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Abstract

We revisit the problem of designing optimal, individually rational matching mechanisms (in
a general sense, allowing for cycles in directed graphs), where each player — who is associated
with a subset of vertices — matches as many of his own vertices when he opts into the matching
mechanism as when he opts out. We offer a new perspective on this problem by considering an
arbitrary graph, but assuming that vertices are associated with players at random. Our main
result asserts that, under certain conditions, any fixed optimal matching is likely to be individ-
ually rational up to lower-order terms. We also show that a simple and practical mechanism is
(fully) individually rational, and likely to be optimal up to lower-order terms. We discuss the
implications of our results for market design in general, and kidney exchange in particular.



1 Introduction

Matching theory has made an astounding real-world impact, through the field of market design; it
is the cornerstone of the design and analysis of widely deployed applications that match residents
to hospitals [25], students to schools [1], and organ donors to patients [26, 27, 28]. But as matching
markets become more prevalent, new issues arise, which potentially limit their (economic) efficiency.
In this paper, we tackle one such issue: individual rationality (or the lack thereof). Specifically, we
study situations where the vertices of the graph are partitioned between a set of players, and each
player is interested in matching as many of his own vertices as possible. An individually rational
matching is one that matches at least as many vertices of each player as he can match on his own.

Why is individual rationality a real issue? Of the examples listed earlier, kidney exchange
provides arguably the most concrete, compelling answer. It is a medical innovation that, in its
basic form, allows patients who need kidney transplant, and have willing but medically incompat-
ible donors, to swap donors. From the matching viewpoint, the kidney exchange setting can be
represented via a directed compatibility graph, where each vertex corresponds to an incompatible
patient-donor pair, and there is an edge (u, v) if the donor of u is medically compatible with the
patient of v. A pairwise swap corresponds to a 2-cycle in this graph, but exchanges along longer
cycles — and even along chains, initiated by altruistic donors — are also important in practice (we
also use the term matching to refer to cycles and chains in these directed graphs).

v1 v2 v3 v4

v5 v6 v7

Figure 1: A compatibility graph where
individual rationality fails.

Based on their work with practitioners, Ashlagi and
Roth [7] have recently raised serious concerns regarding
individual rationality in kidney exchange; they convinc-
ingly argue that as kidney exchange programs outgrow
their regional origins, the incentives of hospitals (the play-
ers in this case) — which have little to no interaction
outside of the kidney exchange program — become mis-
aligned. In particular, hospitals cannot be certain that if

they opt into a kidney exchange program, which optimizes overall efficiency, their patients would
be better off overall than under the optimal internal matching (which relies only on donor-patient
pairs associated with the hospital). A bad example (due to Ashlagi and Roth) is given in Figure 1:
the maximum cardinality matching selects the 3-cycles {v1, v2, v5} and {v3, v4, v7}, but the blue
player can do better by internally matching the single 3-cycle {v2, v3, v6}. That is, the maximum
cardinality matching is twice as large as the unique individually rational matching.

1.1 Our Approach

To summarize the preceding discussion, individual rationality is potentially a major obstacle to
the economic efficiency of matching markets. Our goal is to analytically demonstrate that, in fact,
individual rationality (or an almost perfect approximation thereof) can be achieved with nearly no
loss of efficiency. Our key insight is that it suffices to assume that each vertex of the graph is owned
by a random player.

In more detail, we consider an arbitrary graph with n vertices v1, . . . , vn, and a set of k play-
ers 1, . . . , k. For each vertex, we draw its owner independently from the probability distribution
p1, . . . , pk over the players, that is, each vertex is assigned to player i with probability pi. In the
kidney exchange setting, for example, the rationale is very simple: the graph represents medical
compatibility information, and there is no special reason why a patient-donor pair with particular
medical characteristics would belong to a particular hospital — the probability of that happening
depends chiefly on the size of the hospital.
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To see how randomization helps, let us revisit the example given in Figure 1, and suppose that
the two players (red and blue) have probability 1/2 each: p1 = p2 = 1/2. The expected utility of a
player under the maximum cardinality matching is 6/2 = 3. In contrast, a straightforward upper
bound on the expected cardinality of an internal matching can be derived by observing that each
of the three 3-cycles is owned by a single player with probability 1/8 and adds at most 3 to the
cardinality of the matching, leading to an upper bound of 3 · 3 · (1/8) = 9/8. Now, suppose we
made t copies of the graph of Figure 1, for a large t; then a simple measure concentration argument
would imply that it is very likely that each player is better off in the optimal solution than he is
working alone.

Our goal is to establish this phenomenon in some generality. Indeed, our qualitative message
(a few technical caveats apply) is that

... in an arbitrary graph, under a random assignment of vertices to players, it is likely
that any fixed optimal matching is individually rational, up to lower order terms, for
each player; and there is a practical mechanism that yields an individually rational
matching that is likely to be optimal up to lower order terms.

1.2 Our Results and Techniques

In §2, we formalize the first part of the above statement. Specifically, we prove the following
theorem:

Theorem 2.2 (informally stated). Let G be a directed graph, and let opt(G) be the set of vertices
matched under a specific maximum cardinality matching on G. Assume that one of the following
conditions holds:

1. Matchings are restricted to 2-cycles, and pi ≤ 1/2 for each player i, or

2. Matchings are restricted to cycles of constant length, and for each player i, 1/pi is an integer.

Then for each player i ∈ [k], the difference between the size of his optimal internal matching, and
his share of opt(G), is at most O(

√
|opt(G)| · ln(k/δ)) with probability 1− δ.

The theorem’s first case deals with 2-cycles, a common abstraction for kidney exchange in
theoretical studies [27, 29, 4, 5, 15, 11, 10, 8]. Of course in this case there always exists an optimal
and individually rational matching (find the optimal internal matchings and then add augmenting
paths), but nonetheless this statement is appealing because it applies to any optimal solution that
the exchange — which might also be optimizing some secondary objective — might produce. Also
note that this case is essentially unrestrictive in terms of the probability distribution. The second
case is the opposite: its assumption of constant length cycles is essentially unrestrictive, as chains
can be represented as cycles by adding an edge from every patient-donor pair to every altruistic
donor; and major kidney exchanges — such as the US national program, run by the United Network
for Organ Sharing (UNOS) — use only cycles of length at most 3, and chains of length at most
4 [28, 7, 18, 6]. But the assumption regarding the probability distribution is, of course, somewhat
restrictive. Note, however, that probabilities can be “rounded” at a cost, as we discuss later; and
that the natural case of equal probabilities is captured by the second case.

The proof of Theorem 2.2 relies on two main ingredients. The first is the claim that the expected
size of the maximum internal matching of player i is at most a pi fraction of the optimal (global)
matching. This statement is almost trivial in Case 2; to establish it in Case 1, we decompose the
maximum cardinality matching via the Edmonds-Gallai Decomposition [20], and show that the
inequality holds for each component separately.
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The second ingredient is the concentration of the cardinality of the optimal internal matching
of each player around its expectation. To this end, we leverage machinery from modern probability
theory that is little known in theoretical computer science, including a concentration inequality for
so-called self-bounding functions [14].

The power of Theorem 2.2 is that it applies to any maximum cardinality matching. In the con-
text of kidney exchange, the theorem captures the matching algorithms currently in use (including
the ones employed by UNOS); its conceptual message is that hospitals need not worry about opting
into kidney exchange programs, even under the status quo.

By contrast, in §3 we give the designer more power in choosing the matching, with the goal of
constructing a mechanism that is (perfectly) individually rational, and almost optimal. As noted
earlier, this is quite trivial when only 2-cycles are allowed, as there always exists an optimal, indi-
vidually rational matching. When longer cycles are allowed, we can derive the following corollary
from the proof of Theorem 2.2.

Corollary 3.1 (informally stated). Let G be a directed graph with n vertices, and let opt(G)
be the set of vertices matched under a specific maximum cardinality matching on G. Suppose that
matchings are restricted to cycles of constant length, and pi = pj for any two players i, j. Then,
with probability 1 − δ, there exists a matching that is individually rational for each player i, and
has maximum cardinality up to O(k

√
|opt(G)| · ln(k/δ)).

Importantly, such an individually rational and almost optimal matching can be found with a
practical1 mechanism: (i) compute a maximum cardinality matching, (ii) any player who wishes to
work alone is allowed to defect.

Furthermore, we show that our results are tight. Among other things, we construct an example
with two players and cycles up to length 3 such that, with constant probability, any individually
rational matching is smaller than the optimal matching by Ω(

√
|opt(G)|).

1.3 Related Work

The two papers that are most closely related to ours are the ones by Ashlagi and Roth [7] and
Toulis and Parkes [29]. Ashlagi and Roth show that under some technical assumptions, and under
a random graph model of kidney exchange, large random graphs admit an individually rational
matching that is optimal up to a certain constant fraction of the number of vertices, with high
probability. Toulis and Parkes [29] independently study a very similar random graph model (it
does make different assumptions about the size of hospitals), and obtain a similar result regarding
individual rationality.

These important results have inspired our own work, but — in addition to a number of significant
technical advantages2 — we believe our high-level approach is significantly more compelling. In
a nutshell, the random graph model studied by Ashlagi and Roth [7] and Toulis and Parkes [29]
draws blood types for each donor and patient from a distribution that gives each of the four blood
types (O, A, B, and AB) constant probability. For each pair of blood type compatible vertices (e.g.,
an O donor is blood type compatible with an A patient, but a B donor is not), a directed edge
exists with constant probability. This model clearly gives rise to very dense graphs; the key to the
abovementioned results is that, with high probability, there exist matchings between blood type

1By “practical” we mean that it can be easily implemented in practice. It is not a polynomial-time algorithm, as
computing a maximum cardinality matching is NP-hard when 3-cycles are allowed [2]; but the problem is routinely
solved via integer programming.

2In contrast to their work, we obtain optimality up to lower-order terms (instead of up to a constant fraction of
n), and our results have a good dependence on the number of players (instead of assuming a very large [7] or a very
small [29] number) and on the size of the graph (instead of assuming that n goes to infinity).
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compatible groups (such as A patient and B donor, and B patient and A donor) that are perfect in
the sense that they match all the vertices in the smaller group. Consequently, the structure of the
optimal matching can be accurately predicted with high probability. This model has subsequently
been employed in several other papers [18, 11].

However, more recent work by Ashlagi and Roth themselves — together with collaborators [6]
— introduces a completely different random graph model of kidney exchange, which gives rise to
sparse graphs, and better captures some real-world phenomena. This model was later employed by
Dickerson et al. [19]. At this point it is fair to say that, on the question of whether random graph
models are a valid approach for the analysis of kidney exchange, the jury is still out. But we are
convinced that an analysis that holds for arbitrary graphs — when it is feasible, as in this paper
— is the right approach.

Individual rationality limits players to two possible strategies: work alone or participate fully.
More generally, players can choose to reveal a subset of their vertices, and internally match the rest.
Several papers seek to design mechanisms that incentivize players to reveal all their vertices, either
as a dominant strategy [5, 23] or in equilibrium [7, 29]. These known results are quite limited;
obtaining stronger results is a central open problem. Our own approach does not seem to extend
beyond individual rationality.

Needless to say, matching is a major research topic in theoretical computer science. In particular,
there are many papers that are directly motivated by market design applications, especially kidney
exchange [17, 16, 3, 21, 9, 22]. These papers are largely orthogonal to our work.

2 Optimal Matchings Are Almost Individually Rational

Designing and implementing new matching mechanisms can require significant changes to current
policies and deployed algorithms. In this section, we show that even without any changes to the
existing (optimal) matching mechanisms — at least in the case of kidney exchange — it is likely
that each player matches almost as many vertices as what he could have obtained on his own.

Consider an arbitrary directed graph G with n vertices. Recall that for each player i ∈ [k]
with corresponding probability pi, the player owns each vertex with probability pi, independently.
We denote by Hi ∼pi G the random subgraph of player i, which is a subgraph of G induced by
assigning each vertex to i with probability pi. We suppress pi from this notation when it is clear
from the context. We use opt(G) to denote the set of vertices of an arbitrary but fixed matching
of G. Furthermore, opt(G) � Hi denotes the restriction of opt(G) to subgraph Hi, i.e., the vertices
of Hi that are matched under opt(G). Therefore, to compare the size of the internal matching of
Hi with the number of vertices of Hi that are matched under the global matching, we compare
|opt(Hi)| to |opt(G) � Hi|, and show that these values are within Õ(

√
|opt(G)|) of one another.

Let us first describe a graph in which, with a constant probability, a player’s internal matching
is larger by Ω(

√
|opt(G)|) than the player’s share of any fixed optimal matching.

Example 2.1. Suppose one of the players has probability p = 1
2 , and consider a graph that consists

of n/ log(n) stars, each with log(n) vertices that are connected to the center via 2-cycles. Fix an
optimal global matching, opt(G), and note that |opt(G)| = 2n/ log(n). We informally argue that
there is a constant c > 0 such that

Pr
H∼pG

[
|opt(H)| − |opt(G) � H| > Ω(

√
|opt(G)|)

]
> c.

Indeed, let us consider the subgraph internal to the player, H ∼p G. While the expected number
of centers in H is 1

4 |opt(G)|, it is easy to see (by looking up the standard deviation of the binomial
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distribution) that, with constant probability, H includes t = 1
4 |opt(G)| + Θ(

√
|opt(G)|) centers.

Moreover, with probability 1
2 , H includes no more than half of the non-center vertices matched

by opt(G). If both events occur, |opt(G) � H| ≤ t + 1
4 |opt(G)|, where t of the matched vertices

correspond to the center vertices and at most 1
4 |opt(G)| vertices correspond to non-center vertices

of H that coincide with opt(G). On the other hand, each star is large enough so that with constant
probability H includes at least one non-center vertex in each star. In that case, for every center
vertex in H, opt(H) gets two matched vertices. Therefore, |opt(H)| ≥ 2t internally. It follows
that the player can gain an additional Θ(

√
|opt(G)|) matched vertices when deviating from a fixed

global optimal matching.

Our main result shows that Example 2.1 is asymptotically tight.

Theorem 2.2. Let G be a directed graph and let opt(G) be the set of vertices matched under some
fixed maximum cardinality matching on G. Assume that one of the following conditions holds:

1. Matchings are restricted to 2-cycles, and pi ≤ 1/2 for each player i ∈ [k], or

2. Matchings are restricted to cycles of constant length, and for each player i ∈ [k], 1/pi is an
integer.

Then for any δ > 0,

Pr
Hi∼piG

[
∀i ∈ [k], |opt(Hi)| − |opt(G) � Hi| < O

(√
|opt(G)| ln k

δ

)]
≥ 1− δ.

The proof of Theorem 2.2 involves two main lemmas. The first shows that in expectation
|opt(Hi)| is at most |opt(G) � Hi|. The second asserts that |opt(Hi)| is concentrated nicely around
its expectation. We formally state these two lemmas without further ado, but defer their proofs to
§2.1 and §2.2, respectively (with overflow in Appendix A).

Lemma 2.3. Let G be a directed graph and let opt(G) be the set of vertices matched under some
fixed maximum cardinality matching on G. Then EH∼pG[|opt(H)|] ≤ p|opt(G)| if (i) matchings are
restricted to 2-cycles, and p ≤ 1/2, or (ii) 1/p is an integer.

Lemma 2.4. Let G be a directed graph and let opt(G) be the set of vertices matched under some
fixed maximum cardinality matching on G. Assume matchings are restricted to cycles of length up
to a constant L. Then for any δ > 0, with probability 1− δ over random choices of Hi ∼pi G, for
all i ∈ [k],

EHi∼piG
[|opt(Hi)|]−L

√
2 · E[|opt(Hi)|] ln

2k

δ
< |opt(Hi)| < EHi∼piG

[|opt(Hi)|]+2L

√
|opt(G)| ln 2k

δ
.

We now easily prove our main result — Theorem 2.2 — by directly leveraging the two lemmas
we just stated.

Proof of Theorem 2.2. Since opt(G) is fixed and Hi is drawn from G independently of opt(G), the
expected number of vertices player i has in opt(G) is

EHi∼pi
G[|opt(G) � Hi|] = pi · |opt(G)|. (1)

Moreover, |opt(G) � Hi| =
∑

v∈opt(G) 1v∈Hi , where 1v∈Hi is an indicator variable with value 1 if
v is owned by player i and 0 otherwise. So, 1v∈Hi is a random variable that has value 1 with
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probability pi, and value 0 otherwise. Using Hoeffding’s inequality over |opt(G)| i.i.d. variables for
a fixed i ∈ [k], as well as Equation (1),

Pr
Hi∼piG

[
|opt(G) � Hi| ≥ pi · |opt(G)| −

√
1

2
|opt(G)| ln 2k

δ

]
≥ 1− δ

2k
. (2)

Putting this together with Lemmas 2.3 and 2.4, we have that for all i ∈ [k], with probability 1− δ,

|opt(Hi)| ≤ EHi∼piG
[|opt(Hi)|] + 2L

√
|opt(G)| ln 4k

δ

≤ pi |opt(G)|+ 2L

√
|opt(G)| ln 4k

δ

≤ |opt(G) � Hi|+ (2L+ 1)

√
|opt(G)| ln 4k

δ
,

where the first inequality follows from Lemma 2.4 (using δ′ = δ/2), the second from Lemma 2.3,
and the third from applying Equation (2) to each i ∈ [k].

Note the logarithmic dependence of Theorem 2.2 on the number of players k. A subtle point is
that if the number of players is large, some will have a small pi, which means that the expectation
of |opt(G) � Hi| is small compared to |opt(G)|, by Equation (1). In that case, a gain of

√
|opt(G)| is

significant. Nevertheless, the theorem’s conceptual message — that following the global matching
is individually rational up to lower order terms — holds for any pi = ω(1/

√
|opt(G)|).

In addition, recall that Theorem 2.2 considers two cases, (i) 1/pi is an integer and (ii) pi ≤ 1/2
and opt(G) is restricted to 2-cycles. Importantly, these two assumptions are only needed for
Lemma 2.3. We conjecture that indeed Lemma 2.3 holds for any p ≤ 1

2 , whenever opt(G) is
restricted to cycles of constant length — in which case Theorem 2.2, too, would hold under this
weaker assumption. One might wonder why assuming p ≤ 1

2 is even necessary. But in Appendix C.1
we construct examples that violate the conclusion of Theorem 2.2 for certain values of p > 1/2.

Finally, we remark that if 1/pi is close to an integer but not itself an integer, one can first round
down pi to the largest qi < pi such that 1/qi is an integer, and then apply Theorem 2.2. This would
give the same result, up to an additional constant fraction of |opt(G)|. As pi becomes smaller the
rounding error also diminishes.

2.1 Proof of Lemma 2.3

First, let us address Case 2 of the lemma. Consider p such that 1/p is an integer; opt(G) may include
cycles of any length. Imagine there are 1

p players, each with probability p. By symmetry between
the players, the expected size of the optimal matching in all subgraphs is equal. Furthermore, the
total number of vertices matched by players individually is at most opt(G). Therefore,

|opt(G)| ≥
1/p∑
i=1

EHi∼pG [|opt(Hi)|] =
1

p
EH∼pG [|opt(H)|] ,

which proves the claim.
In the remainder of this section we focus on Case 1 of Lemma 2.3, where the matchings are

restricted to 2-cycles and p ≤ 1/2. For ease of exposition, we treat G as an undirected graph: each
directed 2-cycle corresponds to an undirected edge, and we may remove directed edges that are not
involved in 2-cycles (as they are useless).
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Assume there is a partition G = G1]G2]· · ·]G` of (the undirected graph) G into edge-disjoint
(but not necessarily vertex-disjoint) subgraphs that preserve the size of the optimal matching, i.e.,

|opt(G)| =
∑̀
i=1

|opt(Gi)|. (3)

Moreover, assume that each of these subgraphs has the property that

EH∼pGi
[|opt(H)|] ≤ p |opt(Gi)|. (4)

Then, the next equation proves that this property also holds for G at the global level. That is,

EH∼pG[|opt(H)|] ≤
∑̀
i=1

EH∼pG [|opt(H ∩Gi)|] =
∑̀
i=1

EH∼pGi [|opt(H)|] ≤
∑̀
i=1

p |opt(Gi)| = p |opt(G)|.

For the first transition, H ∩ Gi is the graph with edges that are present in both H and Gi; the
intuition behind this inequality is that we are essentially allowed to match the same vertices multiple
times on the right hand side. The third and fourth transitions follow from Equations (3) and (4).

So, it remains to find a partition of G into edge-disjoint subgraphs, G1 ]G2 ] · · · ]G`, which
satisfies (3) and (4). We prove that the Edmonds-Gallai Decomposition [20] can be used to construct
a partition satisfying these properties.

Lemma 2.5 (Edmonds-Gallai Decomposition). Let G = (V,E) be an undirected graph, let B be
the set of vertices matched by every maximum cardinality matching in G, and let D = V \ B.
Furthermore, partition B into subsets A and C = B \A, where A is the set of vertices with at least
one neighbor outside B. And let D1, . . . , Dr, be the connected components of the induced subgraph
G[D]. Then the following properties hold.

1. opt(G) matches each node in A to a distinct connected component of G[D].

2. Each Di is factor-critical, i.e., deleting any one vertex of Di leads to a perfect matching in
the remainder of Di.

We now describe how the Edmonds-Gallai Decomposition is used to construct the desired parti-
tion of G. For the ith connected component of G[C] and G[D], create a subgraph Gi corresponding
to its edges. Furthermore, for each vertex i ∈ A, create a subgraph Gi corresponding to the set of
edges incident on i. If there is an edge between two vertices of A, i and i′, then include the edge in
only one of Gi or Gi′ . Since the Edmonds-Gallai Decomposition has no edges between C and D,
G =

⊎
iGi forms a partition of the edge set of G. See Figure 2 for an example of this construction.

We argue that the foregoing partition satisfies Equation (3); the proof of this claim is relegated
to Appendix A.1.

Claim 2.6. |opt(G)| =
∑

i |opt(Gi)|.

Next, we show that G =
⊎
iGi satisfies (4). There are three types of Gi in this partition: (i) Gi

is a star, (ii) Gi is a component of G[D] and has a matching that covers all but one vertex, and
(iii) Gi is a component of G[C] and has a perfect matching.

Let us first address case (i) — that of a star. Clearly it holds that |opt(Gi)| = 2. Now,
|opt(H)| ∈ {0, 2}, and for opt(H) to be non-empty, H must include the center of the star, which
happens with probability p.

The following claim, whose proof is relegated to Appendix A.2, establishes Equation (4) in cases
(ii) and (iii). Note that this is the only place where the assumption p ≤ 1/2 is used.
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B



Figure 2: A graph demonstrating the Edmonds-Gallai Decomposition and the edge-disjoint graph partition
for the proof of Lemma 2.3. In this graph, each color represents one Gi in the partition G =

⊎
iGi and the

wavy edges represent the matched edges in opt(G).

Claim 2.7. For any p ≤ 1
2 , and any graph G with n vertices such that |opt(G)| ≥ n− 1,

EH∼pG [|opt(H)|] ≤ p |opt(G)|.

Having established (4), the proof of Lemma 2.3 is now complete.

2.2 Proof of Lemma 2.4

We will prove the following equivalent formulation of Lemma 2.4:

Pr
H∼G

[|opt(H)| ≥ EH∼G[|opt(H)|] + ε] ≤ exp

(
− ε2

4L2 |opt(G)|

)
, (5)

and

Pr
H∼G

[|opt(H)| ≤ EH∼G|[opt(H)|]− ε] ≤ exp

(
− ε2

2L2 E[|opt(H)|]

)
. (6)

Let us first describe a failed approach for proving the lemma, which brings to light some
subtleties in the above inequalities. Consider an explicit description of |opt(H)| as a function
of n random variables, X1, . . . , Xn, where Xi = 1 if vertex i is in H and 0 otherwise. Then
|opt(H)| = f(X1, . . . , Xn) is the size of the optimal matching on H. One can show that f(·) is
L-Lipschitz, that is, changing Xi to ¬Xi, which corresponds to adding or removing one vertex from
H, changes the size of the maximum matching by at most L. Lipschitz functions are known to
enjoy strong concentration guarantees, as shown by McDiarmid’s inequality,

Pr [|f − E[f ]| > ε] ≤ 2 exp

(
−2ε2∑n
i=1 c

2
i

)
,

where ci is the Lipschitz constant for the ith variable, that is, for all i and for every possible input
x1, . . . , xn, |f(x1, . . . , xi, . . . , xn)− f(x1, . . . ,¬xi, . . . , xn)| ≤ ci.

While there are only |opt(G)| variables that truly participate in opt(G), even vertices that are
not in opt(G) can participate in matchings of subsets of G, and as a result have a non-zero Lipschitz
constant. Therefore, using McDiarmid’s inequality for the concentration of opt(H) gives an O(

√
n)

gap between opt(H) and EH∼G[opt(H)].
Instead, in order to prove a gap of Õ(

√
|opt(G)|), we use two alternative concentration bounds

from statistical learning theory, which have recently been used to simplify and prove tight concen-
tration and sample complexity results for learning combinatorial functions [30].
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Lemma 2.8. [12, Theorem 12] Let X1, X2, . . . , Xn be independent random variables, each taking
values in a set X . Let f : X n → R be a measurable function. Let X ′1, . . . , X

′
n be independent copies

of X1, . . . , Xn and for all i ∈ [n], define f ′i = f(X1, . . . , X
′
i, . . . , Xn). For all i ∈ [n] and x ∈ X n

assume that there exists C > 0, such that

E

[
n∑
i=1

(
f − f ′i

)2 · 1f>f ′i
∣∣∣∣∣x
]
≤ C,

then for all ε > 0,
Pr[f > E[f ] + ε] ≤ e−ε2/4C .

We show that the conditions of Lemma 2.8 hold for f(x1, . . . , xn) = opt(H). Let x = (x1, . . . , xn)
and x′i = (x1, . . . x

′
i, . . . , xn). For all x, let Hx be the subgraph corresponding to non-zero variables

of x. Note that if xi is replaced by x′i and the matching size is reduced, then the decrease is at most
the maximum cycle length L. Furthermore, the only variables that can lead to a non-zero decrease
from |opt(Hx)| to |opt(Hx′i

)| are variables that are in every optimal matching on Hx. Therefore,
there are at most |opt(Hx)| ≤ |opt(G)| such variables. We conclude that for all x,

E

[
n∑
i=1

(
f − f ′i

)2 · 1f>f ′i
∣∣∣∣∣x
]
≤ L2 |opt(G)|.

The proof of the upper tail (5) follows immediately by using Lemma 2.8 with C = L2 |opt(G)|.
Unfortunately, Lemma 2.8 and its variants for lower-tail concentration cannot be used to estab-

lish the desired lower-tail bound (6). Indeed, consider the condition E[
∑n

i=1 (f − f ′i)
2 ·1f<f ′i |x] ≤ C;

while removing one of only |opt(G)| vertices can reduce the size of a matching, it may be possible
that for some subgraph of G, adding any of the remaining vertices increases the size of the match-
ing. Instead, we use the lower-tail concentration of self-bounding functions [14]. The rigorous proof
of Equation (6) appears in Appendix A.3.

3 Individually Rational Matchings That Are Almost Optimal

In this section, we provide a simple and practical mechanism for kidney exchange that guarantees
individual rationality, and with high probability yields a matching that is optimal up to lower-
order terms. In comparison to the results of §2, its disadvantage is that it requires modifying
deployed matching mechanisms, which simply return some optimal matching — our mechanism
selects a specific matching (which may be suboptimal). However, it is only a minor modification,
and therefore has the potential to inform practice.

Let us first consider the case where opt(G) is restricted to 2-cycles. In this case we can represent
G as an undirected graph, as in §2.1. Let H1, . . . ,Hk be the subgraphs corresponding to the
players. Consider the following matching mechanism,M(H1, . . . ,Hk): First, compute the matching
M =

⋃
i opt(Hi); then grow M to a globally maximum cardinality matching by repeatedly applying

augmenting paths. While an augmenting path changes the structure of a matching by adding and
removing edges, it strictly expands the set of matched vertices. Therefore, this mechanism leads to
a maximum cardinality matching on G, with the property that M(H1, . . . ,Hk) ⊇

⋃
i opt(Hi) for

all i ∈ [k]. That is, M is individually rational.
The performance of the above mechanism for 2-cycles holds even when the subgraphs owned

by players are chosen adversarially, rather than through a random process. Furthermore, this
mechanism enjoys the stronger guarantee that every vertex that is matched under opt(Hi) is also
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matched under M(H1, . . . ,Hk). As we discussed earlier (see Figure 1), these strong guarantees
are unattainable when cycles of length 3 are allowed. But in our model for randomly generating
H1, . . . ,Hk, there is a mechanism that is individually rational and almost optimal, as we show next.

Corollary 3.1. Let G be a directed graph. Consider optimal matchings on G that are restricted to
constant-length cycles. For all i ∈ [k], let pi = 1/k. Then there exists a mechanism M such that
M(H1, . . . ,Hk) is individually rational, and for any δ > 0,

Pr

[
|M(H1, . . . ,Hk)| ≥ |opt(G)| −O

(
k

√
|opt(G)| ln k

δ

)]
≥ 1− δ.

As advertised, the mechanism underlying Corollary 3.1 is very simple: Choose an arbitrary op-
timal matching opt(G), independently of H1, . . . ,Hk. If for all players i ∈ [k] we have |opt(Hi)| ≤
|opt(G) � Hi|, then M(H1, . . . ,Hk) = opt(G). Else, let M(H1, . . . ,Hk) =

⋃
i opt(Hi). We call this

mechanism the Veto mechanism, as any player can veto the proposed optimal matching. Alter-
natively, we can let players defect if they wish, while allowing the remaining players to continue
to work together; for our mathematical purposes this is the same as the Veto mechanism, but the
latter interpretation may be even more appealing from a practical viewpoint.

The proof of Corollary 3.1 appears in Appendix B. In a nutshell, the idea is that because
|opt(Hi)| is concentrated around its expectation by Lemma 2.4, if some player wants to veto the
proposed matching then it is likely that E[opt(Hi)] is close to |opt(G) � Hi|, which is tightly
concentrated around |opt(G)|/k by Hoeffding’s inequality. But due to symmetry, this is true for all
players, so the players can obtain on their own almost what they can obtain by collaborating.

We remark — without proof — that Corollary 3.1 still holds even if the probabilities, instead
of being equal, are of the form 1/sti for a fixed s ∈ N, and possibly different t1, . . . , tn. Similarly to
Theorem 2.2, we conjecture that the statement actually holds for any p1, . . . , pn such that pi ≥ 1/2
for all i ∈ [k]. To prove this, one would need to strengthen Lemma 2.3, as discussed in §2. But
now there is another difficulty: One would need to show that if E[opt(Hi)] is close to pi|opt(G)|
for one player, then the same is true for all players — in which case falling back to the internal
matchings is almost optimal. In the symmetric case, this claim trivially holds, which is precisely
why we assume that pi = 1/k for all i ∈ [k].

While we require a relatively strong assumption on the probabilities, it is satisfying that the
theorem’s bound is asymptotically tight. To show this, we present and analyze an example of
a graph with n vertices where, with constant probability, any individually rational matching is
smaller than the optimal matching by Ω(

√
n).

Example 3.2. Suppose that there are two players, each with probability p = 1
2 . Consider the graph

G shown in Figure 3, which consists of four layers A, B, C and D, each with n/4 vertices. Any
two layers of the graph are fully connected if there is an edge between them according to Figure 3.
That is, the edge set of this graph is such that any 3 vertices from A, B, and C, respectively, form
a directed 3-cycle, and any 2 vertices from C and D, respectively, form a directed 2-cycle. It is
optimal to match the vertices in A, B, and C via 3-cycles, and therefore |opt(G)| = 3n/4.

It is easy to show, using the standard deviation of the binomial distribution, that the number
of vertices a player owns in each layer deviates by ±Θ(

√
n) from its expectation (either larger or

smaller) with constant probability. Denote the number of vertices owned by player 1 in layers A,
B, C, and D by a, b, c, and d, respectively. We focus on the case where c ∈ {n/8 +

√
n, . . . , n/8 +

(3/2)
√
n}, a and b are both in {n/8 − (3/2)

√
n, . . . , n/8 −

√
n}, and d ≥ 3

√
n — which happens

with constant probability. Intuitively, player 1 is doing well, because he owns significantly more
than half of the vertices in layer C, which is especially important.

10



. . .Layer A

. . .Layer B

. . .Layer C

. . .Layer D

Figure 3: The graph constructed in Example 3.2.

In the foregoing case, opt(H1) is obtained by taking min{a, b} 3-cycles between A, B, and C
(as many as possible), and then c −min{a, b} 2-cycles between D and the unmatched vertices of
C. Therefore,

|opt(H1)| = 3 ·min{a, b}+ 2(c−min{a, b}) = 2 · c+ min{a, b} = 3n/8 + Θ(
√
n).

On the other hand, consider some matchingM with x 3-cycles and y 2-cycles, such that (without
loss of generality) x + y = n/4 — as the total number is constrained by the n/4 vertices in layer
C. Note that under the optimal matching we have x = n/4, and

|opt(G) � H1| = a+ b+ c = 3n/8−Θ(n).

More generally, we have that |M � H1| ≤ a+b+c+y. In order to guarantee thatM is individually
rational for player 1, we must close the gap between |opt(H1)| and |M � H1|, which implies that
y = Ω(

√
n). That is, we must sacrifice Ω(

√
n) 3-cycles in favor of 2-cycles. But that means that

|M| ≤ |opt(G)| − Ω(
√
n).

Finally, note that Corollary 3.1 assumes cycles of constant length (as does Theorem 2.2). As
noted in §1, major kidney exchanges do, in fact, only use very short cycles and chains (which can
also be represented as cycles) in each match run. But it is nevertheless interesting to point out
that the same statement is false when long cycles are allowed. Indeed, in Appendix C.2 we present
an example of a graph with long cycles, where (with high probability) every individually rational
matching is smaller than the optimal matching by Ω(n).
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A Proof of Theorem 2.2: Omitted Claims

This section contains proofs of claims that were omitted from the proof of Theorem 2.2. The claims
themselves are stated in §2.
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A.1 Proof of Claim 2.6

Let us define opt(G) �∗ Gi to be the vertices of opt(G) � Gi that are matched by edges that lie
within Gi. Since the decomposition is edge-disjoint, it holds that |opt(G)| =

∑
i |opt(G) �∗ Gi|. It

is therefore sufficient to show that for all i, |opt(Gi)| = |opt(G) �∗ Gi|. There are three cases:

1. Gi corresponds to a component of G[C]. Recall that opt(G) matches all vertices of C ⊆ B.
Moreover, C has no edges to D, and A is only matched with D, so the vertices of Gi have
no matched edges outside Gi. It follows that opt(G) �∗ Gi is itself a perfect matching on Gi,
and |opt(Gi)| = |opt(G) �∗ Gi|.

2. Gi corresponds to a star with vertex i ∈ A: For each i ∈ A, by the first property of the
Edmonds-Gallai Decomposition, i is matched to a distinct component of G[D]. Therefore,
opt(G) �∗ Gi includes an edge from opt(G). Since any star can have at most one matched
edge, we have that |opt(G) �∗ Gi| = opt(G).

3. Gi corresponds to a component of G[D]: Since such a component is factor-critical, it has an
odd number of vertices, and, for any vertex, a maximum matching that covers all other ver-
tices. Therefore, both opt(Gi) and opt(G) �∗ Gi match all but one vertex of this component,
and |opt(Gi)| = |opt(G) �∗ Gi|.

A.2 Proof of Claim 2.7

Let t ∈ N and p ∈ [0, 1/2]. It holds that

1

2
− 1

2
(1− 2p)2t+1 ≥ p, (7)

because the left hand side is concave and has value 0 for p = 0 and 1/2 for p = 1/2. We also use
the equalities

k∑
i=0

(
k

i

)
xi = (1 + x)k, (8)

and
k∑
i=1

i

(
k

i

)
xi−1 = k(1 + x)k−1. (9)

Assume that n = 2t+ 1 for some t ≥ 0. By the claim’s assumption, it holds that opt(G) = 2t.
Any matching among a set of i vertices matches at most 2bi/2c vertices. Hence, the expected
matching size of the subgraph induced by a random set of vertices when each vertex is included
independently with probability p is

EH∼pG [|opt(H)|] ≤
2t+1∑
i=1

2bi/2c
(

2t+ 1

i

)
pi(1− p)2t+1−i

= p(1− p)2t
2t+1∑
i=1

i

(
2t+ 1

i

)(
p

1− p

)i−1
− 1

2
(1− p)2t+1

2t+1∑
i=0

(
2t+ 1

i

)(
p

1− p

)i
+

1

2
(1− p)2t+1

2t+1∑
i=0

(
2t+ 1

i

)(
p

1− p

)i
(−1)i
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= (2t+ 1)p− 1

2
+

1

2
(1− 2p)2t+1

≤ 2tp,

where the penultimate transition follows by applying Equation (9) to the first term on the left
hand side, and Equation (9) to the second and third terms; and the last transition follows from
Equation (7).

If n = 2t and opt(G) ≥ n− 1, it must hold that opt(G) = 2t, because each edge corresponds to
two matched vertices. Moreover,

EH∼pG [|opt(H)|] ≤
2t∑
i=1

2bi/2c
(

2t

i

)
pi(1− p)2t−i

≤ p(1− p)2t−1
2t∑
i=1

i

(
2t

i

)(
p

1− p

)i−1
= p(1− p)2t−12t

(
1 +

p

1− p

)2i−1

= 2tp.

A.3 Proof of Lemma 2.4: Omitted Lower-Tail Bound

Our proof of Equation (6) relies on the concept of self-bounding function.

Definition A.1. [14] A function g : X n → R is (a, b)-self-bounding if there exist functions g−i :
X n−1 → R for all i ∈ [n] such that for all x = (x1, . . . , xn) ∈ X n and i ∈ [n],

0 ≤ g(x)− g−i(x−i) ≤ 1,

and
n∑
i=1

(g(x)− g−i(x−i)) ≤ a · g(x) + b,

where x−i = (x1, . . . , xi−1, xi+1, . . . , xn) is obtained by dropping the ith component of x.

Lemma A.1. [14] If Z = g(X1, . . . , Xn), where Xi ∈ {0, 1} are independent random variables and
g is an (a, b)-self-bounding function with a ≥ 1

3 , then for any 0 < t < E[Z],

Pr[Z ≤ E[Z]− t] ≤ exp

(
− t2

2a · E[Z] + 2b

)
.

Let g(x) be 1
L times the size of optimal matching on the subgraph whose vertices correspond

to the non-zero xi’s, i.e., g(x) = 1
L |opt(Hx)|. Define g−i(x−i) = minxi g(x). We show that g(·) is

(L, 0)-self-bounding.
Since g−i(x−i) is the matching size in Hx−i and |opt(Hx)| ≥ |opt(Hx−i)| ≥ |opt(Hx)| − L, we

have that 0 ≤ g(x)− g−i(x−i) ≤ 1. Furthermore, g(x)− g−i(x−i) is non-zero only if vertex i was in
every opt(Hx). Since there are at most |opt(Hx)| such variables, we have

n∑
i=1

(g(x)− g−i(x−i)) ≤ |opt(Hx)| = L · g(x).
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Because L > 1
3 , we can use Lemma A.1 with ε = tL, and obtain

Pr [|opt(Hi)| ≤ E[|opt(Hi)|]− ε] ≤ exp

(
− (ε/L)2

2L( 1
LE[|opt(Hi)|])

)
≤ exp

(
− ε2

2L2E[|opt(Hi)|]

)
.

Why self-bounding functions do not lead to better upper bounds. One might wonder
whether the upper-tail bound of self-bounding functions could be used similarly to achieve an

improved upper bound of of L
√

2 · E[|opt(Hi)|] ln 2k
δ for Lemma 2.4 — that is, a bound that depends

on |opt(Hi)| instead of |opt(Gi)|. Here, we answer this question in the negative. The next lemma
bounds the upper tail of (a, b)-self-bounding functions.

Lemma A.2. [14] If Z = g(X1, . . . , Xn), where Xi ∈ {0, 1} are independent random variables and
g is an (a, b)-self-bounding function, then for any 0 < t < E[Z],

Pr[Z ≥ E[Z] + t] ≤ exp

(
− t2

2a · E[Z] + 2b+ 2ct

)
,

where c = max{0, (3a− 1)/6}.

Note that for a = L > 1
3 , the additional 2ct term in the denominator causes the upper-

tail bound to decay only as a simple exponential, and leads to significantly weaker concentra-
tion. Whether the upper-tail bound of self-bounding functions can be improved to remove this
term is an open problem in probability theory, with the first bound appearing in the work of
Boucheron et al. [13], and improved bounds due to McDiarmid and Reed [24] and Boucheron et
al. [14]. Successfully removing the 2ct term from the denominator would improve the result stated

in Theorem 2.2 from O
(√
|opt(G)| ln(k/δ)

)
to O

(√
pi|opt(G)| ln(k/δ)

)
, and Corollary 3.1 from

O
(
k
√
|opt(G)| ln(k/δ)

)
to O

(√
k|opt(G)| ln(k/δ)

)
.

B Proof of Corollary 3.1

Let p = 1/k. If

EHi∼pG[opt(Hi)] ≤ p |opt(G)| − (2L+ 1)

√
|opt(G) ln

2k

δ

then

Pr
Hi∼G

[|opt(Hi)| > |opt(G) � Hi|]

≤ Pr
Hi∼G

[
|opt(Hi)| − |opt(G) � Hi|+

(
p |opt(G)| − E[opt(Hi)]− (2L+ 1)

√
|opt(G)| ln 2k

δ

)
> 0

]

≤ Pr
Hi∼G

[
|opt(Hi)| − E[opt(Hi)] > 2L

√
|opt(G)| ln 2k

δ

]
+ Pr

Hi∼G

[
p |opt(G)| − |opt(G) � Hi| >

√
|opt(G)| ln 2k

δ

]

≤ δ

k
,

where the last inequality holds by the upper-tail bound of Lemma 2.4 and Hoeffding’s inequal-
ity. Therefore, with probability 1 − δ, no player vetoes the proposed optimal matching, and
M(H1, . . . ,Hk) = opt(G) is optimal.
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On the other hand, if

EHi∼pG[opt(Hi)] ≥ p |opt(G)| − (2L+ 1)

√
|opt(G) ln

2k

δ
,

then the expected total size of the internal matching is large, and we can fall back to the internal
matchings. Indeed, note that EHi∼pG[|opt(Hi)|] ≤ p|opt(G)| by symmetry. By the lower-tail bound
of Lemma 2.4, with probability 1− δ, for all i ∈ [k],

|opt(Hi)| ≥ EHi∼pG[|opt(Hi)|]− L
√

2p|opt(G)| ln 2k

δ
.

Therefore, with probability 1− δ,

k∑
i=1

|opt(Hi)| ≥ kEHi∼G[|opt(Hi)|]− kL
√

2

k
|opt(G)| ln 2k

δ

≥ |opt(G)| − k(2L+ 1)

√
|opt(G) ln

2k

δ
− kL

√
2

k
|opt(G)| ln 2k

δ

= |opt(G)| −O

(
k

√
|opt(G)| ln k

δ

)
.

So, M(H1, . . . ,Hk) =
⋃
i opt(Hi) is a near optimal.

C Additional Examples

In this section we present two examples that are referenced in the body of the paper.

C.1 The Case of Large p

We provide examples where the conclusion of Theorem 2.2 is violated under pi > 1/2. This happens
because the examples violate Lemma 2.3, that is, they satisfy

EH∼pG[|opt(H)|] > EH∼pG[|opt(G) � H|] = p · |opt(G)|.

First, suppose that only 2-cycles are allowed. Consider a graph with three vertices v1, v2, v3, and
2-cycles between v1 and v2, v2 and v3, and v3 and v1. Suppose p = 2/3. Then p|opt(G)| = 2 · (2/3).
On the other hand, |opt(H)| = 2 if H contains at least two vertices (otherwise it is 0), hence

EH∼pG[|opt(H)|] = 2

((
3

2

)
p2(1− p) +

(
3

3

)
p3
)

= 2 · 20

27
> 2 · 2

3
.

Now consider a graph that contains many disjoint copies of the one just discussed. We have
that both opt(H) and |opt(G) � H| are concentrated around their expectations (by Hoeffding’s
inequality), so, with high probability, |opt(H)| > |opt(G) � H|+ Ω(n).

When 3-cycles are allowed too, it is possible to show that the same phenomenon happens, for
a value of p sufficiently close to 1, in a graph with five vertices v1, . . . , v5, and 2-cycles between vi
and vi+1 for i = 1, . . . , 4, as well as between v5 and v1.
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Chain of length 3n
9

. . .

Layer 1 Layer 2 Layer 3 Layer 2n
9

. . .

Figure 4: The graph constructed in the example of Appendix C.2.

C.2 The Case of Long Cycles

We construct an example where long cycles are allowed, and every individually rational matching is
smaller than the optimal matching by Ω(n). Motivated by kidney exchange, the example includes
an altruistic donor, and matchings may include chains initiated by the altruist. However, we can
easily transform the example into one where matchings can only include cycles, by adding directed
edges from every vertex in the graph to the altruistic donor.

Consider the graph G in Figure 4. The altruistic donor d is shown as a triangle (we do not
count him as one of the n vertices). The vertices consist of (i) a chain of 3n

9 vertices, and (ii) a
network of 2n

9 layers — shown as dashed ellipses — with each layer consisting of three vertices. All
vertices in layer i have edges to all vertices in layers (i+ 1), . . . , 2n9 , and there are edges from d to
all vertices in each layer. Observe that since there are no cycles in this graph, all matches must
happen only via a chain that originates in d. The longest chain consists of 3n

9 vertices. Thus, there
is a unique optimal matching in G, and its size is |opt(G)| = 3n

9 .
Let us now assume the there are two players with probability p = 1

2 each. We first observe that
the expected share of a subgraph H ∼p G in the optimal matching is EH∼pG[|opt(G) � H|] = 3n

18 .
Next we examine opt(H). We can assume that d ∈ H, as this is always true for one of the two

players (so we focus on that player without loss of generality). For any given assignment of the
other vertices to the players, we say that a layer is good if at least one of the vertices in that layer
is in H. It is easy to see that — under the assumption of d ∈ H — opt(H) is at least the number
of good layers (via a chain that starts at d and visits each good layer in order). Notice that each
layer is good with probability 1− (1/2)3 = 7/8. Therefore, the expected number of layers that are
good is 7

8 ·
2n
9 . It follows that EH∼p[|opt(H)|] ≥ 14

72n.
Since both |opt(H)| and |opt(G) � H| are almost always within O(

√
n) of their expected values,

we have that with high probability, |opt(H)|− |opt(G) � H| ≥ 2
72n−O(

√
n). That is, opt(G) is not

individually rational, and an individually rational matching would have to use d to initiate a chain
into the layered network. But such a chain can have length at most 2n

9 , whereas opt(G) = 3n
9 —

the difference is Ω(n), as desired.

18
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