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ABSTRACT

We introduce the polygon cloud, also known as a polygon set
or soup, as a compressible representation of 3D geometry (in-
cluding its attributes, such as color texture) intermediate be-
tween polygonal meshes and point clouds. Dynamic or time-
varying polygon clouds, like dynamic polygonal meshes and
dynamic point clouds, can take advantage of temporal redun-
dancy for compression, if certain challenges are addressed. In
this paper, we propose methods for compressing both static
and dynamic polygon clouds, specifically triangle clouds. We
compare triangle clouds to both triangle meshes and point
clouds in terms of compression, for live captured dynamic
colored geometry. We find that triangle clouds can be com-
pressed nearly as well as triangle meshes, while being far
more robust to noise and other structures typically found in
live captures, which violate the assumption of a smooth sur-
face manifold, such as lines, points, and ragged boundaries.
We also find that triangle clouds can be used to compress
point clouds with significantly better performance than pre-
viously demonstrated point cloud compression methods.

Index Terms— Polygon soup, dynamic mesh, point
cloud, augmented reality, motion compensation, compres-
sion, graph transform, octree

1. INTRODUCTION

With the advent of virtual and augmented reality comes the
birth of a new medium: live captured 3D content that can
be experienced from any point of view. Such content ranges
from static scans of compact 3D objects, to dynamic captures
of non-rigid objects such as people, to captures of rooms in-
cluding furniture, public spaces swarming with people, and
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whole cities in motion. For such content to be captured at
one place and delivered to another for consumption by a vir-
tual or augmented reality device (or by more conventional
means), the content needs to be represented and compressed
for transmission or storage. Applications include gaming,
tele-immersive communication, free navigation of highly pro-
duced entertainment as well as live events, historical artifact
and site preservation, acquisition for special effects, and so
forth. This paper presents a novel means of representing and
compressing the visual part of such content.

Until this point, two of the more promising approaches
to representing both static and time-varying 3D scenes have
been polygonal meshes and point clouds, along with their as-
sociated color information. However, both approaches have
drawbacks. Polygonal meshes represent surfaces very well,
but they are not robust to noise and other structures typi-
cally found in live captures, such as lines, points, and ragged
boundaries that violate the assumptions of a smooth surface
manifold. Point clouds, on the other hand, have a hard time
modeling surfaces as compactly as meshes.

We propose a hybrid between polygonal meshes and point
clouds: polygon clouds. Polygon clouds are sets of polygons,
often called a polygon soup. The polygons in a polygon cloud
are not required to represent a coherent surface. Like the
points in a point cloud, the polygons in a polygon cloud can
represent noisy, real-world geometry captures without any as-
sumption of a smooth 2D manifold. In fact, any polygon in a
polygon cloud can be collapsed into a point or line as a spe-
cial case. The polygons may also overalap. On the other hand,
the polygons in the cloud can also be stitched together into a
watertight mesh if desired to represent a smooth surface.

For concreteness we focus on triangles instead of arbi-
trary polygons, and we develop an encoder and decoder for
sequences of triangle clouds. We assume a simple group of
frames (GOF) model, where each group of frames begins
with an Intra (I) frame, also called a reference frame or a
key frame, which is followed by a sequence of Predicted (P)
frames, also called inter frames. The triangles are assumed to
be consistent across frames. That is, the triangles’ vertices are
assumed to be tracked from one frame to the next. The trajec-



tories of the vertices are not constrained. Thus the triangles
may change from frame to frame in location, orientation, and
proportion. For geometry encoding, redundancy in the vertex
trajectories is removed by a spatial othogonal transform fol-
lowed by temporal prediction, allowing low latency. For color
encoding, the triangles in each frame are projected back to
the coordinate system of the reference frame. In the reference
frame we voxelize the triangles in order to ensure that their
color textures are sampled uniformly in space regardless of
the sizes of the triangles, and in order to construct a common
vector space in which to describe the color textures and their
evolution from frame to frame. Redundancy of the color vec-
tors is removed by a spatial orthogonal transform followed
by temporal prediction, similar to redundancy removal for
geometry. Uniform scalar quantization and entropy coding
matched to the spatial transform are employed for both color
and geometry.

We compare triangle clouds to both triangle meshes and
point clouds in terms of compression, for live captured dy-
namic colored geometry. We find that triangle clouds can be
compressed nearly as well as triangle meshes, while being far
more flexible in representing live captured content. We also
find that triangle clouds can be used to compress point clouds
with significantly better performance than previously demon-
strated point cloud compression methods.

The organization of the paper is as follows. Following a
summary of related work in Section 2, preliminary material
is presented in Section 3. The core of our compression sys-
tem is presented in Section 5, while experimental results are
presented in Section 6. The discussion and conclusion is in
Section 9.

2. RELATED WORK

2.1. Mesh compression

3D mesh compression has a rich history, particularly from
the 1990s forward. Overviews may be found in [1, 2, 3].
Fundamental is the need to code mesh topology, or connec-
tivity, such as in [4, 5]. Beyond coding connectivity, coding
the geometry, i.e., the positions of the vertices, is also fun-
damental. Many approaches have been taken, but one sig-
nificant and practical approach to geometry coding is based
on “geometry images” [6] and their temporal extension, “ge-
ometry videos” [7]. In these approaches, the mesh is parti-
tioned into patches, the patches are projected onto a 2D plane
as charts, non-overlapping charts are laid out in a rectangu-
lar atlas, and the atlas is compressed using a standard image
or video coder, compressing both the geometry and the tex-
ture (i.e., color) data. For dynamic geometry, the meshes are
assumed to be temporally consistent (i.e., connectivity is con-
stant frame-to-frame) and the patches are likewise temporally
consistent. Geometry videos have been used for representing
and compressing free-viewpoint video of human actors [8].

Other key papers on mesh compression of human actors in
the context of tele-immersion include [9, 10].

2.2. Motion estimation

A critical part of dynamic mesh compression is the ability to
track points over time. If a mesh is defined for a keyframe,
and the vertices are tracked over subsequent frames, then the
mesh becomes a temporally consistent dynamic mesh. There
is a huge body of literature in the 3D tracking, 3D motion es-
timation or scene flow, 3D interest point detection and match-
ing, 3D correspondence, non-rigid registration, and the like.
We are particularly influenced by [11, 12, 13], all of which
produce in real time, given data from one or more RGBD sen-
sors for every frame t, a parameterized mapping fθt : R3 →
R3 that maps points in frame t to points in frame t+1. Though
corrections may need to be made at each frame, chaining the
mappings together over time yields trajectories for any given
set of points. Compressing these trajectories is similar to
compressing motion capture (mocap) trajectories, which has
been well studied. [14] is a recent example with many refer-
ences. Compression typically involves an intra-frame trans-
form to remove spatial redundancy and either temporal pre-
diction (if low latency is required) or a temporal transform
(if the entire clip or group of frames is available) to remove
temporal redundancy, as in [15].

2.3. Graph signal processing

Graph Signal Processing (GSP) has emerged as an extension
of the theory of linear shift invariant signal processing to the
processing of signals on discrete graphs, where the shift oper-
ator is taken to be the adjacency matrix of the graph, or alter-
natively the Laplacian matrix of the graph [16, 17]. GSP was
extended to critically sampled perfect reconstuction wavelet
filter banks in [18, 19]. These constructions were used for
dynamic mesh compression in [20, 21].

2.4. Point cloud compression using octrees

Sparse Voxel Octrees (SVOs) were developed in the 1980s to
represent the geometry of three-dimensional objects [22, 23].
Recently SVOs have been shown to have highly efficient im-
plementations suitable for encoding at video frame rates [24].
In the guise of occupancy grids, they have also had significant
use in robotics [25, 26, 27]. Octrees were first used for point
cloud compression in [28]. They were further developed for
progressive point cloud coding, including color attribute com-
pression, in [29]. Octrees were extended to coding of dynamic
point clouds (i.e., point cloud sequences) in [30]. The focus
of [30] was geometry coding; their color attribute coding re-
mained rudimentary. Their method of inter-frame geometry
coding was to take the exclusive-OR (XOR) between frames
and code the XOR using an octree. Their method was imple-
mented in the Point Cloud Library [31].



2.5. Color attribute compression for static point clouds

To better compress the color attributes in static voxelized
point clouds, Zhang, Florencio, and Loop used transform
coding based on the Graph Fourier Transform (GFT), re-
cently developed in the theory of Graph Signal Processing
[32]. While transform coding based on the GFT has good
compression performance, it requires eigen-decompositions
for each coded block, and hence may not be computation-
ally attractive. To improve the computational efficiency,
while not sacrificing compression performance, Queiroz and
Chou developed an orthogonal Region-Adaptive Hierarchical
Transform (RAHT) along with an entropy coder [33]. RAHT
is essentially a Haar transform with the coefficients appropri-
ately weighted to take the non-uniform shape of the domain
(or region) into account. As its structure matches the Sparse
Voxel Octree, it is extremely fast to compute. Other ap-
proaches to non-uniform regions include the shape-adaptive
DCT [34] and color palette coding [35]. Further approaches
based on non-uniform sampling of an underlying stationary
process can be found in [36], which uses the KLT matched to
the sample, and in [37], which uses sparse representation and
orthogonal matching pursuit.

2.6. Dynamic point cloud compression

Thanou, Chou, and Frossard [38, 39] were the first to deal
fully with dynamic voxelized points clouds, by finding
matches between points in adjacent frames, warping the
previous frame to the current frame, predicting the color at-
tributes of the current frame from the quantized colors of
the previous frame, and coding the residual using the GFT-
based method of [40]. Thanou et al. used the XOR-based
method of Kammerl et al. [30] for inter-frame geometry
compression. However, the method of [30] proved to be inef-
ficient, in a rate-distortion sense, for anything except slowly
moving subjects, for two reasons. First, the method “pre-
dicts” the current frame from the previous frame, without
any motion compensation. Second, the method codes the
geometry losslessly, and so has no ability to perform a rate-
distortion trade-off. To address these shortcomings, Queiroz
and Chou [41] used block-based motion compensation and
rate-distortion optimization to select between coding modes
(intra or motion-compensated coding) for each block. Fur-
ther, they applied RAHT to coding the color attributes (in
intra-frame mode), color prediction residuals (in inter-frame
mode), and the motion vectors (in inter-frame mode). They
also used in-loop deblocking filters. Mekuria et al. [42] in-
dependently proposed block-based motion compensation for
dynamic point cloud sequences. Although they did not use
rate-distortion optimization, they used affine transformations
for each motion-compensated block, rather than just trans-
lations. Unfortunately, it appears that block-based motion
compensation of dynamic point cloud geometry tends to
produce gaps between blocks, which are perceptually more

damaging than indicated by some objective metrics, such as
the Haussdorf-based metrics commonly used in geometry
compression [43].

2.7. Key learnings

Some of the key learnings from the previous work, taken as a
whole, are that

• Point clouds are preferable to meshes for resilience
to noise and non-manifold signals measured in real
world signals, especially for real time capture where
the computational cost of heavy duty pre-processing
(e.g., surface reconstruction, topological denoising,
charting) can be prohibitive.

• For geometry coding in static scenes, point clouds ap-
pear to be more compressible than meshes, even though
the performance of point cloud geometry coding seems
to be limited by the lossless nature of the current octree
methods. In addition, octree processing for geometry
coding is extremely fast.

• For color attribute coding in static scenes, both point
clouds and meshes appear to be well compressible. If
charting is possible, compressing the color as an image
may win out due to the maturity of image compression
algorithms today. However, direct octree processing for
color attribute coding is extremely fast, as it is for ge-
ometry coding.

• For both geometry and color attribute coding in dy-
namic scenes (or inter-frame coding), temporally con-
sistent dynamic meshes are highly compressible. How-
ever, finding a temporally consistent mesh can be chal-
lenging from a topological point of view as well as from
a computational point of view.

In our work, we aim to achieve the high compression ef-
ficiency possible with intra-frame point cloud compression
and inter-frame dynamic mesh compression, while simulta-
neously achieving the high computational efficiency possible
with octree-based processing, as well as its robustness to real-
world noise and non-manifold data.

3. SYSTEM OVERVIEW

3.1. Notation

Denote the set of integers from 1 to N by [N ]. Sets will be de-
noted using calligraphic fonts and matrices and vectors using
bold fonts.

3.2. Dynamic triangle clouds

A dynamic triangle cloud is a numerical representation of a
time changing 3D scene or object. We denote it by a sequence



symbol description
[N ] set of integers {1, 2, · · · , N}
t time or frame index

vi or v(t)i 3D point with coordinates xi, yi, zi
fm or f (t)

m face with vertex indices im, jm, km

cn or c(t)n color with components Yn, Un, Vn
ai or a(t)i generic attribute vector ai1, . . . , ain
V or V(t) set of Np points {v1, . . . , vNp

}
F or F (t) set of Nf faces {f1, . . . , fNf

}
C or C(t) set of Nc colors {c1, . . . , cNc

}
A or A(t) set of Na attributes {a1, . . . , aNa}
T or T (t) triangle cloud (V,F , C)
P or P(t) point cloud (V,A)

V or V(t) Np × 3 matrix with i-th row [xi, yi, zi]

F or F(t) Nf × 3 matrix with m-th row [im, jm, km]

C or C(t) Nc × 3 matrix with n-th row [Yn, Un, Vn]
A list (i.e., matrix) of attributes
TA list of transformed attributes

M,Mv,M1 lists of Morton codes
W,Wv,Wrv lists of weights
I, Iv, Irv lists of indices

V̂,Ĉ,Â,. . . lists of quantized or reproduced quantities
V̂v or V̂(t)

v list of voxelized vertices
Vr list of refined vertices

V̂rv orV̂(t)
rv list of voxelized refined vertices

Cr = C list of colors of refined vertices
Crv orC(t)

rv list of colors of voxelized refined vertices
J octree depth
U upsampling factor

∆motion motion quantization stepsize
∆color,intra intra-frame color quantization stepsize
∆color,inter inter-frame color quantization stepsize

Table 1: Notation

{T (t)} where T (t) is a triangle cloud at time t. Each individ-
ual frame T (t) has geometry (shape and position) and color
information.

The geometry information consists of a list of vertices
V(t) = {v(t)i : i = 1, · · · , Np}, where each vertex v

(t)
i =

[x
(t)
i , y

(t)
i , z

(t)
i ] is a point in 3D, and a list of triangles (or

faces) F (t) = {f (t)
m : m = 1, · · · , Nf}, where each face

f
(t)
m = [i

(t)
m , j

(t)
m , k

(t)
m ] is a vector of indices of vertices from

V(t). We denote by V(t) the Np × 3 matrix whose ith row
is the point v(t)i , and similarly we denote by F(t) the Nf × 3

matrix whose mth row is the triangle f
(t)
m . The triangles in a

triangle cloud do not have to be adjacent or form a mesh, and
they can overlap. Two or more vertices of a triangle may have
the same coordinates, thus collapsing into a line or point.

The color information consists of a list of colors C(t) =

{c(t)n : n = 1, · · · , Nc}, where each color c(t)n = [Y
(t)
n , U

(t)
n ,

V
(t)
n ] is a vector in YUV space (or other convenient color

space). We denote by C(t) the Nc × 3 matrix whose nth row
is the color c(t)n . The list of colors represents the colors across
the surfaces of the triangles. To be specific, c(t)n is the color
of a “refined” vertex v

(t)
r (n), where the refined vertices are

obtained by uniformly subdividing each triangle in F (t) by
upsampling factor U , as shown in Figure 1b for U = 4. We
denote by V

(t)
r the Nc×3 matrix whose nth row is the refined

vertex v
(t)
r (n). V(t)

r can be computed from V(t) and F (t), so
we do not need to encode it, but we will use it to compress the
color information. Note that Nc = Nf (U +1)(U +2)/2. The
upsampling factor U should be high enough so that it does not
limit the color spatial resolution obtainable by the color cam-
eras. In our experiments, we set U = 10 or higher. Setting
U higher does not typically affect the bit rate significantly,
though it does affect memory and computation in the encoder
and decoder.

Thus frame t can be represented by the triple V(t), F(t),
C(t). We use a Group of Frames (GOF) model, in which the
sequence is partitioned into GOFs. The GOFs are processed
independently. Without loss of generality, we label the frames
in a GOF t = 1 . . . , N . There are two types of frames: refer-
ence and predicted. In each GOF, the first frame (t = 1) is a
reference frame and all other frames (t = 2, . . . , N ) are pre-
dicted. Within a GOF, all frames must have the same number
of vertices, triangles, and colors: ∀t ∈ [N ], V(t) ∈ RNp×3,
F(t) ∈ [Np]

Nf×3 and C(t) ∈ RNc×3. The triangles are as-
sumed to be consistent across frames so that there is a cor-
respondence between colors and vertices within the GOF. In
Figure 1b we show an example of the correspondences be-
tween two consecutive frames in a GOF. Across GOFs, the
GOFs may have a different numbers of frames, vertices, tri-
angles, and colors.

In the following two subsections, we outline how to obtain
a triangle cloud from an existing point cloud or an existing
triangular mesh.

3.2.1. Converting a dynamic point cloud to a dynamic trian-
gle cloud

A dynamic point cloud is a sequence of point clouds {P(t)},
where each P(t) is a list of [x, y, z] coordinates with an at-
tribute attached to it like color. To produce a triangle cloud,
we need a way to fit a point cloud to a set of triangles in such
a way that we produce GOFs with consistent triangles. One
way of doing that is the following.

1. Decide if frame in P(t) is reference or predicted.

2. If reference frame:

(a) Fit triangles to point cloud to obtain V,F, where
V is a list of vertices and F is a list of triangles.



(a) “Man” mesh. (b) Correspondences between two consecutive frames.

Fig. 1

(b) Subdivide each triangle, and project each vertex
of the subdivision to the closest point in the cloud
to obtain C.

3. If predicted frame:

(a) Deform triangle cloud of previous reference
frame to fit point cloud to obtain V.

(b) Subdivide each triangle, and project each vertex
of the subdivision to the closest point in the cloud
to obtain C.

(c) Go to step 1.

This process will introduce geometric distortion and a change
in the number of points. All points will be forced to lie in a
uniform grid on the surface of a triangle. The triangle fitting
can be done using triangular mesh fitting and tracking tech-
niques such as in [11, 12, 13].

3.2.2. Converting a dynamic triangular mesh to a dynamic
triangle cloud

The geometry of a triangular mesh is represented by a list of
key points or vertices and their connectivity, given by an ar-
ray of 3D coordinates V and faces F. The triangles are con-
strained to form a smooth surface without holes. For color,
the mesh representation typically includes an array of 2D tex-
ture coordinates T ∈ RNp×2 and a texture image. The color
at any point on a face can be retrieved (for rendering) by in-
terpolating the texture coordinates at that point on the face
and sampling the image at the interpolated coordinates. The
sequence of triangular meshes is assumed to be temporally
consistent, meaning that within a GOF, the meshes of the pre-
dicted frames are deformations of the reference frame. The

sizes and positions of the triangles may change but the de-
formed mesh still represents a smooth surface. The sequence
of key points V(t) thus can be traced from frame to frame
and the faces are all the same. To convert the color informa-
tion into the dynamic triangle cloud format, for each frame
and each triangle, the mesh sub-division function can be ap-
plied to obtain texture coordinates of refined triangles. Then
the texture image can be sampled and a color matrix C can be
formed for each frame.

3.3. Compression system overview

In this section we provide an overview of our system for com-
pressing dynamic triangle clouds. We compress consecutive
GOFs sequentially and independently, so we focus on the sys-
tem for compressing an individual GOF (V(t),F(t),C(t)) for
t ∈ [N ].

For the reference frame, we voxelize the vertices V(1),
and then encode the voxelized vertices V

(1)
v using octree

encoding. We encode the connectivity F(1) with a lossless
entropy coder. (We could use method such as EdgeBreaker or
TFAN [4, 5], but for simplicity for this small amount of data
we use the lossless universal encoder gzip.) We code the con-
nectivity only once per GOF (i.e., for the reference frame),
since the connectivity is consistent across the GOF, i.e.,
F(t) = F(1) for t ∈ [N ]. We voxelize the colors C(1), and
encode the voxelized colors C

(1)
rv using a transform coding

method that combines the region adaptive hierarchical trans-
form (RAHT) [33], uniform scalar quantization, and adaptive
Run-Length Golomb-Rice (RLGR) entropy coding [44]. At
the cost of additional complexity, the RAHT transform could
be replaced by transforms with higher performance [36, 37].

For predicted frames, we compute prediction residuals



from the previously decoded frame. Specifically, for each pre-
dicted frame t > 1 we compute a motion residual ∆V

(t)
v =

V
(t)
v − V̂

(t−1)
v and a color residual ∆C

(t)
rv = C

(t)
rv − Ĉ

(t−1)
rv ,

where we have denoted with a hat a quantity that has been
compressed and decompressed. These residuals are encoded
using again RAHT followed by uniform scalar quantization
and entropy coding.

It is important to note that we do not directly compress
the list of vertices V(t) or the the list of colors C(t) (or their
prediction residuals). Rather, we voxelize them first with re-
spect to their corresponding vertices in the reference frame,
and then compress them. This ensures that 1) if two or more
vertices or colors fall into the same voxel, they receive the
same representation and hence are encoded only once, and 2)
the colors (on the set of refined vertices) are resampled uni-
formly in space regardless of the density of triangles.

In the next section, we describe the basic elements of the
system: refinement, voxelization, octrees, and transform cod-
ing. In the section after that, we describe in detail how these
basic elements are put together to encode and decode a se-
quence of triangle clouds.

4. REFINEMENT, VOXELIZATION, OCTREES, AND
TRANSFORM CODING

4.1. Refinement

Given a list of faces F, its corresponding list of vertices V,
and upsampling factor U , a list of “refined” vertices Vr can
be produced using Algorithm 1. Step 1 (in Matlab notation)
assembles three equal-length lists of vertices (each as an Nf×
3 matrix), containing the three vertices of every face. Step 5
appends a linear combinations of the faces’ vertices to a grow-
ing list of refined vertices.

Algorithm 1 Refinement (refine)

Input: V, F, U
1: Vi = V(F(:, i), :), i = 1, 2, 3 // ith vertex of all faces
2: Initialize k = U and Vr = empty list
3: for i = 0 to U do
4: for j = 0 to k do
5: Vr = [Vr;V1+(V2−V1)i/U+(V3−V1)j/U ]
6: end for
7: k = k − 1
8: end for

Output: Vr

We assume that the list of colors C is in 1-1 correspon-
dence with the list of refined vertices Vr. Indeed, to obtain
the colors C from a textured mesh, the 2D texture coordi-
nates T can be linearly interpolated in the same manner as
the 3D position coordinates V to obtain “refined” texture co-
ordinates Tr which may then be used to lookup appropriate
color Cr = C in the texture map.

4.2. Morton codes and voxelization

A voxel is a volumetric element used to represent the at-
tributes of of an object in 3D over a small region of space.
Analogous to 2D pixels, 3D voxels are defined on a uniform
grid. We assume the geometric data live in the unit cube
[0, 1)3, and we uniformly partition the cube into voxels of
size 2−J × 2−J × 2−J .

Now consider a list of points V = [vi] and an equal-
length list of attributes A = [ai], where ai is the real-valued
attribute (or vector of attributes) of vi. (These may be, for
example, the list of refined vertices Vr and their associated
colors Cr = C as discussed above.) In the process of vox-
elization, the points are partitioned into voxels, and the at-
tributes associated with the points in a voxel are averaged.
The points within each voxel are quantized to the voxel cen-
ter. Each occupied voxel is then represented by the voxel cen-
ter and the average of the attributes of the points in the voxel.
Moreover, the occupied voxels are put into Z-scan order, also
known as Morton order [45]. The first step in voxelization is
to quantize the vertices and to produce their Morton codes.
The Morton code m for a point (x, y, z) is obtained simply
by interleaving (or “swizzling”) the bits of x, y, and z, with
x being lower order than y, and y being lower order than z.
For example, if x = x4x2x1, y = y4y2y1, and z = z4z2z1
(written in binary), then the Morton code for the point would
be m = z4y4x4z4y4x4z1y1x1. The Morton codes are sorted,
duplicates are removed, and all attributes whose vertices have
a particular Morton code are averaged.

The procedure is detailed in Algorithm 2. Vint is the list
of vertices with their coordinates, previously in [0, 1), now
mapped to integers in {0, . . . , 2J − 1}. M is the correspond-
ing list of Morton codes. Mv is the list of Morton codes,
sorted with duplicates removed, using the Matlab function
unique. I and Iv are vectors of indices such that Mv = M(I)
and M = Mv(Iv), in Matlab notation. (That is, the ivth ele-
ment of Mv is the I(iv)th element of M and the ith element
of M is the Iv(i)th element of Mv .) Av = [āj ] is the list of
attribute averages

āj =
1

Nj

∑
i:M(i)=Mv(j)

ai, (1)

where Nj is the number of elements in the sum. Vv is the list
of voxel centers. The algorithm has complexityO (N logN),
where N is the number of input vertices.

4.3. Octree encoding

Any set of voxels in the unit cube, each of size 2−J × 2−J ×
2−J , designated occupied voxels, can be represented with an
octree of depth J [22, 23]. An octree is a recursive subdivi-
sion of a cube into smaller cubes, as illustrated in Figure 2.
Cubes are subdivided only as long as they are occupied (i.e.,
contain any occupied voxels). This recursive subdivision can



Algorithm 2 Voxelization (voxelize)

Input: V, A, J
1: Vint = floor(V ∗ 2J) // map coords to {0, . . . , 2J − 1}
2: M = morton(Vint) // generate list of morton codes
3: [Mv, I, Iv] = unique(M) // find unique codes, and sort
4: Av = [āj ], where āj = mean(A(M = Mv(j)) is the

average of all attributes whose Morton code is the jth
Morton code in the list Mv

5: Vv = (Vint(I, :) + 0.5) ∗ 2−j // compute voxel centers
Output: Vv (or equivalently Mv), Av , Iv .

Fig. 2: Cube subdivision. Blue cubes represent occupied re-
gions of space.

be represented by an octree with depth J , where the root cor-
responds to the unit cube. The leaves of the tree correspond
to the set of occupied voxels.

There is a close connection between octrees and Morton
codes. In fact, the Morton code of a voxel, which has length
3J bits broken into J binary triples, encodes the path in the
octree from the root to the leaf containing the voxel. More-
over, the sorted list of Morton codes results from a depth-first
traversal of the tree.

Each internal node of the tree can be represented by one
byte, to indicate which of its eight children are occupied. If
these bytes are serialized in a pre-order traversal of the tree,
the serialization (which has a length in bytes equal to the num-
ber of internal nodes of the tree) can be used as a description
of the octree, from which the octree can be reconstructed.
Hence the description can also be used to encode the ordered
list of Morton codes of the leaves. This description can be fur-
ther compressed using a context adaptive arithmetic encoder.
However, for simplicity in our experiments, we use gzip in-
stead of an arithmetic encoder.

In this way, we encode any set of occupied voxels in a
canonical (Morton) order.

4.4. Transform coding

In this section we describe the region adaptive hierarchi-
cal transform (RAHT) [33] and its efficient implementation.
RAHT can be described as a sequence of orthonormal trans-
forms applied to attribute data living on the leaves of an
octree. For simplicity we assume the attributes are scalars.
This transform processes voxelized attributes in a bottom

up fashion, starting at the leaves of the octree. The inverse
transform reverses this order.

Consider eight adjacent voxels, three of which are occu-
pied, having the same parent in the octree, as shown in Fig-
ure 3. The colored voxels are occupied (have an attribute) and
the transparent ones are empty. Each occupied voxel is as-
signed a unit weight. Fot the forward transform, transformed
attribute values and weights will be propagated up the tree.

One level of the forward transform proceeds as follows.
Pick a direction (x, y, z), then check whether there are two
occupied cubes that can be processed along that direction. In
the leftmost part of Figure 3 there are only three occupied
cubes, red, yellow, and blue, having weights wr, wy , and wb,
respectively. To process in the direction of the x axis, since
the blue cube does not have a neighbor along the horizontal
direction, we copy its attribute value ab to the second stage
and keep its weight wb. The attribute values ay and ar of
the yellow and red cubes can be processed together using the
orthonormal transformation[

a0g
a1g

]
=

1
√
wy + wr

[ √
wy

√
wr

−√wr
√
wy

] [
ay
ar

]
, (2)

where the transformed coefficients a0g and a1g respectively
represent low pass and high pass coefficients appropriately
weighted. Both transform coefficients now represent infor-
mation from a region with weight wg = wy + wr (green
cube). The high pass coefficient is stored for entropy coding
along with its weight, while the low pass coefficient is further
processed and put in the green cube. For processing along
the y axis, the green and blue cubes do not have neighbors,
so their values are copied to the next level. Then we process
in the z direction using the same transformation in (2) with
weights wg and wb.

This process is repeated for each cube of eight subcubes
at each level of the octree. After J levels, there remains one
low pass coefficient that corresponds to the DC component;
the remainder are high pass coefficients. Since after each pro-
cessing of a pair of coefficients, the weights are added and
used during the next transformation, the weights can be inter-
preted as being inversely proportional to frequency. The DC
coefficient is the one that has the largest weight, as it is pro-
cessed more times and represents information from the entire
cube, while the high pass coefficients, which are produced
earlier, have smaller weights because they contain informa-
tion from a smalle region. The weights depend only on the
octree (not the coefficients themselves), and thus can provide
a frequency ordering for the coefficients. We sort the trans-
formed coefficients by decreasing magnitude of weight.

Finally, the sorted coefficients are quantized using uni-
form scalar quantization, and are entropy coded using adap-
tive Run Length Golomb-Rice coding [44].

Efficient implementations of RAHT and its inverse are de-
tailed in Algorithms 4 and 5, respectively. Algorithm 3 is a



Fig. 3: One level of RAHT applied to a cube of eight voxels,
three of which are occupied.

prologue to each. Algorithm 6 is our uniform scalar quantiza-
tion.

Algorithm 3 prologue to Region Adaptive Hierarchical
Transform (RAHT) and its Inverse (IRAHT) (prologue)

Input: V, J
1: M1 = morton(V) // morton codes
2: N = length(M) // number of points
3: for ` = 1 to 3J do // define (I`,M`,W`,F`),∀`
4: if ` = 1 then // initialize indices of coeffs at layer 1
5: I1 = (1 : N)T // vector of indices from 1 to N
6: else // define indices of coeffs at layer `
7: I` = I`−1(¬[0;F`−1]) // left sibs and singletons
8: end if
9: M` = M1(I`) // morton codes at layer `

10: W` = [I`(2 : end);N + 1]− I` // weights
11: D = M`(1 : end− 1)⊕M`(2 : end) // path diffs
12: F` = (D ∧ (23J − 2`)) 6= 0 // left sibling flags
13: end for
Output: {(M`, I`,W`,F`) : ` = 1, . . . , 3J}, and N

5. ENCODING AND DECODING

In this section we describe in detail encoding and decoding
of dynamic triangle clouds. First we describe encoding and
decoding of reference frames. Following that, we describe
encoding and decoding of predicted frames. For both refer-
ence and predicted frames, we describe first how geometry
is encoded and decoded, and then how color is encoded and
decoded. The overall system is shown in Figure 4.

5.1. Encoding and decoding of reference frames

For reference frames, encoding is summarized in Algo-
rithm 7, while decoding is summarized in Algorithm 8.

5.1.1. Geometry encoding and decoding

We assume that the vertices in V(1) are in Morton order. If
not, we put them into Morton order and permute the indices in

Algorithm 4 Region Adaptive Hierarchical Transform
(RAHT)
Input: V, A, J

1: [{(M`, I`,W`,F`)}, N ] = prologue(V, J)
2: TA = A // perform transform in place
3: W = 1 // initialize to N -vector of unit weights
4: for ` = 1 to 3J − 1 do
5: i0 = I`([F`; 0] == 1) // left sibling indices
6: i1 = I`([0;F`] == 1) // right sibling indices
7: w0 = W`([F`; 0] == 1) // left sibling weights
8: w1 = W`([0;F`] == 1) // right sibling weights
9: x0 = TA(i0, :) // left sibling coefficients

10: x1 = TA(i1, :) // right sibling coefficients
11: a = repmat(sqrt(w0./(w0+w1)), 1, size(TA, 2))
12: b = repmat(sqrt(w1./(w0+w1)), 1, size(TA, 2))
13: TA(i0, :) = a . ∗ x0 + b . ∗ x1

14: TA(i1, :) = −b . ∗ x0 + a . ∗ x1

15: W(i0) = W(i0) + W(i1)
16: W(i1) = W(i0)
17: end for
Output: TA, W

Algorithm 5 Inverse Region Adaptive Hierarchical Trans-
form (IRAHT)
Input: V, TA, J

1: [{(M`, I`,W`,F`)}, N ] = prologue(V, J)
2: A = TA // perform inverse transform in place
3: for ` = 3J − 1 down to 1 do
4: i0 = I`([F`; 0] == 1) // left sibling indices
5: i1 = I`([0;F`] == 1) // right sibling indices
6: w0 = W`([F`; 0] == 1) // left sibling weights
7: w1 = W`([0;F`] == 1) // right sibling weights
8: x0 = TA(i0, :) // left sibling coefficients
9: x1 = TA(i1, :) // right sibling coefficients

10: a = repmat(sqrt(w0./(w0+w1)), 1, size(TA, 2))
11: b = repmat(sqrt(w1./(w0+w1)), 1, size(TA, 2))
12: TA(i0, :) = a . ∗ x0 − b . ∗ x1

13: TA(i1, :) = b . ∗ x0 + a . ∗ x1

14: end for
Output: A

Algorithm 6 Uniform scalar quantization (quantize)

Input: A, step
1: Â = round(A/step) ∗ step

Output: Â



Fig. 4: Encoder (left) and decoder (right).

Algorithm 7 Encode reference frame (I-encoder)

Input: J , U , ∆color,intra (from system parameters)
Input: V(1), F(1), C(1)

r (from system input)
1: // Geometry
2: V̂(1) = quantize(V(1), 2−J)

3: [V̂
(1)
v , I

(1)
v ] = voxelize(V̂(1), J) s.t. V̂(1) = V̂

(1)
v (I

(1)
v )

4: // Color
5: V̂

(1)
r = refine(V̂(1),F(1), U)

6: [V̂
(1)
rv ,C

(1)
rv , I

(1)
rv ] = voxelize(V̂

(1)
r ,C

(1)
r , J) s.t. V̂(1)

r =

V̂
(1)
rv (I

(1)
rv )

7: [TC(1)
rv ,W

(1)
rv ] = RAHT (V̂

(1)
rv ,C

(1)
rv , J)

8: T̂C
(1)

rv = quantize(TC(1)
rv ,∆color,intra)

9: Ĉ
(1)
rv = IRAHT (V̂

(1)
rv , T̂C

(1)

rv , J)

Output: code(V
(1)
v ), code(I(1)v ), code(F(1)), code(T̂C

(1)

rv )
(to reference frame decoder)

Output: V̂
(1)
v , V̂(1)

r (to predicted frame encoder)
Output: V̂

(1)
v , Ĉ(1)

rv (to reference frame buffer)

Algorithm 8 Decode reference frame (I-decoder)

Input: J , U , ∆color,intra (from system parameters)

Input: code(V
(1)
v ), code(I

(1)
v ), code(F(1)), code(T̂C

(1)

rv )
(from reference frame encoder)

1: // Geometry
2: V̂(1) = V̂

(1)
v (I

(1)
v )

3: // Color
4: V̂

(1)
r = refine(V̂(1),F(1), U)

5: [V̂
(1)
rv , I

(1)
rv ] = voxelize(V̂

(1)
r , J) s.t. V̂(1)

r = V̂
(1)
rv (I

(1)
rv )

6: W
(1)
rv = RAHT (V̂

(1)
rv , J)

7: Ĉ
(1)
rv = IRAHT (V̂

(1)
rv , T̂C

(1)

rv , J)

8: Ĉ
(1)
r = Ĉ

(1)
rv (I

(1)
rv )

Output: V̂(1), F(1), Ĉ(1)
r (to renderer)

Output: V̂
(1)
v , I(1)v , V̂(1)

rv , I(1)rv (to predicted frame decoder)
Output: V̂

(1)
v , Ĉ(1)

rv (to reference frame buffer)

F(1) accordingly. The lists V(1) and F(1) are the geometry-
related quantities in the reference frame transmitted from the
encoder to the decoder. V(1) will be reconstructed at the de-
coder with some loss as V̂(1), and F(1) will be reconstructed
losslessly. We now describe the process.

At the encoder, the vertices in V(1) are first quantized to
the voxel grid, producing a list of quantized vertices V̂(1),
the same length as V(1). There may be duplicates in V̂(1),
because some vertices may have collapsed to the same grid
point. V̂(1) is then voxelized (without attributes), the effect
of which is simply to remove the duplicates, producing a pos-
sibly slightly shorter list V̂(1)

v along with a list of indices I(1)v
such that (in Matlab notation) V̂(1) = V̂

(1)
v (I

(1)
v ). Since V̂(1)

v

has no duplicates, it represents a set of voxels. This set can
be described by an octree. The byte sequence representing
the octree can be compressed with any entropy encoder; we
use gzip. The list of indices I

(1)
v , which has the same length

as V̂(1), indicates, essentially, how to restore the duplicates,
which are missing from V̂

(1)
v . In fact, the indices in I

(1)
v in-

crease in unit steps for all vertices in V̂(1) except the dupli-
cates, for which there is no increase. The list of indices is
thus a sequence of runs of unit increases alternating with runs
of zero increases. This binary sequence of increases can be
encoded with any entropy encoder; we use gzip on the run
lengths. Finally the list of faces F(1) can be encoded with any
entropy encoder; we again use gzip, though algorithms such
as [4, 5] might also be used.

The decoder entropy decodes V̂
(1)
v , I(1)v , and F(1), and

then recovers V̂(1) = V̂
(1)
v (I

(1)
v ), which is the quantized ver-

sion of V(1), to obtain both V̂(1) and F(1).

5.1.2. Color encoding and decoding

Let V(1)
r = refine(V(1),F(1), U) be the list of “refined ver-

tices” obtained by upsampling, by factor U , the faces F(1)

whose vertices are V(1). We assume that the colors in the list
C

(1)
r = C(1) correspond to the refined vertices in V

(1)
r . In

particular, the lists have the same length. Here, we subscript



the list of colors by an ‘r’ to indicate that it corresponds to the
list of refined vertices.

When the vertices V(1) are quantized to V̂(1), the refined
vertices change to V̂

(1)
r = refine(V̂(1),F(1), U). The list

of colors C(1)
r can also be considered as indicating the colors

on V̂
(1)
r . The list C(1)

r is the color-related quantity in the
reference frame transmitted from the encoder to the decoder.
The decoder will reconstruct C(1)

r with some loss Ĉ
(1)
r . We

now describe the process.
At the encoder, the refined vertices V̂

(1)
r are obtained as

described above. Then the vertices V̂(1)
r and their associated

color attributes C
(1)
r are voxelized to obtain a list of voxels

V̂
(1)
rv , the list of voxel colors C(1)

rv , and the list of indices I(1)rv
such that (in Matlab notation) V̂(1)

r = V̂
(1)
rv (I

(1)
rv ). The list

of indices I(1)rv has the same length as V̂(1)
r , and contains for

each vertex in V̂
(1)
r the index of its corresponding vertex in

V̂
(1)
rv . As there may be many refined vertices falling into each

voxel, the list V̂(1)
rv may be significantly shorter than the list

V̂
(1)
r (and the list I(1)rv ). However, unlike the geometry case,

in this case the list I(1)rv need not be transmitted.
The list of voxel colors Ĉ

(1)
rv , each with unit weight, is

transformed by RAHT to an equal-length list of transformed
colors TC(1)

rv and associated weights W(1)
rv . The transformed

colors then quantized with stepsize intraColorStep to ob-

tain T̂C
(1)

rv . The quantized RAHT coefficients are entropy
coded by the method suggested in [33], and transmitted. Fi-

nally, T̂C
(1)

rv is inverse transformed by RAHT using the asso-
ciated weights to obtain Ĉ

(1)
rv . These represent the quantized

voxel colors, and will be used as a reference for subsequent
predicted frames.

At the decoder, similarly, the refined vertices V̂
(1)
r are

obtained by upsampling, by factor U , the faces F(1) whose
vertices are V̂(1) (both of which have been decoded already
in the geometry step). V̂

(1)
r is then voxelized (without at-

tributes) to produce the list of voxels V̂(1)
rv and list of indices

I
(1)
rv such that V̂(1)

r = V̂
(1)
rv (I

(1)
rv ). The weights W

(1)
rv are

recovered by using RAHT to transform a random signal on

the vertices V̂(1)
r , each with unit weight. Then T̂C

(1)

rv is en-
tropy decoded and inverse transformed by RAHT using the
recovered weights to obtain the quantized voxel colors Ĉ(1)

rv .
Finally, the quantized refined vertex colors can be obtained as
Ĉ

(1)
r = Ĉ

(1)
rv (I

(1)
rv ).

5.2. Encoding and decoding of predicted frames

We assume that all N frames in a GOP are aligned. That
is, the lists of faces, F(1), . . . ,F(N), are all identical. More-
over, the lists of vertices, V(1), . . . ,V(N), all correspond in
the sense that the ith vertex in list V(1) (say, v(1)(i)) cor-
responds to the ith vertex in list V(t) (say, v(t)(i)), for all
t = 1, . . . , N . (v(1)(i), . . . ,v(N)(i)) is the trajectory of ver-

tex i over the GOF, i = 1, . . . , Np, where Np is the number
of vertices.

Similarly, when the faces are upsampled by factor U to
create new lists of refined vertices, V(1)

r , . . . ,V
(N)
r — and

their colors, C(1)
r , . . . ,C

(N)
r — the irth elements of these lists

also correspond to each other across the GOF, ir = 1, . . . , Nc,
where Nc is the number of refined vertices, or the number of
colors.

The trajectory {(v(1)(i), . . . ,v(N)(i)) : i = 1, . . . , Np}
can be considered an attribute of vertex v(1)(i), and likewise
the trajectories {(v(1)

r (ir), . . . ,v
(N)
r (ir)) : ir = 1, . . . , Nc}

and {(C(1)
r (ir), . . . ,C

(N)
r (ir)) : ir = 1, . . . , Nc} can be con-

sidered attributes of refined vertex v
(1)
r (ir). Thus the trajecto-

ries can be partitioned according to how the vertex v(1)(i) and
the refined vertex v

(1)
r (ir) are voxelized. As for any attribute,

the average of the trajectories in each cell of the partition is
used to represent all trajectories in the cell. Our scheme codes
these representative trajectories. This could be a problem if
trajectories diverge from the same, or nearly the same, point,
for example, when clapping hands separate. However, this
situation is usually avoided by retarting the GOF by insert-
ing a key frame, or reference frame, whenever the topology
changes, and by using a sufficiently fine voxel grid.

In this section we show how to encode and decode the
predicted frames, i.e., frames t = 2, . . . , N , in each GOF.
The frames are processed one at a time, with no look-ahead,
to minimize latency. The encoding is detailed in Algorithm 9,
while decoding is detailed in Algorithm 10.

5.2.1. Geometry encoding and decoding

At the encoder, for frame t, as for frame 1, the vertices V(1),
or equivalently the vertices V̂(1), are voxelized. However, for
frame t > 1 the voxelization occurs with attributes V(t). As
for frame 1, this produces a possibly slightly shorter list V̂(1)

v

along with a list of indices I(1)v such that V̂(1) = V̂
(1)
v (I

(1)
v ).

In addition, it produces an equal-length list of representative
attributes, V(t)

v . Such a list is produced every frame. There-
fore the previous frame can be used as a prediction. The
prediction residual ∆V

(t)
v = V

(t)
v − V̂

(t−1)
v is transformed,

quantized (with stepsize ∆motion), inverse transformed, and
added to the prediction to obtain the reproduction V̂

(t)
v , which

goes into the frame buffer. The quantized transform coeffi-
cients are entropy coded. We use adaptive RLGR as the en-
tropy coder.

At the decoder, the entropy code for the quantized trans-
form coefficients of the prediction residual is received, en-
tropy decoded, inverse transformed, inverse quantized, and
added to the prediction to obtain V̂

(t)
v , which goes into the

frame buffer. Finally V̂(t) = V̂
(t)
v (I

(1)
v ) is sent to the ren-

derer.



Algorithm 9 Encode predicted frame (P-encoder)

Input: J , ∆motion, ∆color,inter (from system parameters)
Input: V(t), C(t)

r (from system input)
Input: V̂(1), V̂

(1)
r (from reference frame encoder)

Input: V̂
(t−1)
v , Ĉ(t−1)

rv (from previous frame buffer)
1: // Geometry
2: [V̂

(1)
v ,V

(t)
v , I

(1)
v ] = voxelize(V̂(1),V(t), J) s.t. V̂(1) =

V̂
(1)
v (I

(1)
v )

3: ∆V
(t)
v = V

(t)
v − V̂

(t−1)
v

4: [T∆V
(t)
v ,W

(1)
v ] = RAHT (V̂

(1)
v ,∆V

(t)
v , J)

5: T̂∆V
(t)

v = quantize(T∆V
(t)
v ,∆motion)

6: ∆̂V
(t)

v = IRAHT (V̂
(1)
v , T̂∆V

(t)

v , J)

7: V̂
(t)
v = V̂

(t−1)
v + ∆̂V

(t)

v

8: // Color
9: [V̂

(1)
rv ,C

(t)
rv , I

(1)
rv ] = voxelize(V̂

(1)
r ,C

(t)
r , J) s.t. V̂(1)

r =

V̂
(1)
rv (I

(1)
rv )

10: ∆C
(t)
rv = C

(t)
rv − Ĉ

(t−1)
rv

11: [T∆C
(t)
rv ,W

(1)
rv ] = RAHT (V̂

(1)
rv ,∆C

(t)
rv , J)

12: T̂∆C
(t)

rv = quantize(T∆C
(t)
rv ,∆color,inter)

13: ∆̂C
(t)

rv = IRAHT (V̂
(1)
rv , T̂∆C

(t)

rv , J)

14: Ĉ
(t)
rv = Ĉ

(t−1)
rv + ∆̂C

(t)

rv

Output: code(T̂∆V
(t)

v ), code(T̂∆C
(t)

rv ) (to predicted frame
decoder)

Output: V̂
(t)
v , Ĉ(t)

rv (to previous frame buffer)

Algorithm 10 Decode predicted frame (P-decoder)

Input: J , U , ∆motion, ∆color,inter (from system parame-
ters)

Input: code(∆̂V
(t)

v ), code(T̂∆C
(t)

rv ) (from predicted frame
encoder)

Input: V̂
(1)
v , I(1)v , V̂(1)

rv , I(1)rv (from reference frame decoder)
Input: V̂

(t−1)
v , Ĉ(t−1)

rv (from previous frame buffer)
1: // Geometry
2: W

(1)
v = RAHT (V̂

(1)
v , J)

3: ∆̂V
(t)

v = IRAHT (V̂
(1)
v , T̂∆V

(t)

v , J)

4: V̂
(t)
v = V̂

(t−1)
v + ∆̂V

(t)

v

5: V̂(t) = V̂
(t)
v (I

(1)
v )

6: // Color
7: W

(1)
rv = RAHT (V̂

(1)
rv , J)

8: ∆̂C
(t)

rv = IRAHT (V̂
(1)
rv , T̂∆C

(t)

rv , J)

9: Ĉ
(t)
rv = Ĉ

(t−1)
rv + ∆̂C

(t)

rv

10: Ĉ
(t)
r = Ĉ

(t)
rv (I

(1)
rv )

Output: V̂(t), F(1), Ĉ(t)
r (to renderer)

Output: V̂
(t)
v , Ĉ(t)

rv (to previous frame buffer)

sequence Nframes fr/sec |V| |F| J upsample
soccer
lipstick

yellow dress

Table 2: HCap sequences, average values across all frames.

5.2.2. Color encoding and decoding

At the encoder, for frame t > 1, as for frame t = 1, the re-
fined vertices V̂(t)

r , are voxelized with attributes C(t)
r . As for

frame t = 1, this produces a significantly shorter list V̂(1)
rv

along with a list of indices I(1)rv such that V̂r
(1)

= V̂
(1)
rv (I

(1)
rv ).

In addition, it produces a list of representative attributes, C(t)
rv .

Such a list is produced every frame. Therefore the previous
frame can be used as a prediction. The prediction residual
∆C

(t)
rv = C

(t)
rv − Ĉ

(t−1)
rv is transformed, quantized (with step-

size ∆color,inter), inverse transformed, and added to the pre-
diction to obtain the reproduction Ĉ

(t)
rv , which goes into the

frame buffer. The quantized transform coefficients are en-
tropy coded. We use adaptive RLGR as the entropy coder.

At the decoder, the entropy code for the quantized trans-
form coefficients of the prediction residual is received, en-
tropy decoded, inverse transformed, inverse quantized, and
added to the prediction to obtain Ĉ

(t)
rv , which goes into the

frame buffer. Finally Ĉ
(t)
r = Ĉ

(t)
rv (I

(1)
rv ) is sent to the ren-

derer.

5.3. Back to triangle clouds

Since the output of the compression system recovers a se-
quence of voxelized geometry and voxel projected attributes,
for visualization and distortion computation we need to re-
construct a triangle cloud. First we approximately invert the
voxel projection by computing the minimum mean squared
error reconstruction, wich can be done using the partitions of
the voxel projection with respect to the vertices of the subdi-
vided triangles. That procedure can be done for geometry and
color in reference and predicted frames.

For visualization, we use the triangle subdivision function
and construct a point cloud, whose points lie in the surfaces
of triangles and have color attributes. That point cloud can be
further refined using the same triangle division function and
color interpolation to obtain a denser point cloud.

6. EXPERIMENTS

6.1. Dataset

Describe HCap dataset in general, what it has, and how we
process it to get what we want. Describe pre-processing, in-
cluding depth and upsampling parameters. Then put details
of sequences in a table



6.2. Error metrics

Comparing 3D geometry poses some challenges because
there is not an agreed upon metric or distortion measure for
this type of data. We consider several metrics for both color
and geometry to evaluate different aspects of our compression
system.

6.2.1. Transform coding distortion D0

Since within the encoder we are working with attributes pro-
jected onto voxels, and we have correspondences withing
each GOFs because everything is projected onto the voxels
of the reference frame. We have worked so far with several
parameters: octree depth J and upsampling factor U are
considered global parameters that depend more on the data
acquisition and rendering and are fixed for our compression
system. The functions that will introduce distortion are the
voxProj function and quantization funciton Q for color and
motion in predicted frames. Since the voxel projection only
depends on the voxel and triangle sizes, we cannot control its
error within the encoder. Therefore for rate-distortion analy-
sis we will analyze the errors between voxel projected color
attributes before and after transform coding for reference
frames, and for predicted frames we will analyze geometry
and color errors before and after predictive transform coding.
For geometry we use signal to noise ration (SNR) between an
original and a compressed frame with geometry coordinate
matrices Vvox and V̂vox

SNR = −20 log10

(
‖V̂vox −Vvox‖F
‖Vvox‖F

)
. (3)

For color we compute peak signal to noise ration PSNR for
Y UV components separately. For color Y attributes CY

vox

ĈY
vox before and after transform coding we compute

PSNR = −20 log10

(
‖ĈY

vox −CY
vox‖2

255
√
Nc

)
(4)

6.2.2. High resolution triangle cloud distortion D1

We re-sample the dynamic mesh dataset with a higher reso-
lution 40 instead of 10 used for compression. We take our
reconstructed dynamic triangle cloud, then compute the cor-
responding point cloud using the method from section 5.3,
then subdivide the triangles by a factor of 4 with color inter-
polation. The new pointcloud is much more dense and com-
parable with the higher resolution resampled dynamic mesh.
We compute geometry SNR and color PSNR.

6.2.3. Principal projections distortion D2

Orthogonal projection onto 6 faces of a cube. We obtain six
images per frame. Since the projection will depend on the

Fig. 5: Geometry SNR vs bits/voxel, soccer lipstick sequence

geometry compression, we will report only color PSNR but
as a function of motion rate and color rate. This experiment
will allows us to evalueate the effect of geometry compression
on the color quality.

6.2.4. 1-nearest-neighbor matching distortion D3

We will voxel project each frame with respect to its own
geometry (opposed as how we have been doing it, with
respect to the reference frame). We obtain a sequence of vox-
elized point clouds, we compare using the 1-nearest-neighbor
matching to compute SNR and PSNR. Since the matching de-
pends on the geometry, we will analyze the effect of geometry
compression on color PSNR.

6.3. Geometry compression

For geometry compression the only variable within the en-
coder is ∆motion, we will show rates for parameter taking
values {1, 2, 4, 8, 16, 32, 64}. And show the following infor-
mation:

1. average geometry SNR vs bit/vox, whole sequence and
for reference frames only and predicted frames only.
This is before and after transform coding on voxelized
delta vectors.

2. Now on high resolution rendered data U = 40 for in-
put and U = 10 for voxel size and U = 4 for linear
interpolation.

(a) High resolution direct comparison, geometry
SNR and color PSNR vs motion rate

(b) Cube projection distance, color PSNR vs motion
rate.

(c) voxelized 1-nearest-neighbor matching distance,
geometry SNR and color PSNR vs motion rate.

(d) show in a table motion Step, mbits/sec, bit/vox
for predicted frames, and bit/vox for reference
frames. Also number of reference frames and
predicted frames.

6.4. Color Compression

Two parameters, intra and inter colorSteps.

6.5. Error metrics

1. Voxelize everything with respect to itself, not the key
frame, so I will have to rewrite the pre process function.

2. project into cube, then get 6 images and do image psnr.



Fig. 6: Color Rate distortion curve for Y component of soccer
sequence

Fig. 7: Color Rate distortion curve for Y component of man
sequence

Fig. 8: Color Rate distortion curve for Y component of break
dancer sequence

3. for i-frames number of voxels will be the same, for ori-
gianl and reconstructed data, because we made it like
that, for p frames, not necessarily. Compute nearest
neighbor, and do distance, if the match is not 1 to 1,
doesnt matter, just compute the number of edges in knn
graph and divide by that when averaging.

7. EXPERIMENTS D0

First set of experiments, RD curves

1. plot color psnr vs geometry rates, for all pairs intra inter
step, 1:64. One sequence average over all frames.

2. find a rule, e.g. intra inter steps, then we will have only
1 color step parameter. This is done for all sequences,
and we find this rule for all of them.

3. different sequences in the same color psnr vs color rate
(one color rate) plot.

SEcond set of experiments things vs time
In the same plot put different sequences. Time plots

1. geometry MSE vs geometry rate plot so we can show
that reference frames have zero error.

2. color psnr vs time

3. geom mse vs time

4. color rate vs time

5. geometry rate vs time

8. ICASSP EXPERIMENTS

• D0 experiments, RD curve for color, then fix one color
parameter.

• RD for motion.

comparisons

• All intra: octtree on refined geometry+ raht on color.
(150Mbits/sec)

• octree on coarse geometry +raht on color, this is our
system in intra mode all the time.

• intra+inter, what we have



9. DISCUSSION AND CONCLUSION

10. EXTENSIONS AND IMPROVEMENTS

1. Better reference frame coding, intra prediction for
color?

2. Generalized RAHT, less local, reduce artifacts.

3. Improve inter prediction for color and motion. Better
key point tracker, maybe edge tracker for color, motion
compensation. LOW COMPLEXITY COMPUTER
VISION ALGOS.

4. Other entropy coders.

5. Other attributes like normals.

6. Add filtering to reduce artifacts.

7. RD optimization

11. REFERENCES

[1] P. Alliez and C. Gotsman, “Recent advances in com-
pression of 3d meshes,” in Advances in Multiresolution
for Geometric Modeling, N. A. Dodgson, M. S. Floater,
and M. A. Sabin, Eds., pp. 3–26. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2005.

[2] J. Peng, Chang-Su Kim, and C. C. Jay Kuo, “Technolo-
gies for 3d mesh compression: A survey,” Journal of
Vis. Comun. and Image Represent., vol. 16, no. 6, pp.
688–733, Dec. 2005.
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