage the net-generation*.
- The learning should be *organic.*
Efficacy of existing methods

- Cloud computing discussed as a part of distributed systems course.
 - Ex: I was awarded an NSF CCLI grant for data-intensive computing certificate program.
 - But this is just one program, we need a systemic change and a solution that can be adopted and adapted widely.
- Microsoft and other organization’s effort during conferences such as SIGCSE to promote emerging technologies
 - Excellent informational overview; however typically not aligned with the curricular needs and limitations.
- …
Cloud Models

- Amazon EC2: nuts and bolt: good for experienced students (IaaS)
- Google App Engine: software-based; needs knowledge of services-based programming (SaaS)
- SalesForce.com: polished applications; more for business-oriented use (AaaS)
- Microsoft Azure Platform: (PaaS)
 - Provides a logical framework for modeling and design, and for teaching important computational concepts
 - Offers easy migration into cloud for schools who are already using MS academic licensing (Visual Studio)
 - Provides easy to understand building blocks: web role, worker role, blob storage etc.
Our Approach

- We will develop a complete set of self-contained modules *customized and aligned* to the contents of specific courses.
- *Sustainability* through the levels of a curriculum allowing for a spiral mode of learning.
- Educators can use these readily usable modules to introduce Azure cloud computing seamlessly by *spending about a week’s lecture* (about 3 lecture hours).
- Modules will be updated with versions of Azure.
- We will use an application *Name2Face* as a core-seed application and extend it incrementally to address issues across curriculum.
- It is a simple application that is more a metaphor for mapping, correlation and association *engine* that powers most modern applications.
Name2Face Details

- We have chosen an easy to understand application.
- Data Structure(s): A list of faces and names.
- Algorithm: Given a name, the application displays the images of faces associated (tagged) with the name.
- Demo 1: Here are more Azure details and the demo of the application.
More details

- We use web role, worker role, and blob storage
- Web role presents the user interface to load the image, tag the image, and to search for an image given a tag/name
- Web role talks to worker through message passing via a queue
- Message contains the tags, path to the image
- Worker role creates a thumbnail of the image (representative of any work) and loads into the blob storage
- Illustrates: loose coupling, message passing, blob storage service, service authentication through PKI
- Worker roles can be complex and implement any algorithm being taught in a CSE course.
Application Architecture for the demos

- Web role
- queue
- Worker role
- Blob storage
- Worker role
- Table
Transformative Pedagogy

- Includes a set of modules that provide *entry points* into cloud computing for educators.
- These are ready to use, self-contained modules *aligned to the contents* of the courses at various levels.
- These modules allow for *repeated exposure* to fully comprehend the broad utility of the cloud and to *gain competence* in using cloud computing.
- *Server-side enterprise-level* application development is a simple extension of monolithic single-tier development.
- Next we present a few *representative modules* of this pedagogy.
- Detailed report of this pedagogy has been sent to Microsoft and will be available in a future publication.
Module 1: Data Structures

- CS1 and CS2 are the first courses in Computer Science;
 - Azure cloud installation and the Name2Face are introduced with various data structures and algorithms.
 - Develop and deploy on Azure cloud.
 - In memory data-structures.
 - Some representative outcomes:
 - Students exercises can compare performance of arrays, list, maps, trees etc..
 - Emphasis on worker role
 - Development and production environments provide the students with professional practices in software development.
 - This module well suited for K-12 as well as Community Colleges.
Module 2: Algorithms

• This covers the *programming language* course and the advanced *algorithms* course (at 200 and 300 levels).

• Azure cloud’s Blob storage is introduced for large scale storage for Name2Face.

• Some representative outcomes:
 ◦ Student exercises can study the various sort, search algorithms.
 ◦ Loose coupling; *enterprise level development*
 ◦ Web role and worker role can be utilized creatively to illustrate programming language concepts; Lambda expression, first class objects, parallelism constructs
Module 3: Database and Web services

- Distributed systems, database systems with 4XX course levels
- Persistence models, *data models, cloud database and database as a service*.
- Learning outcomes:
 - Flexibility of the Azure Table structure
 - Working with SQL Azure data models
 - REST web services access to storage
 - Loose coupling web and worker roles and the storage
 - Scalability of tables and blobs; load balancing, multiple instances of roles
 - Lesson in realizing security through certificates
Module 4: Applications

- STEM application domains: data-intensive computing, digital biology for example; *Capstone projects*
- Applications drive the advances in technology
- Expected outcomes:
 - Introducing Azure cloud to other STEM disciplines
 - Provide entry point for non-CSE students
 - Service bus, access control, caching (for CSE)
20th century is a century of physical sciences; 21st century is a century of great understanding of life

- Biological infrastructures
- Data-intensive computing for biological problems: specifically genetics, human genome exploration, analysis of high-throughput sequence data, etc.
- We will discuss some background information and demo a biological index/search application on Azure.
Unstructured data example (English language)

- Thes booke is on the tble

- Thes booke is on the tble

- This book is on the table

- Mutation (e instead of i)
- Insertion of e
- Deletion of a
Vertebrate Mammalian Genome

Size 247259409 bytes : 247M (one of many files)

TATTTAAAAAGCACATCTGCCCAAGGCGCTTCCCCAGACTAAACGCCACTTTTCTCATTCCCATTCCCTTTGCGTCAC
CCTAACCTTCTTTTCCCCCAGCTTTCCAGCCTACAGCACTATTATGTTTATTTATTTATTTATATTGATCTC
TGTCCTCCCCGACCCCCTAGACTGTGAGCTCAGTCTGAGGGAGGGGATGTGACTGTGTTTATTGTACCTACAGACAGATGCTG
AGAACAGGGGMGACACTGTGATGTGAGGGCTTGTCTGAGTGTTCGTTTGTATAGTGAGCACTAAACTACC
CCAATTATTATGCATTGTGATGTTTCTCGGAATGCTACTAGTCATTGGATTATTTTTCCATGGGATGTTTTATTTCTCCA
AGCATTATTTCATTGACCTTCTTTCTGTTTCTAACTGAGTGCAAGTAACGTCTACTTCAAAGATGGAGGAACATCCT
AGTGTCTGGCAAGAGGAGGCTGAGCTAGCTTTTAGTAGCGTAGTGCTTGTGATAGTACAGTAAGCACTAAATACC
CCAATTATTTATGCAATGCTATGTTTCTCGGAATGCTACTAGTCATTGGATTATTTTTCCATGGGATGTTTTATTTCTCCA
Reference sequence and query sequence

• Assume the reference sequence given in the last slide:
 • Below is a six residue peptide for DPZ, a protein which acts as a tumor suppressor. HPV (human papillomavirus) is a virus that binds to DPZ and degrades it, causing oncogenesis.
 ▫ Codon sequence for: Glycine – Leucine – Glycine – Phenylalanine– Asparagine– Isoleucine
 ▫ GGT, CTT, GGT, TTT, AAT, ATT

• Query sequence: GCTCTTGCTTTTAATATT
• Now add all the possible mutations, insertions, deletions in the reference sequence 😞
• Diagnose using (data-intensive) computational methods, the probability of oncogenesis in the person with a given reference sequence.
Microsoft Biology Initiative (MBI)

- Microsoft Biology Foundation (MBF)
- Microsoft Biology Tools (MBT)
- Excellent resource with many packages with Apache license.
- From Microsoft Cambridge Research.
- Fertile source for applications that can be staged on Azure.
- This leads us to demo 2.
Features and Challenges

Great features:
- Access to cloud computing through Visual Studio
- PKI-based authentication for storage/server
- Table storage is very intuitive and highly flexible

Challenges
- The message queue between the web and the worker roles is a bottle neck
- The interaction of this queue under .Net’s parallelism features need to be further studied by Azure designers.
- Internal workflow and internal operation of Azure to be clarified: what can and cannot the web role do? Worker role? Best practices?
Summary

- Cloud is an exciting and high impact infrastructure
- MS Azure offers excellent resources for teaching cloud computing at all levels
- It is imperative that our workforce is instructed on this emerging technology to enable them to create innovative cloud-based computing models and novel research directions to solving urgent problems
- In this talk we demonstrated a systematic approach that provides entry points and pathways to access Azure cloud computing.