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ABSTRACT 
Interaction with large unstructured datasets is difficult 
because existing approaches, such as keyword search, are 
not always suited to describing concepts corresponding to 
the distinctions people want to make within datasets. One 
possible solution is to allow end-users to train machine 
learning systems to identify desired concepts, a strategy 
known as interactive concept learning. A fundamental 
challenge is to design systems that preserve end-user 
flexibility and control while also guiding them to provide 
examples that allow the machine learning system to 
effectively learn the desired concept. This paper presents 
our design and evaluation of four new overview-based 
approaches to guiding example selection. We situate our 
explorations within CueFlik, a system examining end-user 
interactive concept learning in Web image search. Our 
evaluation shows our approaches not only guide end-users 
to select better training examples than the best-performing 
previous design for this application, but also reduce the 
impact of not knowing when to stop training the system. 
We discuss challenges for end-user interactive concept 
learning systems and identify opportunities for future 
research on the effective design of such systems. 
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces – Interaction styles. H1.2 [Models 
and principles]: User/Machine Systems – Human factors. 
Keywords: End-user interactive machine learning. 
INTRODUCTION AND MOTIVATION 
The current information explosion fundamentally changes 
how people live and work with computing: the ease of 
publishing and sharing has made vast numbers of 
documents and images available on the Web; the ubiquity 
of sensing-equipped devices enables near-continuous 
tracking and monitoring of people and objects; and 
inexpensive storage allows people to keep personal data 
and sensing archives of practically unlimited size.  

Although keyword search is the current preferred method 
of end-user access to large collections of unstructured 
content, a fundamental premise of keyword search is the 
availability of keywords corresponding to the important 
concepts and distinctions that end-users want to make 
within such datasets. An end-user seeking items with a 
characteristic that cannot easily be expressed in keywords, 
or who finds their attempted formulations ineffective, is left 
to manually sift through large numbers of results. 
There are an increasing number of important problems in 
which this relevant keyword assumption does not hold, 
necessitating new strategies for effective end-user 
interaction with large unstructured datasets. We are 
currently examining the domain of Web image search, 
where available keywords are generally insufficient for 
visually characterizing desired images. Visually distinct 
images may have the same keywords, and visually similar 
images may have very different keywords. The computer 
vision community has explored automated identification of 
many image characteristics (e.g., indoor versus outdoor 
scenes [24], city versus landscape scenes [10], and photos 
versus graphical images [20]). Other work has explored 
end-user browsing of unstructured data using clustering 
techniques [4, 5]. In both approaches, the application 
developer predetermines what distinctions an end-user can 
make among objects (e.g., by training a particular classifier, 
by specifying a particular distance metric for use in 
clustering). Our perspective is that the current challenge is 
not a lack of methods for making such distinctions among 
classes of objects, but instead that application developers 
cannot possibly foresee the countless variety of distinctions 
end-users might want to make within large datasets.  
One strategy for enabling effective access to and interaction 
with large unstructured datasets is thus to allow end-users 
to interactively train a machine learning system to identify 
the concepts that are important to them, a strategy known 
as end-user interactive concept learning. A fundamental 
challenge in end-user interactive concept learning lies in 
designing for effective end-user interaction with a system 
as it learns and refines its definition of a concept. On one 
hand, a traditional active learning approach can meet the 
needs of a machine learning system by forcing labeling of 
high-value training examples (i.e., examples for which the 
system currently has low certainty). However, such an 
approach creates a frustrating experience that treats an 
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end-user simply as an information oracle. On the other 
hand, a design that neglects the needs of the machine 
learning system in favor of end-user flexibility may be 
equally frustrating if an end-user cannot effectively train 
the system to recognize a desired concept.  
We take a mixed-initiative approach, examining strategies 
that implicitly assist an end-user in effectively steering a 
machine learning system while preserving the end-user’s 
flexibility and sense of control. In contrast to a focus on 
developing machine learning algorithms, we aim to address 
the important question of how we should actually interact 
with interactive machine learning systems. 
This paper is grounded in CueFlik, a system illustrated in 
Figure 1 and developed to support end-user interactive 
concept learning in Web image search [8]. As an example, 
a keyword search for “stereo” yields images with a variety 
of relationships to the keyword. A developer of a Web 
image search service cannot reasonably be expected to have 
included a filter for product photo images or the countless 
other distinctions end-users might desire, so CueFlik allows 
an end-user to interactively define a product photo concept 
by providing examples of images with and without the 
desired characteristics. As they do this, CueFlik and the 
end-user engage in an iterative process of refining the 
concept definition. CueFlik presents examples that 
illustrate its current understanding of the concept, and the 
end-user uses this presentation to decide which additional 
examples to provide to further refine the concept. The 
resulting concept can be re-applied to identify product 
photo images not only for the “stereo” query, but also for 
other relevant queries (e.g., “phone” and “car”). 

Central to this mixed-initiative approach is the question of 
how to select and present sets of examples illustrating the 
current concept so as to improve end-user ability to 
effectively train an interactive concept learning system. 
Specifically, our contributions are: 
• We motivate the study of selecting representative sets of 

examples that provide an overview of the currently 
learned concept as a strategy for presenting end-users 
with the information needed to effectively train 
interactive concept learning systems. 

• We examine four approaches to presenting overviews of 
the currently learned concept. These are based in global 
overviews that select examples most representative of an 
entire high-dimensional space, projected overviews that 
identify principal dimensions within a space and then 
select examples to illustrate data variation along those 
dimensions, and the use of neighbors to better illustrate 
portions of a space. 

• We evaluate our overview-based methods in CueFlik, 
comparing to the best-performing design from previous 
studies (which emphasizes high-certainty examples) [8], 
showing that our new overviews lead end-users to select 
better training examples throughout their process of 
training CueFlik to recognize a concept.  

• Based on our analyses of our evaluation in CueFlik, we 
present design challenges for end-user interactive 
concept learning. By articulating these issues, we provide 
an important foundation for additional research on the 
effective design of interactive concept learning systems. 

Figure 1: We examine the problem of selecting and presenting sets of examples to improve end-user ability to 
effectively train an interactive concept learning system. Specifically, we focus on providing overviews by selecting 
representative images to illustrate the set of images that match or are rejected by an interactively learned concept. 



 

 
 

RELATED WORK 
The work most closely related to ours is that examining the 
interactive training of machine learning systems. Fails and 
Olsen’s Crayons system supports interactive training of 
pixel classifiers for image segmentation in camera-based 
applications [7]. In their a CAPpella system, Dey et al. take 
a demonstration approach to end-user configuration of 
context-aware applications [6]. Hartmann et al.’s Exemplar 
uses both demonstration and direct manipulation of a 
dynamic time warping algorithm to support sensor-based 
recognition [13]. Ritter and Basu examine interactive 
machine learning in file selection [19]. Although our work 
is situated in a different domain, these and other systems 
share our motivation of enabling new applications through 
more effective interactive training of machine learning 
systems. The overview-based approaches we develop here, 
as well as the insights we gain from their evaluation, 
warrant further examination in these and other domains. 
Many researchers have explored mixed-initiative interfaces 
and interactions in a variety of problems [15]. These 
include end-user problems like the correction of 
handwriting recognition errors [21], the correction of 
information extraction systems [14, 17], and interface 
customization [3]. This work is generally based in 
applications carefully tuned according to the application 
developer’s insight into the problem being solved by the 
end-user. Similarly, we are distinct from prior work 
examining browsing based on interactive clustering 
techniques [4, 5]. Such work generally employs a distance 
metric selected and tuned by the application developer 
according to their knowledge of the problem. In contrast, 
our focus on applications where the developer cannot know 
what distinctions will be important to an end-user 
magnifies the importance of end-user methods for 
understanding and manipulating machine learning. 
Moreover, while prior work has examined model training 
and feature engineering by developers and other users with 
deep insight into machine learning algorithms and 
techniques, alternative methods are needed when end-users 
are the target audience. 
Other prior work has examined interactive machine 
learning from a machine-centric perspective, focusing on 
questions related to the underlying learning algorithms. 
Although traditional active learning systems assume a 
person is an infallible information oracle, people often have 
difficulty providing labels out of context [1, 12]. Prior work 
has thus examined algorithmic compensation for incorrect 
or incomplete human input [2, 9]. Others have explored 
alternative strategies for providing examples, including 
presenting sets of examples [11] or presenting examples 
from multiple distinct views [18]. Algorithmic work often 
focuses on minimizing the number of labels required for 
training, and so evaluations are often conducted offline 
using fully-labeled datasets in lieu of actual human 
experiments. In contrast, our focus is on examining all 
aspects of the problem of how people actually interact with 
interactive machine learning. 

CUEFLIK BACKGROUND 
In order to frame our discussion of overview-based 
presentation methods, this section briefly recaps some of 
the most important aspects of prior work on CueFlik [8]. 
Learning Implementation 
Each CueFlik concept is defined as a nearest-neighbor 
classifier. CueFlik re-ranks the images from a keyword 
query according to their likelihood of membership in the 
positive class, defined as the distance to the nearest positive 
example divided by the sum of the distance to the nearest 
positive and negative example. Note this requires a method 
for determining the distance between two images. In most 
nearest-neighbor applications, this distance metric is 
carefully tuned by an application developer based on their 
knowledge of the problem. In our case, however, we cannot 
know what notion of similarity will be appropriate for an 
end-user’s desired concept. CueFlik’s concept learning is 
therefore formulated as a metric learning problem, wherein 
the system uses the provided examples to learn a distance 
metric as a weighted sum of component distance metrics. 
CueFlik currently includes component metrics based on 
histograms of pixel hue, saturation, and luminosity, an edge 
histogram, a global shape histogram, and a texture 
histogram. Formally, CueFlik minimizes the function: 

 

where D(i, j) is the distance metric computed as a weighted 
sum of CueFlik’s component metrics. The first two terms 
correspond to within-class distances and favor minimizing 
distance between examples of the same class. The third 
considers all examples and favors maximum separation. 
The combination thus favors weights collapsing each class 
while maximizing distance between classes. Figure 2 
illustrates a hypothetical space learned from two positive 
examples and three negative examples. 
Evaluation of Split Presentation  
Our current overview-based methods are motivated in part 
by a prior study comparing two methods for illustrating the 
current version of a learned CueFlik concept: a single panel 
method and a split panel method [8]. The single panel 
method provided access to the entire set of images, ranked 
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Figure 2: CueFlik learns by finding a distance metric 
that collapses positive and negative examples 
together while pushing apart the two classes. The 
learned metric is then used to rank unlabeled 
images by their proximity to positive examples. 



 

 
 

by their likelihood of membership in the positive class. The 
split method instead showed only a small set of images 
split across two panels, a best match panel and a worst 
match panel. The best match panel showed a small number 
of high-certainty positive images (extremely near positive 
training examples). The worst match panel showed a small 
number of high-certainty negative images (extremely near 
negative training examples).  
The study found participants using the split presentation 
created CueFlik concepts of significantly higher quality, 
using significantly fewer training examples, in significantly 
less time than participants using the single method. This 
prior study also found no effect of presenting participants 
with low-certainty examples identified using active 
learning heuristics, further motivating our interest in 
mixed-initiative strategies for better guiding end-users to 
effectively train interactive machine learning systems. 
OVERVIEW-BASED METHODS 
We believe the current state of the learned concept (i.e., the 
current learned distance metric) is a critical piece of 
information that an end-user needs to understand and 
manipulate to effectively train a desired concept. Although 
the study reviewed in the previous section showed that the 
split presentation led participants to better performance, the 
results mix two possible explanations for the improvement: 
(1) the use of a split presentation and a much smaller 
number of examples to illustrate the positive and negative 
regions during interactive refinement of a learned concept, 
and (2) that those examples were selected as representative 
of the positive and negative regions because of their 
high-certainty. We hypothesize that the first of these 
explanations is indeed important, and that there are likely 
more effective strategies for selecting small numbers of 
examples to represent the positive and negative regions. 
This paper therefore examines two strategies for selecting 
small sets of examples to provide an overview of positive 
and negative regions of a space defined by a learned 
concept. Both require the separation of the positive region 
from the negative region, a problem we address using 
semi-supervised classification. Our first strategy then 
presents a global overview, selecting instances that provide 
an end-user with the most information about the full set of 
instances in the positive and negative regions. Our second 
strategy instead emphasizes projected overviews, selecting 
instances that illustrate variation along major dimensions of 
the positive and negative regions. We pair both with the use 
of neighbors intended to better illustrate the important 
aspects of selected instances. This section presents both the 
intuition behind our strategies and their implementations. 
Rapid system response to interactive guidance is critical to 
interactive machine learning systems [7], and our 
implementations demonstrate techniques to obtain these 
overviews quickly enough to maintain responsiveness. 
Semi-Supervised Classification 
Because both of our strategies use split presentations, the 
first step for both is to separate the unlabeled instances into 

positive and negative regions. A naïve approach would be 
to apply a nearest neighbor classifier with the current 
learned distance metric. The limitations of this can be seen 
in Figure 2, where some of the unlabeled instances are 
clearly in the negative cluster but are also closer to a 
labeled positive example than they are to a labeled negative 
example (those on the edge nearest the middle). Because 
we are focused on providing overviews of the positive and 
negative regions, it is important we preserve such 
relationships among unlabeled instances. 
We do this by employing a semi-supervised classification 
method that exploits the distribution of both labeled and 
unlabeled data [25]. Motivated by graph-based methods, 
we extend nearest neighbor methods to use the underlying 
data distribution. We create a k-nearest-neighbor graph in 
which each instance is a vertex and edges are created for 
the k nearest neighbors of each instance (we informally 
found good performance for many values of k, and 
arbitrarily set k to 10 in our evaluation). The weight of each 
such edge is the distance between the corresponding 
instances according to the current learned distance metric. 
We then use the graph to compute geodesic distance, the 
shortest weighted path in the k-nearest-neighbor graph, 
between labeled instances and each unlabeled instance. The 
positive region is defined as all instances with a geodesic 
distance to a labeled positive training example that is less 
than their geodesic distance to a labeled negative example, 
and all other instances are included in the negative region. 
Because geodesic distance considers both labeled and 
unlabeled data, the resulting separation represents the 
underlying distribution more reliably than approaches that 
consider only labeled training examples.  
Global Overview Method 
Our first strategy aims to provide a global overview, 
selecting a representative set to provide good coverage of 
the positive and negative regions. Figure 3 presents the 
intuition behind this, showing red crosses illustrating eight 
instances selected to provide a global overview of 
Figure 2’s negative region (the green triangles are 
neighbors to these red crosses, as discussed in a later 
section). The same process is applied separately to create 
overviews for the positive and negative regions. 
More specifically, we approach the problem of creating a 
global overview as a sensor-placement problem [16]. Each 
instance can be thought of as a possible sensor location 
where a probe could be placed to sense how well the 
concept being trained fits the surrounding space. Given a 
sensor budget (the number of instances we want to use to 
provide an overview), we choose a set that provides 
maximum information about the concept the end-user is 
attempting to train. Intuitively, our approach builds upon 
the observation that instances that are close to each other 
can be expected to share similar properties; thus our 
selection scheme utilizes the principle of maximizing the 
information theoretic criteria of mutual information. In 
particular, our aim is to select a subset of instances that 



 

 
 

share the highest mutual information with the rest of the 
high-dimensional space and is therefore most representative 
of the full set. However, selecting such a set is 
NP-complete, and a greedy and myopic selection procedure 
maximizing mutual information gain is the best possible 
approximation [16]. We therefore employ this approach. 
Formally, we consider a Gaussian Process perspective with 
covariance function (alternatively, kernel function): 
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where G(i, j) is geodesic distance in a k-nearest-neighbor 
graph based on the current learned distance metric, and G2 
is the square of each element in G. Because of the negative 
exponent, kij measures similarity between instances i and j 
and ranges from 0 (infinitely far apart) to 1 (at the same 
location). The matrix K therefore encodes similarity and 
how well information flows in the space. Including i in an 
overview provides a good representation of instances where 
kij is high, but is unrepresentative of the portion of the 
space where kij approaches zero. 
At each step in the greedy selection, given the existing set 
of selected instances S and unselected instances U, we 
select the instance that maximizes the gain in mutual 
information on the remainder of the unselected instances: 
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For Gaussian Process models, this can be achieved by 
selecting the instance i that maximizes: 
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where KS,S is the similarity matrix among S, KU-i,U-i is the 
similarity matrix among U excluding i, and Ki,S, KS,i, Ki,U-i, 
and KU-i,i are each similarity vectors between i and the 
respective sets. The numerator characterizes the similarity 
of i to the previously selected instances and the 
denominator characterizes the similarity of i to other 
currently unselected instances. Choosing i that maximizes 
the ratio selects an instance that is farthest from previously 
selected instances (most dissimilar to those previously 

selected) but also central to the unselected instances (most 
representative of those currently unselected). 
Projected Overview Method 
Our second strategy presents instances selected after they 
have been projected onto a set of principle dimensions 
corresponding to the major axes of variation in a dataset. 
Figure 4 illustrates this, showing two principle dimensions 
with four instances selected for each (note the total number 
of representative instances is the same as Figure 3). The 
approach is similar to Principal Component Analysis or 
Multi-Dimensional Scaling, except that we want a method 
that corresponds to the structure of the underlying data (for 
much the same reasons that we motivated semi-supervised 
classification). We therefore apply an ISOMAP-based 
non-linear projection technique [22], which selects 
principle dimensions using geodesic distance in a 
k-nearest-neighbor graph. The process of selecting 
principal dimensions is identical to that used in 
Multi-Dimensional Scaling, except using geodesic distance. 
After obtaining a set of principal dimensions, it might seem 
that we could apply the same sensor-placement strategy 
from the previous section to each one-dimensional space to 
choose instances that illustrate that principal dimension. 
The problem with such an approach, however, is that it 
leaves selection completely unconstrained in the other 
dimensions. Although we are trying to select images 
instances to illustrate variation along a single principal 
dimension, images instances selected in this way may do a 
poor job of conveying the intended variation because they 
may also vary in many other dimensions. We therefore 
derive a new scheme to select instances that provide 
coverage of a single principle dimension but also vary as 
little as possible in all of the other principal dimensions. 
We find i maximizing: 
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where K is the similarity matrix for the principal dimension 
for which we are currently selecting a set of representative 
examples and K̅ is the similarity matrix for all of the other 
principal dimensions. The left term again prefers instances 

 
Figure 3: Our Global overview considers the entire 
high-dimensional space and selects examples that 
are most representative of the full set. 

 
Figure 4: Our Projected overview identifies principal 
dimensions in the space and selects examples to 
illustrate data variation along those dimensions. 



 

 
 

farthest from previously selected instances but also central 
to unselected instances in the current principal dimension. 
The right term prefers selected instances that are similar to 
each other in all other dimensions. Maximizing the product 
selects instances that span a particular dimension and are 
similar to each other in all other dimensions. In Figure 4, 
this additional term is responsible for the roughly collinear 
set of selected instances for each principal dimension. 
Using Neighbors to Illustrate Commonalities 
There is no shared language between an end-user and 
CueFlik. For example, CueFlik does not have a notion of a 
“fuzzy” image and end-users do not conceive of images in 
terms of the distribution of their edge histograms. Hence, 
there is no guarantee that an end-user and CueFlik will 
agree regarding how an image selected for an overview 
should be interpreted in the context of that overview. As 
one potential approach to this challenge, we examine the 
presentation of selected instances together with their 
nearest neighbors (see the green and orange triangles in 
Figure 3 and Figure 4). The intuition is that presenting a 
group of similar instances will allow an end-user to 
recognize what they have in common and thus better 
interpret an overview. This also introduces the possibility 
of more quickly training CueFlik by labeling entire groups 
of similar images as positive or negative in a single action. 
Our evaluation examines neighbors with both our global 
and projected methods. 
Downsampling for Performance 
Both overviews require inversion of similarity matrix K, an 
expensive operation. To maintain interactive speeds, we 
randomly downsample the number of instances in the 
positive and negative regions before creating overviews. 
The success of overviews in our evaluation shows this is 
not problematic, but it is likely important that this be 
random to preserve the original distribution. Parallel matrix 
inversion algorithms can leverage the increasing number of 
cores in a typical computer, and the degree of 
downsampling could be automatically adjusted to maintain 
responsiveness on a particular computer. Our evaluation 
fixed downsampling to 200 images in each of the positive 
and negative regions. In conditions that display neighbors, 
the neighbors are taken from the original full set of images. 
EXAMINING OVERVIEW-BASED METHODS 
We conducted a within-subjects experiment examining 
overview-based methods for end-user interactive concept 
learning in CueFlik. The experiment was a 2 (Global vs. 
Projected) × 2 (NoNeighbors vs. WithNeighbors) design 
with an additional HighCertainty baseline condition.  
Interface Conditions 
We tested a total of five interfaces in our experiment, 
intentionally holding constant the number of images 
displayed so results were not confounded by this factor: 
Baseline 

HighCertainty. Presented the 42 highest-certainty images 
from both the positive and negative regions. This strategy 
yielded the best results in prior work [8]. 

Overview 
GlobalNoNeighbors. Selected 42 images from both the 
positive and negative regions using our global method. 
GlobalWithNeighbors. Selected 6 images from both the 
positive and negative regions using our global method, 
and presented each of them together with 6 neighbors. 
ProjectedNoNeighbors. Projected both the positive and 
negative regions onto 6 principal dimensions accounting 
for the greatest variance, and selected 7 images to 
illustrate the variation in each principle dimension. 
ProjectedWithNeighbors. Projected both the positive and 
negative regions onto 3 principal dimensions accounting 
for the greatest variance, selected 7 images to illustrate 
the variation in each principle dimension, and presented 
each together with a single neighbor. 

 
Figure 5: Portions of the interfaces used in each 
study condition (with images from query “stereo”). 



 

 
 

The HighCertainty and Global interfaces sorted images 
(and groups of images) in order of their certainty. The 
Projected interfaces sorted principal dimensions by the 
amount of variance explained by the dimension and then 
sorted images within each dimension into a spectrum. 
Tasks 
Participants trained two concepts per interface condition, 
using queries and corresponding concepts developed for the 
previous CueFlik evaluation [8]. Each task consisted of 
approximately 1000 images corresponding to a query 
(e.g., “drink”, “sky”) and a set of ten target images printed 
on a sheet of paper and labeled with a target concept 
(e.g., “pictures with products on a white background”, 
“pictures with quiet scenery”). Participants were asked to 
create a concept such that the target images would be 
highly ranked if they were actually contained in the image 
set. Target images were originally well distributed across 
the ranking of the result set so that improvement in their 
ranking could be used as a measure of the quality of the 
trained concept. Importantly, the target images were 
filtered from the result set so that participants could not see 
how their current learned concept ranked the targets. 
Design and Procedure  
We ran participants in pairs, with each working on an 
identical 3.16 GHz quad-core Dell T5400, with 8 GB of 
RAM and 512 MB Video, running Windows XP, and using 
24” Dell monitors at a resolution of 1920×1200. Before 
beginning, the experimenter demonstrated how to use 
CueFlik to build a simple rule favoring images with a 
vertical aspect ratio. We used the GlobalWithNeighbors 
condition for the demonstration so that we could explain 
that some interfaces would group images and that 
participants could guide the system by selecting individual 
images, ctrl-selecting multiple images, or selecting grouped 
images. Participants then practiced training a simple 
concept (images of maps within a query for “Seattle”) 
using the first interface condition that they were to interact 
with during the main portion of the study.  
Because we did not expect queries would lead directly to 
carryover effects, and because we wanted to ensure 
balanced coupling of interface conditions with queries, we 
fixed the order of queries in the experiment. We manually 
categorized target concepts as easy or difficult and then 
pseudo-randomly selected queries such that the first task in 
each interface condition would be an easy concept and the 
second task would be a difficult concept. The ordered query 
pairs were: “character” (clipart) and “sky” (quiet scenery), 
“drink” (product photo) and “bill” (portrait), “car” 
(product photo) and “crowded” (cluttered), “stereo” 
(product photo) and “disco” (brightly colored), and 
“tennis” (clipart) and “sea” (quiet scenery). 
The order of interface conditions was counterbalanced 
using a Latin square design. Each participant trained the 
pair of easy and difficult tasks before proceeding to the 
next interface. For each task, participants were given a 

printout containing the target images labeled with the target 
concept and clicked a button to begin. Participants were 
told to perform each task as quickly and accurately as 
possible and that they could click a button on the interface 
to advance to the next task if they felt their concept was not 
improving. We also imposed a maximum time limit of 4 
minutes (indicated 20 seconds prior by a visual warning), 
after which the task would self-advance. After each task, a 
dialog appeared giving the participant’s final score on the 
task (computed as the final mean ranking of the targets in 
the image set, inverted and converted to a percentage). 
Participants were then given a new printout and began the 
next task. All actions were timestamped and logged. 
After each interface condition, participants were given a 
short questionnaire asking for their level of agreement (on a 
5-point Likert scale) with five short statements regarding 
the interface they had just used. The questionnaire also 
asked the participants to briefly explain what they thought 
CueFlik had been doing each time they gave it more 
training examples, asked what they thought would help 
improve the interface they had just used, and asked for any 
other comments. A different short questionnaire at the end 
of the experiment asked for overall aspects of CueFlik that 
participants liked, disliked, or would like improved. 
Participants 
Twenty people (ten female, ages 20 to 48) volunteered. 
None were colorblind, and all had 20/20 or corrected to 
20/20 vision. We attempted to recruit a balance of image 
search novices (performing no more than one image search 
every week) and image search experts (performing more 
than five searches weekly), obtaining seven self-reported 
novices and thirteen self-reported experts. The experiment 
lasted approximately 90 minutes, and participants were 
given a software gratuity for their time. 

RESULTS 
We analyze our results using four dependent measures. 
Consistent with prior work [8], we define Score as the 
mean ranking of the target images by a learned concept. A 
lower score indicates a higher-quality concept that ranks 
targets closer to the top of the query results. We define 
Time starting from the button click that began each task. 
Because participants could label multiple images per action 
(e.g., by dragging grouped images or ctrl-selecting multiple 
images or groups), we define NumImages and NumActions 
as the number of images or actions used to train a concept. 
We perform all of our analyses using mixed-model 
analyses of variance. All of our models include Participant 
and Query as random effects. Modeling Participant 
accounts for any variation in individual performance, and 
modeling Query accounts for any difference in the 
difficulty of queries or their associated concepts as well as 
any learning, fatigue, or other potential carryover effects 
between tasks (because our experiment fixed query order). 
Throughout this section, we report least-squared means 
obtained from our mixed-model analyses. 



 

 
 

HighCertainty versus Overview 
We first compared our baseline HighCertainty condition to 
all of our Overview methods (i.e., aggregating data for our 
four Overview methods). Mixed-model analyses reveal an 
apparent tradeoff: participants using Overview interfaces 
create concepts with a significantly better final Score (178 
vs. 223, F1,170 = 8.86, p ≈ .003) but spend significantly 
more Time training their final concept (197 sec vs. 176 sec, 
F1,170 = 7.72, p ≈ .006) in comparison to the HighCertainty 
interface. We found no difference in the NumImages or 
NumActions for the final concept. 
We observed during our experiments that participants often 
continued providing additional training examples even 
when they did not seem to be further improving a concept. 
This obviously adds to the Time, NumImages, and 
NumActions used to train a final concept, and we believed 
it could also negatively impact the Score of a final concept. 
We therefore further analyze the point where participants 
obtained their Best learned concept, defined as the first 
point at which their Score for a task was within 5% of the 
best Score they achieved at any point during that task. This 
metric detects both well-defined peaks as well as the 
beginning of gradual-sloping plateaus. Figure 6 plots this 
perspective, showing the average BestScore and BestTime 
for each interface and their corresponding FinalScore and 
FinalTime. For the sake of readability, Figure 6 plots Score 
Improvement, obtained by subtracting Score at each plot 
point from the initial Score. We now analyze these and the 
Decay from Best to Final (the time, images, and actions 
spent continuing to train a model after achieving BestScore 
as well as the resulting negative impact on FinalScore). 
Mixed-model analyses show that BestScore is significantly 
better for Overview interfaces than for HighCertainty 
(128 vs. 149, F1,170 = 6.52, p ≈ .012) and that participants 
reach their BestScore in the same amount of Time (108 sec 
vs. 120 sec, F1,170 = 1.11, p ≈ .294). We also saw a marginal 
effect on NumActions, with Overview interfaces requiring 
marginally less actions to reach the significantly better 
BestScore (6.39 vs. 8.63, F1,170 = 3.89, p ≈ .050). We found 
no difference in NumImages to BestScore. 
Examining the Decay from Best to Final, a mixed-model 
analysis shows Overview interfaces result in marginally 
less ScoreDecay than the HighCertainty interface (49 vs. 
74, F1,170 = 3.44, p ≈ .065), even though the Overview 
interfaces result in both greater DecayTime (89 sec vs. 
56 sec, F1,170 = 9.92, p ≈ .002) and DecayActions (8.03 vs. 
5.30, F1,170 = 7.49, p ≈ .007) than HighCertainty. We found 
no difference in the number of DecayImages. 
We defer discussion of freeform feedback, but analyses of 
our post-condition questionnaire Likert scales found no 
significant differences for HighCertainty versus Overview. 
Examining OverviewMethod and Neighbors 
To examine differences among our Overview interfaces, we 
exclude data from our baseline HighCertainty condition 
and conduct a series of mixed-model analyses with fixed 
effects OverviewMethod (Global vs. Projected), Neighbors 

(NoNeighbors vs. WithNeighbors), and their interaction 
OverviewMethod × Neighbors. In all cases, effects include 
either OverviewMethod or Neighbors, but not both and not 
their interaction. We therefore only report the effecting 
treatment (i.e., removing the non-effecting treatment and 
the interaction from each analysis). 
We first examined our Final measures, finding interfaces 
with NoNeighbors yielding a significantly better Final 
Score than interfaces WithNeighbors (159 vs. 197, F1,131 = 
10.7, p ≈ .001). We also find that Global overviews led 
participants to spend significantly less Time training a 
Final concept than Projected overviews (187 sec vs. 
206 sec, F1,130 = 10.1, p ≈ .002). There were no significant 
effects on NumImages or NumActions. 
Examining the Best concepts shows that interfaces with 
NoNeighbors result in a significantly better Best Score than 
WithNeighbors (119 vs. 138, F1,130 = 9.34, p ≈ .003). We 
also find that participants require marginally less time to 
reach their BestScore for interfaces WithNeighbors than 
with NoNeighbors (99 sec vs. 117 sec, F1,130 = 3.21, p ≈ 
.076). There were no significant effects on NumImages or 
NumActions. This pair of Neighbors results is shown in 
Figure 7, a close-up of the Best region from Figure 6. The 
finding that NoNeighbors interfaces yield a better 
BestScore than WithNeighbors, together with the finding 
that Overview interfaces yield a better BestScore than 
HighCertainty, implies a transitive relationship between 
NoNeighbor interfaces and HighCertainty. A mixed-model 
analysis of variance confirms NoNeighbors overviews 
result in a significantly better BestScore than HighCertainty 
(119 vs. 149, F1,91 = 10.67, p ≈ .002). Similarly, a 
mixed-model analysis of variance shows WithNeighbors 
overviews require marginally less Time to reach a 
BestScore that is as good as the HighCertainty BestScore 
(99 sec vs. 120 sec, F1,91 = 2.97, p ≈ .088). 

 
Figure 6: Our Overview interfaces guide participants 
to select better training examples that result in 
significantly improved Scores for their Best models 
and reduce the effect of Decay on their Final models.  



 

 
 

Examining the Decay from Best to Final, we find only that 
interfaces WithNeighbors resulted in marginally more 
DecayActions than interfaces with NoNeighbors (8.79 vs. 
7.28, F1,129 = 2.91, p ≈ .091). There were no significant 
effects on ScoreDecay, DecayTime, or DecayImages. 
Analyses of our post-condition questionnaire Likert scales 
showed marginal effects of Neighbors. Participants agreed 
marginally more with “I felt confused or frustrated when 
trying to create rules” for the WithNeighbors interfaces 
than the NoNeighbors interfaces (2.5 vs. 2.1, F1,1 = 3.03, p 
≈ .086) and marginally less with “I felt that this method was 
easy to use” (3.8 vs. 4.1, F1,1 = 2.80, p ≈ .098). 
DISCUSSION 
Our experimental results substantiate our hypothesis that 
providing an overview of positive and negative regions 
leads end-users to select better training examples when 
interacting with CueFlik. Using the same amount of Time, 
NumImages, and NumActions, participants using Overview 
interfaces trained Best concepts that were significantly 
better than those trained using the HighCertainty interface, 
the best-performing interface from prior work [8]. Notably, 
this prior work shows that the split HighCertainty approach 
performs significantly better than presenting the full image 
set and found no effect of presenting uncertain images 
identified using active learning heuristics [8]. Furthermore, 
although participants using Overview interfaces spent 
significantly more Time and NumActions in the Decay from 
Best to Final, their ScoreDecay was still marginally less 
than that of the HighCertainty interface. This discussion 
revisits the impact of Decay on all of our interface 
conditions, but this lower rate of Decay per unit of Time 
and Actions is further evidence that Overview interfaces led 
participants to select better training examples. 
Our WithNeighbors overviews were intended to provide 
context in which end-users could better interpret images, as 
well as the possibility of quickly training a concept by 

labeling entire groups of similar images in one step. 
WithNeighbors overviews did require marginally less Time 
to obtain a BestScore as good as that for HighCertainty, but 
NoNeighbor interfaces had significantly better Scores for 
both their Best and Final concepts. A potential 
commonality here might be that the HighCertainty and 
WithNeighbors interfaces are less effective because they 
less effectively convey variation with a set of images. In 
addition to our performance analyses, this interpretation is 
supported by negative responses to WithNeighbors on our 
questionnaire scales and by participant feedback for these 
interfaces of the tone “there were nowhere near enough 
images – too many were duplicated” and “give more 
options of photos so filtering them will go faster/easier”. 
Interestingly, the same emphasis on variation that leads 
end-users to choose better examples may also make it more 
difficult to assess how well the current version of a learned 
concept is performing (because the overview provides more 
insight into less central portions of a positive or negative 
region). Participant feedback included many comments of 
the form “it was weird, sometimes it would start out doing 
really well, but as I kept going it did worse” and “it is hard 
to know if more data is better as I should probably stop 
occasionally to see the results as I am going”. All of the 
interfaces suffered from some Decay: Overview interfaces 
marginally reduced the impact of that decay on concept 
Score, but also had greater DecayTime and DecayActions. 
Apart from the finding that Overview interfaces had a lower 
rate of Decay, this tension surrounding the effects of 
emphasizing variation highlights a set of design challenges 
that warrant further examination in end-user interactive 
concept learning systems: 
Guiding Selection of Effective Training Examples. Prior 
work has shown the effectiveness of a split presentation of 
positive and negative regions in CueFlik [8], and we show 
that overviews of those regions improve end-user selection 
of effective training examples. Important opportunities 
remain to examine these results in other applications and to 
explore how these and other potential strategies interact 
with the following additional design challenges. 
Guiding Selection of Effective Stopping Points. We have 
identified the importance of helping end-users determine 
whether to continue providing additional training examples. 
Interfaces that reduce DecayTime, DecayImages, and 
DecayActions would positively impact all methods 
examined in this paper (and further magnify the benefits of 
our Overview methods, given their lower rate of Decay). 
One approach might be to provide lightweight previews or 
tools for examining multiple alternatives, methods that 
have proven effective in other domains [23]. 
Guiding Understanding and Manipulation of Decision 
Boundaries. It might seem that CueFlik’s focus on ranking 
avoids the matter of a hard confidence threshold, but 
showing overviews of positive and negative regions 
requires a boundary between them. Importantly, this 
challenge likely interacts with the above two. For example, 

 
Figure 7: Examining differences among Overview 
interfaces, NoNeighbors interfaces guide participants 
to select training examples that result in significantly 
better Best models, while WithNeighbors interfaces 
result in marginally faster model training. 



 

 
 

we are interested in supporting end-user manipulation of 
how strict a system is with regard to which examples are 
considered positive. This will affect which examples are 
included in an overview of the positive region, which might 
reduce doubt about the current concept quality and allow 
better choice of a stopping point. 
Supporting Effective Strategies. Participants pursued many 
different strategies in training CueFlik concepts. For 
example, participants placed varying emphasis on 
providing positive or negative examples. Some participants 
always labeled examples one at a time, while others would 
select a dozen examples before giving them all the same 
label. There are many opportunities to explore what 
high-level strategies end-users pursue, which are most 
effective, and how they can be effectively supported by 
mixed-initiative systems. For example, if end-users pursue 
strategies focused on the correction of classification errors 
(as opposed to a focus on providing canonical examples), a 
system may be able to gain additional information by 
analyzing the order in which examples are provided.  
These design challenges each have relationships to machine 
learning problems (e.g., the challenge of selecting an 
effective stopping point is related to the machine learning 
problem of identifying overfitting), but a mixed-initiative 
perspective introduces new opportunities. Our work is 
based in CueFlik and Web image search, but significant 
opportunities remain to extend and examine our results in 
the context of end-user interaction with large unstructured 
datasets in other domains. By explicitly separating and 
highlighting these related challenges, we provide a 
foundation for this additional research on the effective 
design of end-user interactive machine learning systems.  
CONCLUSION 
Motivated by the challenges of designing effective 
interactive concept learning systems, we have examined 
methods for showing overviews of regions associated with 
a learned concept. Evaluating these methods in CueFlik, we 
have shown they guide end-users to select better training 
examples that result in significantly better Scores for their 
Best models and reduce the effect of Decay on their Final 
models. These results and our discussion of design 
challenges for mixed-initiative end-user interactive concept 
learning provide an important foundation for additional 
research on the effective design of such systems. 
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