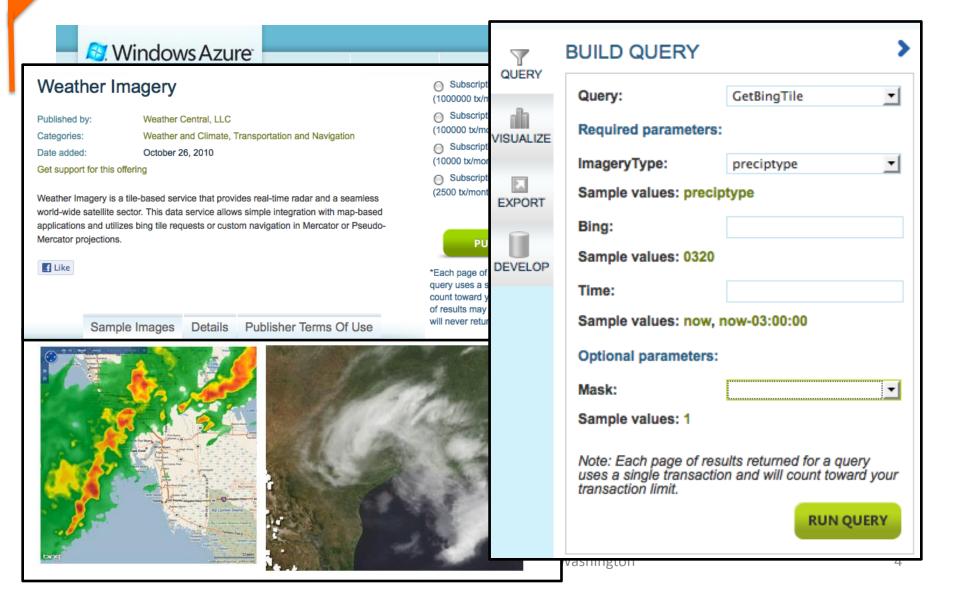
Relational Data Markets in the Cloud: Challenges and Opportunities

Magdalena Balazinska

Joint work with Bill Howe, Dan Suciu, and the database group
University of Washington

Cloud Data Markets


- Data is valuable!
 - Real-time stock prices + trade data: \$35,000/year (https://www.xignite.com)
 - Parcel information: \$60,000/year(https://datamarket.azure.com)
- Data can help businesses and application developers

Cloud can facilitate buying and selling data

Data Markets

- Single, logically centralized point for buying/selling data, often facilitated by cloud computing
 - datamarket.azure.com
 - www.infochimps.com
 - www.customlists.net/home
 - www.aggdata.com
 - **—** ...

Azure DataMarket

Technical Challenges

How to price data?

What tools does a data market need?

Current Data Pricing Models

- Subscription based (Azure DataMarket):
 - Fixed number of <u>transactions</u> per month
 - Each transaction = 100 records

- <u>Fixed price</u> for the entire dataset (Customlist)
 - Data owners define subsets and sell at lower price

Contact Us Available Databases FAQ **About Us** Home Guarantee

Canadian Business Database

Our Price: USD\$699.00

Special Price: USD\$399.00

Buy Now >

CustomLists.net is proud to bring you the Canadian Business Database. This is the most comprehensive database of its kind available and is also one of the most up-to-date with data continually updated on a daily basis.

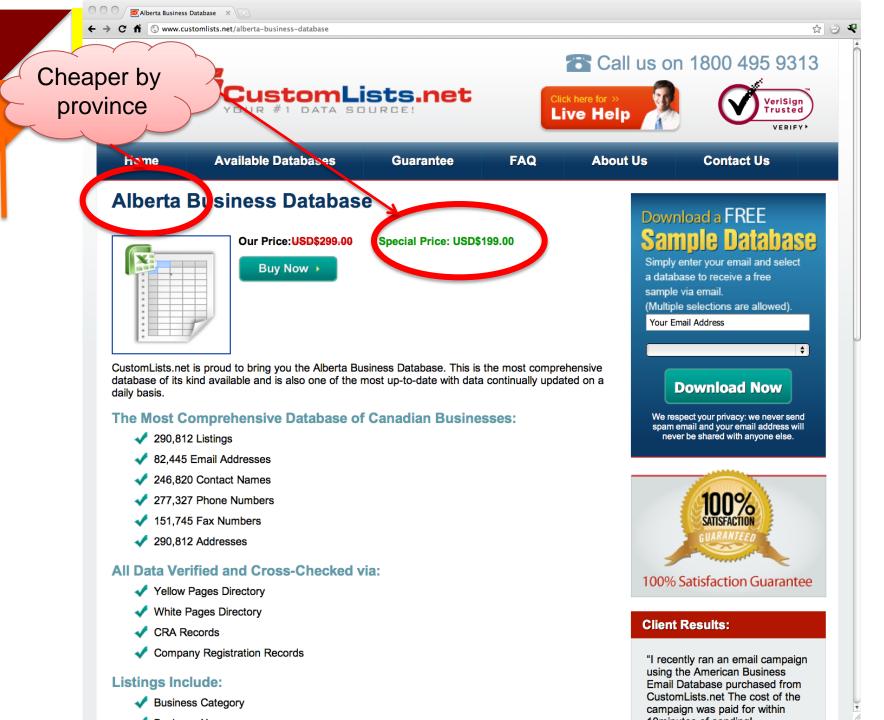
hensive Database of Canadian Businesses: The Most

- 2.3 million Listings
- 410,638 Email Addresses
- 1.9 million Contact Names
- 2.2 million Phone Numbers
- 834,525 Fax Numbers
- 2.3 million Addresses

All Data Verified and Cross-Checked via:

- Yellow Pages Directory
- White Pages Directory
- CRA Records
- ✓ Company Registration Records

Listings Include:


- Business Category

Client Results:

"Fast, prompt and friendly service. We will continue to use CustomLists.net for our clients marketing lists." Michael Sanders

Data Pricing Issues

- Lump sum or subscription pricing is inflexible
 - For lump sum, can only buy pre-defined views
 - For subscription, can only ask pre-defined queries
- Not clear how to price updates

Data Pricing Issues (continued)

- Today's data pricing can have bad properties
- EX: Weather Imagery on Azure DataMarket
 - 1,000,000 transactions -> \$2,400
 - **–** 100,000 **->** \$600
 - **–** 10,000 -> \$120
 - $-2,500 \rightarrow 0
- Arbitrage opportunity:
 - Emulate many users
 - Get as much data as you want for free!

Data Pricing Issues (continued)

 Not clear how to price the output of queries that correlate multiple datasets

And how to support queries across data owners?

No principled method for pricing data

Alternative Pricing Models

- We are studying different pricing models
 - Pricing using the PRICE-semiring
 - Pricing using provenance expressions
 - View-based pricing
- Goal: address pricing challenges through
 - Fine-grained data pricing
 - Automatic price derivations for complex queries
 - Price extrapolation for new queries

Pricing Using PRICE-Semiring

Approach

- Assign a price to individual base tuples
- Automatically compute the price of query result

R
S
Q = SELECT DISTINCT A, D FROM R, S
WHERE R.B = S.B AND S.D=X

A B C
B D
B D
WHERE R.B = S.B AND S.D=X

A D
a c e
S b y u d x
$$r + q$$

a pricing function on tuples:

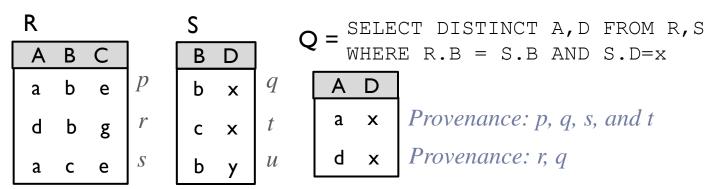
$$p = \$0.1$$
 $q = \$0.02$
 $r = \$0.01$ $t = \$0.03$
 $s = \$0.5$ $u = \$0.04$

a pricing calculation:

$$min(p + q, s + t) = \$0.12$$

$$r + q = \$0.03$$

$$price(Q) = \$0.15$$


Pricing Using PRICE-Semiring

Benefits

- Assign different prices to different tuples
- Allow users to ask arbitrary queries
- Can compute prices across datasets and owners
- Avoid bad properties such as arbitrage

Pricing Using Provenance Expressions

- Approach: Same as above BUT
 - Derive provenance information for each result tuple
 - Price is a function of these provenance tuples

a pricing function on tuples:

```
p = \$0.1 q = \$0.02 price(Q) = f(price(p), price(q), price(r), price(s), price(t))

r = \$0.01 t = \$0.03 = 0.75 (0.1 + 0.02 + 0.01 + 0.5 + 0.03)

s = \$0.5 u = \$0.04 = \$0.50
```

a pricing calculation (applying a 25% discount):

Pricing Using Provenance Expressions

- Benefits
 - Assign different prices to different tuples
 - Allow users to ask arbitrary queries
 - Can compute prices across datasets and owners
 - More powerful pricing functions become possible
 - E.g., submodular pricing
- But properties with complex pricing needs studying
- Naïve implementation could be inefficient

View-Based Pricing

Approach

- User specifies a set of queries Q_1 , ... Q_n
- And their prices: $price(Q_1)$, ..., $price(Q_n)$
 - D = all businesses in North America
 - V_1 (businesses in Canada) = \$600
 - V₂ (businesses in Alberta) = \$300
 - V_3 (all Shell businesses) = \$50
 - Etc.
- System automatically computes other query prices
 - Q = find all businesses with > 200 employees.
 What's the price of this data?

View-Based Pricing (continued)

- This is a constrained optimization problem
 - Each query price is a constraint
 - Can add other constraints: e.g., total price of DB
- Two methods to derive prices of new queries
 - Reverse-eng. price of base tuples s.t. constraints
 - Assume a function that converts base tuple prices into query prices
 - Compute base tuple prices in a way that maximizes entropy, user utility, or other function s.t. constraints
 - Compute new query prices directly

View-Based Pricing

Benefits

- Assign different prices to different tuples
- Allow users to ask arbitrary queries
- Can compute prices across datasets and owners
- Most powerful pricing schemes become possible
- Enables the creation of different versions for different users
- Need to build pricing functions enforcing desired properties

Technical Challenges

How to price data?

What tools does a data market need?

Data Market Tools

- Efficient query-price computer
 - Fine-grained prices should not add much overhead
- Update provider
 - Given an earlier user-query with a price
 - Compute delta query output after DB update
 - Compute price of update

Data Market Tools (continued)

- Pricing Advisor
 - Checks properties of a pricing scheme
 - Helps tune prices based on data provider goals
 - Computes prices of new views
 - Explains income or bill
 - Etc.
- Price-aware query optimizer
 - Answer query over multiple datasets as cheaply as possible

Conclusion

- Data helps drive businesses and applications
- Data markets are emerging, facilitated by cloud
- But need the right tools to maximize success
 - Theory of data pricing
 - Systems for computing prices, checking properties, etc.
- Stay tuned for more: http://data-pricing.cs.washington.edu