

Overview-Based Example Selection
in End-User Interactive Concept Learning

Saleema Amershi†, James Fogarty†, Ashish Kapoor‡, Desney Tan ‡
†Computer Science & Engineering

DUB Group, University of Washington
Seattle, WA 98195

{ samershi, jfogarty }@cs.washington.edu

‡Microsoft Research
One Microsoft Way

Redmond, WA 98052
{ akapoor, desney }@microsoft.com

ABSTRACT
Interaction with large unstructured datasets is difficult
because existing approaches, such as keyword search, are
not always suited to describing concepts corresponding to
the distinctions people want to make within datasets. One
possible solution is to allow end-users to train machine
learning systems to identify desired concepts, a strategy
known as interactive concept learning. A fundamental
challenge is to design systems that preserve end-user
flexibility and control while also guiding them to provide
examples that allow the machine learning system to
effectively learn the desired concept. This paper presents
our design and evaluation of four new overview-based
approaches to guiding example selection. We situate our
explorations within CueFlik, a system examining end-user
interactive concept learning in Web image search. Our
evaluation shows our approaches not only guide end-users
to select better training examples than the best-performing
previous design for this application, but also reduce the
impact of not knowing when to stop training the system.
We discuss challenges for end-user interactive concept
learning systems and identify opportunities for future
research on the effective design of such systems.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces – Interaction styles. H1.2 [Models
and principles]: User/Machine Systems – Human factors.
Keywords: End-user interactive machine learning.
INTRODUCTION AND MOTIVATION
The current information explosion fundamentally changes
how people live and work with computing: the ease of
publishing and sharing has made vast numbers of
documents and images available on the Web; the ubiquity
of sensing-equipped devices enables near-continuous
tracking and monitoring of people and objects; and
inexpensive storage allows people to keep personal data
and sensing archives of practically unlimited size.

Although keyword search is the current preferred method
of end-user access to large collections of unstructured
content, a fundamental premise of keyword search is the
availability of keywords corresponding to the important
concepts and distinctions that end-users want to make
within such datasets. An end-user seeking items with a
characteristic that cannot easily be expressed in keywords,
or who finds their attempted formulations ineffective, is left
to manually sift through large numbers of results.
There are an increasing number of important problems in
which this relevant keyword assumption does not hold,
necessitating new strategies for effective end-user
interaction with large unstructured datasets. We are
currently examining the domain of Web image search,
where available keywords are generally insufficient for
visually characterizing desired images. Visually distinct
images may have the same keywords, and visually similar
images may have very different keywords. The computer
vision community has explored automated identification of
many image characteristics (e.g., indoor versus outdoor
scenes [24], city versus landscape scenes [10], and photos
versus graphical images [20]). Other work has explored
end-user browsing of unstructured data using clustering
techniques [4, 5]. In both approaches, the application
developer predetermines what distinctions an end-user can
make among objects (e.g., by training a particular classifier,
by specifying a particular distance metric for use in
clustering). Our perspective is that the current challenge is
not a lack of methods for making such distinctions among
classes of objects, but instead that application developers
cannot possibly foresee the countless variety of distinctions
end-users might want to make within large datasets.
One strategy for enabling effective access to and interaction
with large unstructured datasets is thus to allow end-users
to interactively train a machine learning system to identify
the concepts that are important to them, a strategy known
as end-user interactive concept learning. A fundamental
challenge in end-user interactive concept learning lies in
designing for effective end-user interaction with a system
as it learns and refines its definition of a concept. On one
hand, a traditional active learning approach can meet the
needs of a machine learning system by forcing labeling of
high-value training examples (i.e., examples for which the
system currently has low certainty). However, such an
approach creates a frustrating experience that treats an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’09, October 4–7, 2008, Victoria, BC, Canada.
Copyright 2009 ACM xxxxxxxxxx/xx/xxxx ...$5.00.

end-user simply as an information oracle. On the other
hand, a design that neglects the needs of the machine
learning system in favor of end-user flexibility may be
equally frustrating if an end-user cannot effectively train
the system to recognize a desired concept.
We take a mixed-initiative approach, examining strategies
that implicitly assist an end-user in effectively steering a
machine learning system while preserving the end-user’s
flexibility and sense of control. In contrast to a focus on
developing machine learning algorithms, we aim to address
the important question of how we should actually interact
with interactive machine learning systems.
This paper is grounded in CueFlik, a system illustrated in
Figure 1 and developed to support end-user interactive
concept learning in Web image search [8]. As an example,
a keyword search for “stereo” yields images with a variety
of relationships to the keyword. A developer of a Web
image search service cannot reasonably be expected to have
included a filter for product photo images or the countless
other distinctions end-users might desire, so CueFlik allows
an end-user to interactively define a product photo concept
by providing examples of images with and without the
desired characteristics. As they do this, CueFlik and the
end-user engage in an iterative process of refining the
concept definition. CueFlik presents examples that
illustrate its current understanding of the concept, and the
end-user uses this presentation to decide which additional
examples to provide to further refine the concept. The
resulting concept can be re-applied to identify product
photo images not only for the “stereo” query, but also for
other relevant queries (e.g., “phone” and “car”).

Central to this mixed-initiative approach is the question of
how to select and present sets of examples illustrating the
current concept so as to improve end-user ability to
effectively train an interactive concept learning system.
Specifically, our contributions are:
• We motivate the study of selecting representative sets of

examples that provide an overview of the currently
learned concept as a strategy for presenting end-users
with the information needed to effectively train
interactive concept learning systems.

• We examine four approaches to presenting overviews of
the currently learned concept. These are based in global
overviews that select examples most representative of an
entire high-dimensional space, projected overviews that
identify principal dimensions within a space and then
select examples to illustrate data variation along those
dimensions, and the use of neighbors to better illustrate
portions of a space.

• We evaluate our overview-based methods in CueFlik,
comparing to the best-performing design from previous
studies (which emphasizes high-certainty examples) [8],
showing that our new overviews lead end-users to select
better training examples throughout their process of
training CueFlik to recognize a concept.

• Based on our analyses of our evaluation in CueFlik, we
present design challenges for end-user interactive
concept learning. By articulating these issues, we provide
an important foundation for additional research on the
effective design of interactive concept learning systems.

Figure 1: We examine the problem of selecting and presenting sets of examples to improve end-user ability to
effectively train an interactive concept learning system. Specifically, we focus on providing overviews by selecting
representative images to illustrate the set of images that match or are rejected by an interactively learned concept.

RELATED WORK
The work most closely related to ours is that examining the
interactive training of machine learning systems. Fails and
Olsen’s Crayons system supports interactive training of
pixel classifiers for image segmentation in camera-based
applications [7]. In their a CAPpella system, Dey et al. take
a demonstration approach to end-user configuration of
context-aware applications [6]. Hartmann et al.’s Exemplar
uses both demonstration and direct manipulation of a
dynamic time warping algorithm to support sensor-based
recognition [13]. Ritter and Basu examine interactive
machine learning in file selection [19]. Although our work
is situated in a different domain, these and other systems
share our motivation of enabling new applications through
more effective interactive training of machine learning
systems. The overview-based approaches we develop here,
as well as the insights we gain from their evaluation,
warrant further examination in these and other domains.
Many researchers have explored mixed-initiative interfaces
and interactions in a variety of problems [15]. These
include end-user problems like the correction of
handwriting recognition errors [21], the correction of
information extraction systems [14, 17], and interface
customization [3]. This work is generally based in
applications carefully tuned according to the application
developer’s insight into the problem being solved by the
end-user. Similarly, we are distinct from prior work
examining browsing based on interactive clustering
techniques [4, 5]. Such work generally employs a distance
metric selected and tuned by the application developer
according to their knowledge of the problem. In contrast,
our focus on applications where the developer cannot know
what distinctions will be important to an end-user
magnifies the importance of end-user methods for
understanding and manipulating machine learning.
Moreover, while prior work has examined model training
and feature engineering by developers and other users with
deep insight into machine learning algorithms and
techniques, alternative methods are needed when end-users
are the target audience.
Other prior work has examined interactive machine
learning from a machine-centric perspective, focusing on
questions related to the underlying learning algorithms.
Although traditional active learning systems assume a
person is an infallible information oracle, people often have
difficulty providing labels out of context [1, 12]. Prior work
has thus examined algorithmic compensation for incorrect
or incomplete human input [2, 9]. Others have explored
alternative strategies for providing examples, including
presenting sets of examples [11] or presenting examples
from multiple distinct views [18]. Algorithmic work often
focuses on minimizing the number of labels required for
training, and so evaluations are often conducted offline
using fully-labeled datasets in lieu of actual human
experiments. In contrast, our focus is on examining all
aspects of the problem of how people actually interact with
interactive machine learning.

CUEFLIK BACKGROUND
In order to frame our discussion of overview-based
presentation methods, this section briefly recaps some of
the most important aspects of prior work on CueFlik [8].
Learning Implementation
Each CueFlik concept is defined as a nearest-neighbor
classifier. CueFlik re-ranks the images from a keyword
query according to their likelihood of membership in the
positive class, defined as the distance to the nearest positive
example divided by the sum of the distance to the nearest
positive and negative example. Note this requires a method
for determining the distance between two images. In most
nearest-neighbor applications, this distance metric is
carefully tuned by an application developer based on their
knowledge of the problem. In our case, however, we cannot
know what notion of similarity will be appropriate for an
end-user’s desired concept. CueFlik’s concept learning is
therefore formulated as a metric learning problem, wherein
the system uses the provided examples to learn a distance
metric as a weighted sum of component distance metrics.
CueFlik currently includes component metrics based on
histograms of pixel hue, saturation, and luminosity, an edge
histogram, a global shape histogram, and a texture
histogram. Formally, CueFlik minimizes the function:

where D(i, j) is the distance metric computed as a weighted
sum of CueFlik’s component metrics. The first two terms
correspond to within-class distances and favor minimizing
distance between examples of the same class. The third
considers all examples and favors maximum separation.
The combination thus favors weights collapsing each class
while maximizing distance between classes. Figure 2
illustrates a hypothetical space learned from two positive
examples and three negative examples.
Evaluation of Split Presentation
Our current overview-based methods are motivated in part
by a prior study comparing two methods for illustrating the
current version of a learned CueFlik concept: a single panel
method and a split panel method [8]. The single panel
method provided access to the entire set of images, ranked

() () ()∑ ∑∑∑
∈ ∈∈∈

−++=
Alli AlljNegjiPosji

weights jiDejiDjiDf ,ln,,)(
,,

Figure 2: CueFlik learns by finding a distance metric
that collapses positive and negative examples
together while pushing apart the two classes. The
learned metric is then used to rank unlabeled
images by their proximity to positive examples.

by their likelihood of membership in the positive class. The
split method instead showed only a small set of images
split across two panels, a best match panel and a worst
match panel. The best match panel showed a small number
of high-certainty positive images (extremely near positive
training examples). The worst match panel showed a small
number of high-certainty negative images (extremely near
negative training examples).
The study found participants using the split presentation
created CueFlik concepts of significantly higher quality,
using significantly fewer training examples, in significantly
less time than participants using the single method. This
prior study also found no effect of presenting participants
with low-certainty examples identified using active
learning heuristics, further motivating our interest in
mixed-initiative strategies for better guiding end-users to
effectively train interactive machine learning systems.
OVERVIEW-BASED METHODS
We believe the current state of the learned concept (i.e., the
current learned distance metric) is a critical piece of
information that an end-user needs to understand and
manipulate to effectively train a desired concept. Although
the study reviewed in the previous section showed that the
split presentation led participants to better performance, the
results mix two possible explanations for the improvement:
(1) the use of a split presentation and a much smaller
number of examples to illustrate the positive and negative
regions during interactive refinement of a learned concept,
and (2) that those examples were selected as representative
of the positive and negative regions because of their
high-certainty. We hypothesize that the first of these
explanations is indeed important, and that there are likely
more effective strategies for selecting small numbers of
examples to represent the positive and negative regions.
This paper therefore examines two strategies for selecting
small sets of examples to provide an overview of positive
and negative regions of a space defined by a learned
concept. Both require the separation of the positive region
from the negative region, a problem we address using
semi-supervised classification. Our first strategy then
presents a global overview, selecting instances that provide
an end-user with the most information about the full set of
instances in the positive and negative regions. Our second
strategy instead emphasizes projected overviews, selecting
instances that illustrate variation along major dimensions of
the positive and negative regions. We pair both with the use
of neighbors intended to better illustrate the important
aspects of selected instances. This section presents both the
intuition behind our strategies and their implementations.
Rapid system response to interactive guidance is critical to
interactive machine learning systems [7], and our
implementations demonstrate techniques to obtain these
overviews quickly enough to maintain responsiveness.
Semi-Supervised Classification
Because both of our strategies use split presentations, the
first step for both is to separate the unlabeled instances into

positive and negative regions. A naïve approach would be
to apply a nearest neighbor classifier with the current
learned distance metric. The limitations of this can be seen
in Figure 2, where some of the unlabeled instances are
clearly in the negative cluster but are also closer to a
labeled positive example than they are to a labeled negative
example (those on the edge nearest the middle). Because
we are focused on providing overviews of the positive and
negative regions, it is important we preserve such
relationships among unlabeled instances.
We do this by employing a semi-supervised classification
method that exploits the distribution of both labeled and
unlabeled data [25]. Motivated by graph-based methods,
we extend nearest neighbor methods to use the underlying
data distribution. We create a k-nearest-neighbor graph in
which each instance is a vertex and edges are created for
the k nearest neighbors of each instance (we informally
found good performance for many values of k, and
arbitrarily set k to 10 in our evaluation). The weight of each
such edge is the distance between the corresponding
instances according to the current learned distance metric.
We then use the graph to compute geodesic distance, the
shortest weighted path in the k-nearest-neighbor graph,
between labeled instances and each unlabeled instance. The
positive region is defined as all instances with a geodesic
distance to a labeled positive training example that is less
than their geodesic distance to a labeled negative example,
and all other instances are included in the negative region.
Because geodesic distance considers both labeled and
unlabeled data, the resulting separation represents the
underlying distribution more reliably than approaches that
consider only labeled training examples.
Global Overview Method
Our first strategy aims to provide a global overview,
selecting a representative set to provide good coverage of
the positive and negative regions. Figure 3 presents the
intuition behind this, showing red crosses illustrating eight
instances selected to provide a global overview of
Figure 2’s negative region (the green triangles are
neighbors to these red crosses, as discussed in a later
section). The same process is applied separately to create
overviews for the positive and negative regions.
More specifically, we approach the problem of creating a
global overview as a sensor-placement problem [16]. Each
instance can be thought of as a possible sensor location
where a probe could be placed to sense how well the
concept being trained fits the surrounding space. Given a
sensor budget (the number of instances we want to use to
provide an overview), we choose a set that provides
maximum information about the concept the end-user is
attempting to train. Intuitively, our approach builds upon
the observation that instances that are close to each other
can be expected to share similar properties; thus our
selection scheme utilizes the principle of maximizing the
information theoretic criteria of mutual information. In
particular, our aim is to select a subset of instances that

share the highest mutual information with the rest of the
high-dimensional space and is therefore most representative
of the full set. However, selecting such a set is
NP-complete, and a greedy and myopic selection procedure
maximizing mutual information gain is the best possible
approximation [16]. We therefore employ this approach.
Formally, we consider a Gaussian Process perspective with
covariance function (alternatively, kernel function):

)(
),(
2

2

GMean
jiG

ij ek
−

=

where G(i, j) is geodesic distance in a k-nearest-neighbor
graph based on the current learned distance metric, and G2
is the square of each element in G. Because of the negative
exponent, kij measures similarity between instances i and j
and ranges from 0 (infinitely far apart) to 1 (at the same
location). The matrix K therefore encodes similarity and
how well information flows in the space. Including i in an
overview provides a good representation of instances where
kij is high, but is unrepresentative of the portion of the
space where kij approaches zero.
At each step in the greedy selection, given the existing set
of selected instances S and unselected instances U, we
select the instance that maximizes the gain in mutual
information on the remainder of the unselected instances:

);();(SiUMIiSiUMI −−∪−

For Gaussian Process models, this can be achieved by
selecting the instance i that maximizes:

iiUiUiUiUi

iSSSSi

KKK
KKK

if
,

1
,,

,
1
,,

1
1

)(
−

−
−−−

−

−

−
=

where KS,S is the similarity matrix among S, KU-i,U-i is the
similarity matrix among U excluding i, and Ki,S, KS,i, Ki,U-i,
and KU-i,i are each similarity vectors between i and the
respective sets. The numerator characterizes the similarity
of i to the previously selected instances and the
denominator characterizes the similarity of i to other
currently unselected instances. Choosing i that maximizes
the ratio selects an instance that is farthest from previously
selected instances (most dissimilar to those previously

selected) but also central to the unselected instances (most
representative of those currently unselected).
Projected Overview Method
Our second strategy presents instances selected after they
have been projected onto a set of principle dimensions
corresponding to the major axes of variation in a dataset.
Figure 4 illustrates this, showing two principle dimensions
with four instances selected for each (note the total number
of representative instances is the same as Figure 3). The
approach is similar to Principal Component Analysis or
Multi-Dimensional Scaling, except that we want a method
that corresponds to the structure of the underlying data (for
much the same reasons that we motivated semi-supervised
classification). We therefore apply an ISOMAP-based
non-linear projection technique [22], which selects
principle dimensions using geodesic distance in a
k-nearest-neighbor graph. The process of selecting
principal dimensions is identical to that used in
Multi-Dimensional Scaling, except using geodesic distance.
After obtaining a set of principal dimensions, it might seem
that we could apply the same sensor-placement strategy
from the previous section to each one-dimensional space to
choose instances that illustrate that principal dimension.
The problem with such an approach, however, is that it
leaves selection completely unconstrained in the other
dimensions. Although we are trying to select images
instances to illustrate variation along a single principal
dimension, images instances selected in this way may do a
poor job of conveying the intended variation because they
may also vary in many other dimensions. We therefore
derive a new scheme to select instances that provide
coverage of a single principle dimension but also vary as
little as possible in all of the other principal dimensions.
We find i maximizing:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
=

−
−

−
−−−

−

iSSSSiiiUiUiUiUi

iSSSSi

KKKKKK
KKK

if
,

1
,,

1
,,

,
1
,,

1
1

1
1

)(

where K is the similarity matrix for the principal dimension
for which we are currently selecting a set of representative
examples and K̅ is the similarity matrix for all of the other
principal dimensions. The left term again prefers instances

Figure 3: Our Global overview considers the entire
high-dimensional space and selects examples that
are most representative of the full set.

Figure 4: Our Projected overview identifies principal
dimensions in the space and selects examples to
illustrate data variation along those dimensions.

farthest from previously selected instances but also central
to unselected instances in the current principal dimension.
The right term prefers selected instances that are similar to
each other in all other dimensions. Maximizing the product
selects instances that span a particular dimension and are
similar to each other in all other dimensions. In Figure 4,
this additional term is responsible for the roughly collinear
set of selected instances for each principal dimension.
Using Neighbors to Illustrate Commonalities
There is no shared language between an end-user and
CueFlik. For example, CueFlik does not have a notion of a
“fuzzy” image and end-users do not conceive of images in
terms of the distribution of their edge histograms. Hence,
there is no guarantee that an end-user and CueFlik will
agree regarding how an image selected for an overview
should be interpreted in the context of that overview. As
one potential approach to this challenge, we examine the
presentation of selected instances together with their
nearest neighbors (see the green and orange triangles in
Figure 3 and Figure 4). The intuition is that presenting a
group of similar instances will allow an end-user to
recognize what they have in common and thus better
interpret an overview. This also introduces the possibility
of more quickly training CueFlik by labeling entire groups
of similar images as positive or negative in a single action.
Our evaluation examines neighbors with both our global
and projected methods.
Downsampling for Performance
Both overviews require inversion of similarity matrix K, an
expensive operation. To maintain interactive speeds, we
randomly downsample the number of instances in the
positive and negative regions before creating overviews.
The success of overviews in our evaluation shows this is
not problematic, but it is likely important that this be
random to preserve the original distribution. Parallel matrix
inversion algorithms can leverage the increasing number of
cores in a typical computer, and the degree of
downsampling could be automatically adjusted to maintain
responsiveness on a particular computer. Our evaluation
fixed downsampling to 200 images in each of the positive
and negative regions. In conditions that display neighbors,
the neighbors are taken from the original full set of images.
EXAMINING OVERVIEW-BASED METHODS
We conducted a within-subjects experiment examining
overview-based methods for end-user interactive concept
learning in CueFlik. The experiment was a 2 (Global vs.
Projected) × 2 (NoNeighbors vs. WithNeighbors) design
with an additional HighCertainty baseline condition.
Interface Conditions
We tested a total of five interfaces in our experiment,
intentionally holding constant the number of images
displayed so results were not confounded by this factor:
Baseline

HighCertainty. Presented the 42 highest-certainty images
from both the positive and negative regions. This strategy
yielded the best results in prior work [8].

Overview
GlobalNoNeighbors. Selected 42 images from both the
positive and negative regions using our global method.
GlobalWithNeighbors. Selected 6 images from both the
positive and negative regions using our global method,
and presented each of them together with 6 neighbors.
ProjectedNoNeighbors. Projected both the positive and
negative regions onto 6 principal dimensions accounting
for the greatest variance, and selected 7 images to
illustrate the variation in each principle dimension.
ProjectedWithNeighbors. Projected both the positive and
negative regions onto 3 principal dimensions accounting
for the greatest variance, selected 7 images to illustrate
the variation in each principle dimension, and presented
each together with a single neighbor.

Figure 5: Portions of the interfaces used in each
study condition (with images from query “stereo”).

The HighCertainty and Global interfaces sorted images
(and groups of images) in order of their certainty. The
Projected interfaces sorted principal dimensions by the
amount of variance explained by the dimension and then
sorted images within each dimension into a spectrum.
Tasks
Participants trained two concepts per interface condition,
using queries and corresponding concepts developed for the
previous CueFlik evaluation [8]. Each task consisted of
approximately 1000 images corresponding to a query
(e.g., “drink”, “sky”) and a set of ten target images printed
on a sheet of paper and labeled with a target concept
(e.g., “pictures with products on a white background”,
“pictures with quiet scenery”). Participants were asked to
create a concept such that the target images would be
highly ranked if they were actually contained in the image
set. Target images were originally well distributed across
the ranking of the result set so that improvement in their
ranking could be used as a measure of the quality of the
trained concept. Importantly, the target images were
filtered from the result set so that participants could not see
how their current learned concept ranked the targets.
Design and Procedure
We ran participants in pairs, with each working on an
identical 3.16 GHz quad-core Dell T5400, with 8 GB of
RAM and 512 MB Video, running Windows XP, and using
24” Dell monitors at a resolution of 1920×1200. Before
beginning, the experimenter demonstrated how to use
CueFlik to build a simple rule favoring images with a
vertical aspect ratio. We used the GlobalWithNeighbors
condition for the demonstration so that we could explain
that some interfaces would group images and that
participants could guide the system by selecting individual
images, ctrl-selecting multiple images, or selecting grouped
images. Participants then practiced training a simple
concept (images of maps within a query for “Seattle”)
using the first interface condition that they were to interact
with during the main portion of the study.
Because we did not expect queries would lead directly to
carryover effects, and because we wanted to ensure
balanced coupling of interface conditions with queries, we
fixed the order of queries in the experiment. We manually
categorized target concepts as easy or difficult and then
pseudo-randomly selected queries such that the first task in
each interface condition would be an easy concept and the
second task would be a difficult concept. The ordered query
pairs were: “character” (clipart) and “sky” (quiet scenery),
“drink” (product photo) and “bill” (portrait), “car”
(product photo) and “crowded” (cluttered), “stereo”
(product photo) and “disco” (brightly colored), and
“tennis” (clipart) and “sea” (quiet scenery).
The order of interface conditions was counterbalanced
using a Latin square design. Each participant trained the
pair of easy and difficult tasks before proceeding to the
next interface. For each task, participants were given a

printout containing the target images labeled with the target
concept and clicked a button to begin. Participants were
told to perform each task as quickly and accurately as
possible and that they could click a button on the interface
to advance to the next task if they felt their concept was not
improving. We also imposed a maximum time limit of 4
minutes (indicated 20 seconds prior by a visual warning),
after which the task would self-advance. After each task, a
dialog appeared giving the participant’s final score on the
task (computed as the final mean ranking of the targets in
the image set, inverted and converted to a percentage).
Participants were then given a new printout and began the
next task. All actions were timestamped and logged.
After each interface condition, participants were given a
short questionnaire asking for their level of agreement (on a
5-point Likert scale) with five short statements regarding
the interface they had just used. The questionnaire also
asked the participants to briefly explain what they thought
CueFlik had been doing each time they gave it more
training examples, asked what they thought would help
improve the interface they had just used, and asked for any
other comments. A different short questionnaire at the end
of the experiment asked for overall aspects of CueFlik that
participants liked, disliked, or would like improved.
Participants
Twenty people (ten female, ages 20 to 48) volunteered.
None were colorblind, and all had 20/20 or corrected to
20/20 vision. We attempted to recruit a balance of image
search novices (performing no more than one image search
every week) and image search experts (performing more
than five searches weekly), obtaining seven self-reported
novices and thirteen self-reported experts. The experiment
lasted approximately 90 minutes, and participants were
given a software gratuity for their time.

RESULTS
We analyze our results using four dependent measures.
Consistent with prior work [8], we define Score as the
mean ranking of the target images by a learned concept. A
lower score indicates a higher-quality concept that ranks
targets closer to the top of the query results. We define
Time starting from the button click that began each task.
Because participants could label multiple images per action
(e.g., by dragging grouped images or ctrl-selecting multiple
images or groups), we define NumImages and NumActions
as the number of images or actions used to train a concept.
We perform all of our analyses using mixed-model
analyses of variance. All of our models include Participant
and Query as random effects. Modeling Participant
accounts for any variation in individual performance, and
modeling Query accounts for any difference in the
difficulty of queries or their associated concepts as well as
any learning, fatigue, or other potential carryover effects
between tasks (because our experiment fixed query order).
Throughout this section, we report least-squared means
obtained from our mixed-model analyses.

HighCertainty versus Overview
We first compared our baseline HighCertainty condition to
all of our Overview methods (i.e., aggregating data for our
four Overview methods). Mixed-model analyses reveal an
apparent tradeoff: participants using Overview interfaces
create concepts with a significantly better final Score (178
vs. 223, F1,170 = 8.86, p ≈ .003) but spend significantly
more Time training their final concept (197 sec vs. 176 sec,
F1,170 = 7.72, p ≈ .006) in comparison to the HighCertainty
interface. We found no difference in the NumImages or
NumActions for the final concept.
We observed during our experiments that participants often
continued providing additional training examples even
when they did not seem to be further improving a concept.
This obviously adds to the Time, NumImages, and
NumActions used to train a final concept, and we believed
it could also negatively impact the Score of a final concept.
We therefore further analyze the point where participants
obtained their Best learned concept, defined as the first
point at which their Score for a task was within 5% of the
best Score they achieved at any point during that task. This
metric detects both well-defined peaks as well as the
beginning of gradual-sloping plateaus. Figure 6 plots this
perspective, showing the average BestScore and BestTime
for each interface and their corresponding FinalScore and
FinalTime. For the sake of readability, Figure 6 plots Score
Improvement, obtained by subtracting Score at each plot
point from the initial Score. We now analyze these and the
Decay from Best to Final (the time, images, and actions
spent continuing to train a model after achieving BestScore
as well as the resulting negative impact on FinalScore).
Mixed-model analyses show that BestScore is significantly
better for Overview interfaces than for HighCertainty
(128 vs. 149, F1,170 = 6.52, p ≈ .012) and that participants
reach their BestScore in the same amount of Time (108 sec
vs. 120 sec, F1,170 = 1.11, p ≈ .294). We also saw a marginal
effect on NumActions, with Overview interfaces requiring
marginally less actions to reach the significantly better
BestScore (6.39 vs. 8.63, F1,170 = 3.89, p ≈ .050). We found
no difference in NumImages to BestScore.
Examining the Decay from Best to Final, a mixed-model
analysis shows Overview interfaces result in marginally
less ScoreDecay than the HighCertainty interface (49 vs.
74, F1,170 = 3.44, p ≈ .065), even though the Overview
interfaces result in both greater DecayTime (89 sec vs.
56 sec, F1,170 = 9.92, p ≈ .002) and DecayActions (8.03 vs.
5.30, F1,170 = 7.49, p ≈ .007) than HighCertainty. We found
no difference in the number of DecayImages.
We defer discussion of freeform feedback, but analyses of
our post-condition questionnaire Likert scales found no
significant differences for HighCertainty versus Overview.
Examining OverviewMethod and Neighbors
To examine differences among our Overview interfaces, we
exclude data from our baseline HighCertainty condition
and conduct a series of mixed-model analyses with fixed
effects OverviewMethod (Global vs. Projected), Neighbors

(NoNeighbors vs. WithNeighbors), and their interaction
OverviewMethod × Neighbors. In all cases, effects include
either OverviewMethod or Neighbors, but not both and not
their interaction. We therefore only report the effecting
treatment (i.e., removing the non-effecting treatment and
the interaction from each analysis).
We first examined our Final measures, finding interfaces
with NoNeighbors yielding a significantly better Final
Score than interfaces WithNeighbors (159 vs. 197, F1,131 =
10.7, p ≈ .001). We also find that Global overviews led
participants to spend significantly less Time training a
Final concept than Projected overviews (187 sec vs.
206 sec, F1,130 = 10.1, p ≈ .002). There were no significant
effects on NumImages or NumActions.
Examining the Best concepts shows that interfaces with
NoNeighbors result in a significantly better Best Score than
WithNeighbors (119 vs. 138, F1,130 = 9.34, p ≈ .003). We
also find that participants require marginally less time to
reach their BestScore for interfaces WithNeighbors than
with NoNeighbors (99 sec vs. 117 sec, F1,130 = 3.21, p ≈
.076). There were no significant effects on NumImages or
NumActions. This pair of Neighbors results is shown in
Figure 7, a close-up of the Best region from Figure 6. The
finding that NoNeighbors interfaces yield a better
BestScore than WithNeighbors, together with the finding
that Overview interfaces yield a better BestScore than
HighCertainty, implies a transitive relationship between
NoNeighbor interfaces and HighCertainty. A mixed-model
analysis of variance confirms NoNeighbors overviews
result in a significantly better BestScore than HighCertainty
(119 vs. 149, F1,91 = 10.67, p ≈ .002). Similarly, a
mixed-model analysis of variance shows WithNeighbors
overviews require marginally less Time to reach a
BestScore that is as good as the HighCertainty BestScore
(99 sec vs. 120 sec, F1,91 = 2.97, p ≈ .088).

Figure 6: Our Overview interfaces guide participants
to select better training examples that result in
significantly improved Scores for their Best models
and reduce the effect of Decay on their Final models.

Examining the Decay from Best to Final, we find only that
interfaces WithNeighbors resulted in marginally more
DecayActions than interfaces with NoNeighbors (8.79 vs.
7.28, F1,129 = 2.91, p ≈ .091). There were no significant
effects on ScoreDecay, DecayTime, or DecayImages.
Analyses of our post-condition questionnaire Likert scales
showed marginal effects of Neighbors. Participants agreed
marginally more with “I felt confused or frustrated when
trying to create rules” for the WithNeighbors interfaces
than the NoNeighbors interfaces (2.5 vs. 2.1, F1,1 = 3.03, p
≈ .086) and marginally less with “I felt that this method was
easy to use” (3.8 vs. 4.1, F1,1 = 2.80, p ≈ .098).
DISCUSSION
Our experimental results substantiate our hypothesis that
providing an overview of positive and negative regions
leads end-users to select better training examples when
interacting with CueFlik. Using the same amount of Time,
NumImages, and NumActions, participants using Overview
interfaces trained Best concepts that were significantly
better than those trained using the HighCertainty interface,
the best-performing interface from prior work [8]. Notably,
this prior work shows that the split HighCertainty approach
performs significantly better than presenting the full image
set and found no effect of presenting uncertain images
identified using active learning heuristics [8]. Furthermore,
although participants using Overview interfaces spent
significantly more Time and NumActions in the Decay from
Best to Final, their ScoreDecay was still marginally less
than that of the HighCertainty interface. This discussion
revisits the impact of Decay on all of our interface
conditions, but this lower rate of Decay per unit of Time
and Actions is further evidence that Overview interfaces led
participants to select better training examples.
Our WithNeighbors overviews were intended to provide
context in which end-users could better interpret images, as
well as the possibility of quickly training a concept by

labeling entire groups of similar images in one step.
WithNeighbors overviews did require marginally less Time
to obtain a BestScore as good as that for HighCertainty, but
NoNeighbor interfaces had significantly better Scores for
both their Best and Final concepts. A potential
commonality here might be that the HighCertainty and
WithNeighbors interfaces are less effective because they
less effectively convey variation with a set of images. In
addition to our performance analyses, this interpretation is
supported by negative responses to WithNeighbors on our
questionnaire scales and by participant feedback for these
interfaces of the tone “there were nowhere near enough
images – too many were duplicated” and “give more
options of photos so filtering them will go faster/easier”.
Interestingly, the same emphasis on variation that leads
end-users to choose better examples may also make it more
difficult to assess how well the current version of a learned
concept is performing (because the overview provides more
insight into less central portions of a positive or negative
region). Participant feedback included many comments of
the form “it was weird, sometimes it would start out doing
really well, but as I kept going it did worse” and “it is hard
to know if more data is better as I should probably stop
occasionally to see the results as I am going”. All of the
interfaces suffered from some Decay: Overview interfaces
marginally reduced the impact of that decay on concept
Score, but also had greater DecayTime and DecayActions.
Apart from the finding that Overview interfaces had a lower
rate of Decay, this tension surrounding the effects of
emphasizing variation highlights a set of design challenges
that warrant further examination in end-user interactive
concept learning systems:
Guiding Selection of Effective Training Examples. Prior
work has shown the effectiveness of a split presentation of
positive and negative regions in CueFlik [8], and we show
that overviews of those regions improve end-user selection
of effective training examples. Important opportunities
remain to examine these results in other applications and to
explore how these and other potential strategies interact
with the following additional design challenges.
Guiding Selection of Effective Stopping Points. We have
identified the importance of helping end-users determine
whether to continue providing additional training examples.
Interfaces that reduce DecayTime, DecayImages, and
DecayActions would positively impact all methods
examined in this paper (and further magnify the benefits of
our Overview methods, given their lower rate of Decay).
One approach might be to provide lightweight previews or
tools for examining multiple alternatives, methods that
have proven effective in other domains [23].
Guiding Understanding and Manipulation of Decision
Boundaries. It might seem that CueFlik’s focus on ranking
avoids the matter of a hard confidence threshold, but
showing overviews of positive and negative regions
requires a boundary between them. Importantly, this
challenge likely interacts with the above two. For example,

Figure 7: Examining differences among Overview
interfaces, NoNeighbors interfaces guide participants
to select training examples that result in significantly
better Best models, while WithNeighbors interfaces
result in marginally faster model training.

we are interested in supporting end-user manipulation of
how strict a system is with regard to which examples are
considered positive. This will affect which examples are
included in an overview of the positive region, which might
reduce doubt about the current concept quality and allow
better choice of a stopping point.
Supporting Effective Strategies. Participants pursued many
different strategies in training CueFlik concepts. For
example, participants placed varying emphasis on
providing positive or negative examples. Some participants
always labeled examples one at a time, while others would
select a dozen examples before giving them all the same
label. There are many opportunities to explore what
high-level strategies end-users pursue, which are most
effective, and how they can be effectively supported by
mixed-initiative systems. For example, if end-users pursue
strategies focused on the correction of classification errors
(as opposed to a focus on providing canonical examples), a
system may be able to gain additional information by
analyzing the order in which examples are provided.
These design challenges each have relationships to machine
learning problems (e.g., the challenge of selecting an
effective stopping point is related to the machine learning
problem of identifying overfitting), but a mixed-initiative
perspective introduces new opportunities. Our work is
based in CueFlik and Web image search, but significant
opportunities remain to extend and examine our results in
the context of end-user interaction with large unstructured
datasets in other domains. By explicitly separating and
highlighting these related challenges, we provide a
foundation for this additional research on the effective
design of end-user interactive machine learning systems.
CONCLUSION
Motivated by the challenges of designing effective
interactive concept learning systems, we have examined
methods for showing overviews of regions associated with
a learned concept. Evaluating these methods in CueFlik, we
have shown they guide end-users to select better training
examples that result in significantly better Scores for their
Best models and reduce the effect of Decay on their Final
models. These results and our discussion of design
challenges for mixed-initiative end-user interactive concept
learning provide an important foundation for additional
research on the effective design of such systems.
ACKNOWLEDGEMENTS
We would like to thank Morgan Dixon for his assistance creating
figures used in this paper. This work was supported in part by the
National Science Foundation under grant IIS-0812590.
REFERENCES
1. Baum, E.B. and Lang, K. Query Learning can work Poorly when

a Human Oracle is Used. Proceedings of Neural Networks 1992.
2. Blum, A., Chalasani, P., Goldman, S.A. and Slonim, D.K.

Learning with Unreliable Boundary Queries. Proceedings of
COLT 1995, pp. 98-107.

3. Bunt, A., Conati, C. and McGrenere, J. Supporting Interface
Tailoring Using a Mixed-Initiative Approach. Proceedings of
IUI 2007, pp. 92-101.

4. Chen, F., Gargi, U., Niles, L., and Schuetze, H. Multi-Modal
Browsing of Images in Web Documents. Proceedings of SPIE
Document Recognition and Retrieval VI, 3651 (1999), pp. 122-133.

5. Cutting, D.R., Karger, D.R., Pedersen, J.O., and Tukey, J.W.
Scatter/Gather: A Cluster-Based Approach to Browsing Large
Document Collections. Proceedings of SIGIR 1992, pp. 318-329.

6. Dey, A.K., Hamid, R., Beckmann, C., Li, I. and Hsu, D. a
CAPpella: Programming by Demonstrations of Context-
Aware Applications. Proceedings of CHI 2004, pp. 33-40.

7. Fails, J.A., Olsen Jr., D.R. Interactive Machine Learning.
Proceedings of IUI 2003, pp. 39-45.

8. Fogarty, J., Tan. D., Kapoor, A. and Winder, S. CueFlik:
Interactive Concept Learning in Image Search. Proceedings of
CHI 2008, pp. 29-38.

9. Frazier, M., Goldman, S., Mishra, N. and Pitt, L. Learning
from a Consistently Ignorant Teacher. Journal of Computing
Systems Science 52, 3 (1996), 472-492.

10. Gorkani, M.M. and Picard, R.W. Texture Orientation for Sorting
Photos 'At a Glance'. Proceedings of ICPR 1994, pp. 459-464.

11. Guo, Y. and Schuurmans, D. Discriminative Batch Mode
Active Learning. Proceedings of NIPS 2007.

12. Gurevich, N., Markovitch, S. and Rivlin, E. Active Learning
with Near Misses. Proceedings of AAAI 2006, pp. 362-367.

13. Hartmann, B., Abdulla, L., Mittal, M. and Klemmer, S.R.
Authoring Sensor-Based Interactions by Demonstration with
Direct Manipulation and Pattern Recognition. Proceedings of
CHI 2007, pp. 145-154.

14. Hoffman, R., Amershi, S., Patel, K., Wu, F., Fogarty, J. and
Weld, D.S. Amplifying Community Content Creation with
Mixed-Initiative Information Extraction. Proceedings of CHI
2009, pp. 1849-1858.

15. Horvitz, E. Principles of Mixed-Initiative User Interfaces.
Proceedings of CHI 1999, pp. 159-166.

16. Krause, A., Singh, A. and Guestrin, C. Near-optimal Sensor
Placements in Gaussian Processes: Theory, Efficient
Algorithms and Empirical Studies. Journal of Machine
Learning Research 9, (2008), 235-284.

17. Kristjannson, T., Culotta, A., Viola, P. and McCallum, A.
Interactive Information Extraction with Constrained Conditional
Random Fields. Proceedings of AAAI 2004, pp. 412-418.

18. Muslea, I., Minton, S. and Knoblock, C.A. Active Learning with
Multiple Views. Journal of AI Research 27, (2006), 203-233.

19. Ritter, A. and Basu, S. Learning to Generalize for Complex
Selection Tasks. Proceedings of IUI 2009, pp. 167-176.

20. Schettini, R., Ciocca, G., Valsasna, A., Brambilla, C. and De
Ponti, M. A Hierarchical Classification Strategy for Digital
Documents. Pattern Recognition 35, 8 (2002), 1759-1769.

21. Shilman, M., Tan, D.S. and Simar, P. CueTIP: A Mixed-
Initiative Interface for Correcting Handwriting Errors.
Proceedings of UIST 2006, pp. 323-332.

22. Tenenbaum, J.B., de Silva, V. and Langford, J.C. A Global
Geometric Framework for Nonlinear Dimensionality
Reduction. Science 290, 5500 (2000), 2319-2323.

23. Terry, M. and Mynatt, E.D. Side Views: Persistent, On-
Demand Previews for Open-Ended Tasks. Proceedings of
UIST 2002, pp. 71-80.

24. Vailaya, A., Figueiredo, M., Jain, A. and Zhang, H.J. Content-
Based Hierarchical Classification of Vacation Images.
Proceedings of ICMCS 1999, pp. 518-523.

25. Zhu, X. Semi-supervised learning literature survey. Technical
Report 1530, Department of Computer Sciences, University of
Wisconsin, Madison, 2005.

