Simplifying the Design of Workflows for Large-Scale Data Exploration and Visualization

Juliana Freire

Claudio Silva

http://www.cs.utah.edu/~juliana

http://www.cs.utah.edu/~csilva

University of Utah

Workflows and Computational Processes

- Workflows are emerging as a paradigm for representing and managing complex computations
 - Simulations, data analysis, visualization, data integration
- They capture computation and analysis processes, enabling
 - Automation, reproducibility, result sharing
- Workflows are rapidly replacing primitive shell scripts
 - Apple's Mac OS X Automator, Microsoft Windows Workflow Foundation, and Yahoo! Pipes
- ◆ Business Workflows ⇒ Scientific Workflows
 - Important differences!

Workflows: Scientific vs. Business

- Express sequence of data transformations
- Dataflow: Stateless, functional
- Data intensive, computing intensive
- Cater to a broad set of users

- Ensure rules and prescribed processes are followed
- Control flow (e.g., BPEL):
 State and side effects
- Targeted to programmers

Exploration and Workflows

- Workflows have been traditionally used to automate repetitive tasks
- In exploratory tasks, change is the norm!

- Data analysis and exploration are iterative processes

Figure modified from J. van Wijk, IEEE Vis 2005

Data Exploration and Workflows

Files (workflow specifications)

anon4877_voxel_scale_1_zspace_20060331.srn

anon4877_textureshading_20060331.srn

anon4877_textureshading_plane0_20060331.srn

anon4877 goodxferfunction 20060331.srn

anon4877_lesion_20060331.srn

Notes

Exploration and Creativity Support

- Exploratory processes require reflective reasoning
- "Reflective reasoning requires the ability to store temporary results, to make inferences from stored knowledge, and to follow chains of reasoning backward and forward, sometimes backtracking when a promising line of thought proves to be unfruitful. ...the process is slow and laborious"

Donald A. Norman

- Need external aids—tools to facilitate this process
 - Creativity support tools [Shneiderman, CACM 2002]
- Need aid from people—collaboration

Data Exploration and Workflows: Issues

- Hard to assemble and iteratively refine workflows
- Combine many tools and libraries: Need in-depth knowledge to weave them together
- No support for reflective reasoning
 - E.g., history of the exploration trail maintained manually through file-naming conventions and detailed notes
 - Hard to understand the exploratory process and relationships among workflows
- Lack of support for collaboration

Existing systems fail to provide the necessary infrastructure for exploratory tasks. As a result, the generation and maintenance of workflows is a major bottleneck in the scientific process

VisTrails: Managing Scientific Exploration

- Goal: reduce time to insight
- Build infrastructure to streamline exploratory tasks such as data analysis and visualization
- Support for collaboration
- Usability—provide tools and intuitive interfaces
- The VisTrails System: an open-source provenanceenabled scientific workflow system
 - > 6,000 downloads since 2007
 - Used in many applications: environmental modeling (OHSU), physics simulation (Cornell, LANL), medical studies (University of Utah), ...

Outline

- Using provenance to support reflective reasoning
- Exploring and re-using provenance
 - Querying workflows by example
 - Creating workflows by analogy
 - Auto-completion for workflows
- Emerging applications
- Future work

Keeping Exploration Trails

Change-Based Provenance

- Captures provenance of workflow evolution
- Records user actions
- Provenance = changes to computational tasks
 - Add a module, add a connection, change a parameter value

addModule
deleteConnection
addConnection
addConnection
setParameter

Change-Based Provenance

- Records user actions
- Provenance = changes to computational tasks
 - Add a module, add a connection, change a parameter value
- Extensible change algebra
- A vistrail node v_t corresponds to the workflow that is constructed by the sequence of actions from the root to v_t

$$V_t = X_n \circ X_{n-1} \circ \dots \circ X_1 \circ \emptyset$$

vistrail

Exploring the Change Space

- Scripting workflows: Parameter explorations are simple to specify and apply
- Exploration of parameter space for a workflow v_t
 (setParameter(id_n, value_n) ∘ ... ∘ (setParameter(id₁, value₁) ∘ v_t)

Exploring the Change Space

- Scripting workflows: Parameter explorations are simple to specify and apply
- Exploration of parameter space for a workflow $\mathbf{v_t}$ (setParameter(id_n, value_n) \circ ... \circ (setParameter(id₁, value₁) \circ $\mathbf{v_t}$)
- Exploration of multiple workflow specifications
 (addModule(id_i,...) ° (deleteModule(id_i) ° v₁)

```
(addModule(id_{i},...) \circ (deleteModule(id_{i}) \circ \mathbf{v_{n}})
```

- Results can be conveniently compared in the VisTrails spreadsheet
- Can create animations too!
- Caching to avoid redundant computations [Bavoil et al., IEEE Vis 2005]

Computing Workflow Differences

- No need to compute subgraph isomorphism!
- A vistrail is a rooted tree: all nodes have a common ancestor—diffs are welldefined and simple to compute

$$vt_{1} = x_{i} \circ x_{i-1} \circ ... \circ x_{1} \circ \emptyset$$

$$vt_{2} = x_{j} \circ x_{j-1} \circ ... \circ x_{1} \circ \emptyset$$

$$vt_{1} - vt_{2} = \{x_{i}, x_{i-1}, ..., x_{1}, \emptyset\} - \{x_{j}, x_{j-1}, ..., x_{1}, \emptyset\}$$

- Different semantics:
 - Exact, based on ids
 - Approximate, based on module signatures

Collaborative Exploration

- Collaboration is key to data exploration
 - Translational, integrative approaches to science
- Store provenance information in a database
- Synchronize concurrent updates through locking
 - Real-time collaboration [Ellkvist et al., IPAW 2008]
- Asynchronous access: similar to version control systems
 - Check out, work offline, synchronize
 - Users exchange patches
- Synchronization is simple—provenance is monotonic
- No need for a central repository—support for distributed collaboration
 - For details see Callahan et al, SCI Institute Technical Report, No. UUSCI-2006-016 2006

Change-Based Provenance: Summary

- General: Works with any system that has undo/redo!
- Concise representation
- Uniformly captures data and workflow provenance
 - Data provenance: where does a specific data product come from?
 - Workflow evolution: how has workflow structure changed over time?
- Results can be reproduced
- Detailed information about the exploration process
- Provenance beyond reproducibility:
 - Support for reflective reasoning
 - Scalable exploration of the parameter space—results can be compared side-by-side in the spreadsheet
 - Support for collaboration
 - Understand problem-solving strategies—knowledge re-use

Exploring and Re-Using Provenance

- Storing detailed information is important, but not enough!
- Need appropriate user interface and operations to leverage information
 - Understand and re-use the history
- Simplify the creation of new workflows

Looking for Examples

- Need to query workflow collection:
 - Find workflows that process a particular type of file
 - Find workflows that output a particular data product
 - Find workflows that contain a given module or sequence of modules
- Workflow are graphs: hard to specify queries using text
 - SQL, SparQL, Prolog....

Querying Workflows by Example

- WYSIWYQ -- What You See Is What You Query
- Interface to create workflow is same as to query

[Scheidegger et al., TVCG 2007

Refining Workflows

- Complex workflows are hard to create
 - Domain knowledge
 - Familiarity with different tools

Steep learning curve

Refining Workflows by Analogy

- Leverage the wisdom of the crowds in shared provenance
 - Some workflow refinements are common, e.g., change the rendering technique, publish image on the Web
- Apply refinements by analogy, automatically [Scheidegger et al, IEEE TVCG 2007]

Analogy Template

Automatically constructed visualizations

Refining Workflows by Analogy

is to

as

is to

The Analogy Algorithm

as is to D

- 1. Compute difference: $\Delta(A,B)$
 - Just like a patch!
 - But...
 - $D = \Delta(A,B) \circ C$ may not be a valid workflow
- Find correspondences between A and C: map(A,C)
 - Diffuse similarity scores across the product graph AxC using Eigenvalue decompositions
- 3. Compute mapped difference $\Delta_{AC}(A,B) = map(A,C) \Delta(A,B)$
- 4. $D = \Delta_{AC}(A,B) \circ C$

The Analogy Operation

- Allows workflows to be refined without requiring users to directly modify the specification
- Basis for scalable updates
 - Analogies are not foolproof
 - If it works, great. If it doesn't, it may help
 - User can edit and fix the new version
 - Improve by
 - Using domain knowledge
 - Learning from user feedback

The Need for Guidance in Workflow Design

VisComplete: A Workflow Recommendation System

 Mine provenance collection: Identify graph fragments that co-occur in a collection of workflows

 Predict sets of likely workflow additions to a given partial workflow

Similar to a Web browser suggesting URL

completions

[Koop et al., IEEE Vis 2008]

VisComplete: A Workflow Recommendation System

- Identify graph fragments that co-occur in a collection of workflows
- Predict sets of likely workflow additions to a given partial workflow
- Similar to a Web browser suggesting URL completions

VisComplete: Demo

http://www.cs.utah.edu/~juliana/videos/viscomplete_h_264.mov

[Koop et al., IEEE Vis2008]

VisComplete:
Data-driven Suggestions for
Visualization Systems

Results Summary

- Eliminates over 50% of actions
- Selected completions are almost always in the first four suggestions
- A database of simple pipelines can aid users constructing more complex pipelines
- See [Koop et al., TVCG 2008] for details on how the path database is constructed and on the completion algorithm

Conclusions and Future Work

- Appropriate support for exploratory tasks is essential for a wider adoption and more effective use of scientific workflow systems
- Provenance can be used to support reflective reasoning
- Intuitive interfaces for simplifying the construction and refinement of workflows
- Sharing workflows provenance at a large scale creates new opportunities
 - Workflow/provenance repositories; provenance-enabled publications
 - Scientists can learn by example; expedite their scientific training; and potentially reduce their time to insight [Freire and Silva, CHI SDA, 2008]

Acknowledgments: Funding

 This work is partially supported by the National Science Foundation, the Department of Energy, an IBM Faculty Award, and a University of Utah Seed Grant.

Acknowledgments: People

VisTrails Group

- Claudio Silva
- Erik Anderson
- Jason Callahan
- Steven P. Callahan
- Lorena Carlo
- David Koop
- Lauro Lins
- Emanuele Santos
- Carlos E. Scheidegger
- Huy T. Vo
- Geoff Draper

For more info about VisTrails

Visit: http://www.vistrails.org

