
Simple Encrypted Arithmetic Library - SEAL v2.1

Hao Chen1, Kim Laine2, and Rachel Player3

1 Microsoft Research, USA
haoche@microsoft.com

2 Microsoft Research, USA
kim.laine@microsoft.com

3 Royal Holloway, University of London, UK??

rachel.player.2013@live.rhul.ac.uk

1 Introduction

Traditional encryption schemes, both symmetric and asymmetric, were not designed to respect
the algebraic structure of the plaintext and ciphertext spaces. Many schemes, such as ElGamal
(resp. e.g. Paillier), are multiplicatively homomorphic (resp. additively homomorphic), so that
one can perform certain limited types of computations directly on the encrypted data and have
them pass through the encryption to the underlying plaintext data, without requiring access to
any secret key(s). The restriction to a one particular type of operation is very strong, however,
and instead a much more powerful fully homomorphic encryption scheme, that respects two
algebraic operations between the plaintext and ciphertext spaces, would be needed for many
interesting applications. The first such encryption scheme was presented by Craig Gentry in
his famous work [16], and since then researchers have introduced a number of new and more
efficient fully homomorphic encryption schemes.

Despite the promising theoretical power of homomorphic encryption, the practical side
still remains somewhat underdeveloped. Recently new implementations, new data encoding
techniques, and new applications have started to improve the situation, but much remains to
be done. In 2015 we released the Simple Encrypted Arithmetic Library - SEAL with the goal of
providing a well engineered and documented homomorphic encryption library, with no external
dependencies, that would be easy to use both by experts and by non-experts with little or
no cryptographic background. The library is available at http://sealcrypto.codeplex.com,
and is licensed under the MSR License Agreement.

Recently a large number of major changes were implemented in SEAL, and the new version
was released as SEAL v2.0. This involved major changes in the public API, and a change of
the underlying encryption scheme. Since the release of SEAL v2.0 several improvements have
been made. Most of these are very important performance-related improvements, but there
are also a few changes and additions to the public API. These improvements have now been
released as SEAL v2.1. In this document we describe in detail this new release, and hope to
provide a practical guide to using homomorphic encryption for a wide audience. The reader is
also advised to go over the code examples that come with the library, and to read through the
detailed comments. For users of previous versions of SEAL (both v2.0 and earlier) we hope to
provide clear instructions for how to port old code to use SEAL v2.1. An introductory paper
to an older version of SEAL was given in [12], which the user new to SEAL v2.1 may also find
helpful as large parts of the API have remained unchanged. This document is an extension of
a similar document that accompanied the release of SEAL v2.0 [19].

?? Much of this work was done during an internship at Microsoft Research, Redmond.

http://sealcrypto.codeplex.com

1.1 Roadmap

Section 1.2 is directly taken from [19] and gives an overview of the changes for SEAL v2.0
compared to versions prior to it. In Section 1.3 we give an overview of changes moving from
SEAL v2.0 to SEAL v2.1, which are expanded upon in the other sections of this document.
In Section 2 we define notation and parameters that are used throughout this document. In
Section 3 we give the description of the Fan-Vercauteren homomorphic encryption scheme
(FV) – as originally specified in [15] – and in Section 4 we describe how SEAL differs from
this original description. In Section 5 we discuss the expected noise growth behavior of SEAL
ciphertexts as homomorphic evaluations are performed. In Section 6 we discuss the available
ways of encoding data into SEAL plaintexts. In Section 7 we discuss the selection of parameters
for performance, and describe the automatic parameter selection module. In Section 8 we
discuss the security properties of SEAL.

1.2 Overview of Changes in SEAL v2.0

In this subsection we highlight some of the changes in SEAL v2.0 compared to previous
versions. In addition to the changes discussed below a huge number of bugs have been fixed,
and some core functions have been optimized.

Remark 1. Whenever we refer to (either implicitly or explicitly) an implementation of YASHE’,
we mean the implementation in the versions of SEAL prior to SEAL v2.0. Note that YASHE’
is no longer available in SEAL v2.0, and the only cryptosystem implemented is now FV.

Remark 2. Whenever we refer to (either implicitly or explicitly) implementations of encryp-
tor, decryptor, key generator, encryption parameters, coefficient modulus, plaintext modulus,
etc., we mean classes, objects, or variables with corresponding names in SEAL (Encryptor,
Decryptor, KeyGenerator, EncryptionParameters, coeff_modulus, plain_modulus, etc.).
We use unsigned integers, polynomials, and polynomial arrays to refer to the SEAL objects
BigUInt, BigPoly, and BigPolyArray.

New encryption scheme Previous versions of SEAL used the scheme YASHE’, introduced
by Bos, Lauter, Loftus, and Naehrig in [3], as the underlying encryption scheme. SEAL v2.0
uses the Fan-Vercauteren scheme, which we will refer to as the FV scheme, introduced by
Fan and Vercauteren in [15] (see also Section 3). This change improves both security and
performance. In particular, FV is more secure because it relies only on the RLWE assumption
(see Section 8). It also has better ciphertext noise growth properties (see Section 5) roughly
due to a smaller size secret key (represented by a BigPoly object in SEAL v2.0). As a result, in
many cases it is now possible to use smaller parameters (poly_modulus and coeff_modulus)
than before, resulting in significantly improved performance.

While plaintext elements remain the same as before, i.e. represented by BigPoly objects
with coefficients reduced modulo plain_modulus, in the FV scheme a freshly encrypted ci-
phertext is an array of two polynomials, represented by instances of a new class BigPolyArray.
In both schemes the secret key is a BigPoly. In FV the public key is a BigPolyArray of size 2,
whereas in YASHE’ it was represented by a single BigPoly.

Relinearization does not occur by default To obtain certain cryptographic properties
(compactness, circuit privacy), textbook-FV as described in [15] performs a relinearization

operation after every homomorphic multiplication. The reason is that homomorphic multipli-
cation in fact increases the size of the output ciphertext BigPolyArray. Precisely, the result
of multiplying two ciphertexts of sizes M and N results in a ciphertext of size M + N − 1.
Relinearization can be used to reduce the size down from 3 to 2 after every multiplication, pre-
venting the ciphertext size from leaking information about the evaluated arithmetic circuit.
In textbook-YASHE’ homomorphic multiplication also involves the production of an inter-
mediate ciphertext, which should be relinearized to produce the final output ciphertext [3].
In previous versions of SEAL the function Evaluator::multiply returned this output ci-
phertext. In SEAL v2.0 we do not perform relinearization by default anymore, so instead
Evaluator::multiply returns a ciphertext of size M + N − 1 (given inputs of size M and
N). If desired, subsequent relinearization may be done using Evaluator::relinearize. The
reason for this is that while in many cases relinearizing after every multiplication is a good
strategy, it is not optimal, and in some cases the user might be able to squeeze out more
performance by deferring relinearization until a later point, and instead work temporarily
with larger ciphertexts. We also extend the idea of relinearization in SEAL v2.0 to reducing
a ciphertext of arbitrary size down to any size at least 2 (by default to size 2). See Section 4
for further discussion on the generalization of multiplication and relinearization.

Another reason for not relinearizing by default is that the performance of Evaluator::
relinearize depends strongly on the choice of the parameter decomposition_bit_count in
EncryptionParameters. A reasonable choice for the decomposition bit count is between 1/10
and 1/2 of the significant bit count of the coefficient modulus, but since it affects both cipher-
text noise growth and performance, it is hard to determine the optimal choice without knowing
the details of the particular computation. On the other hand, the choice of the decomposition
bit count does not matter if there will be no relinearization in the computation, and since
relinearization does not occur by default anymore, the constructor of EncryptionParameters
can set it automatically to 0 (signaling that no relinearization will be performed). This frees
the user from having to worry about decomposition_bit_count unless they choose to.

To be able to relinearize a ciphertext, the owner of the secret key must have generated
enough evaluation keys that need to be subsequently given as input to the constructor of
Evaluator. More precisely, if a ciphertext has size equal to K, then K−2 evaluation keys will
be needed to relinearize it down to any size less than K. To generate k evaluation keys with
the key generator, the owner of the secret key can call KeyGenerator::generate with the
parameter k. Of course, if the key generator is instantiated with a decomposition bit count
of 0 (see the above paragraph), the generate function can only be called with parameter
k = 0 (the default value). Previously the constructor of Evaluator always required both
encryption parameters and evaluation keys, but now if no evaluation keys have been generated
the evaluator can be constructed by only passing it a set of encryption parameters. If the
evaluator is constructed in such a way, it will not be possible to use Evaluator::relinearize.
To conclude, in order to perform relinearization, the user must first set the decomposition bit
count to a non-zero value, then generate an appropriate number of evaluation keys with
KeyGenerator::generate, and finally pass the generated EvaluationKeys instance to the
constructor of Evaluator.

Validity of ciphertexts In SEAL v2.0 we adopt the philosophy that for a ciphertext to
be valid it should not reveal any information about the underlying plaintext beyond the fact
that it is the result of the evaluation of an arithmetic circuit with properties that might be
inferred from the noise level and the size of the ciphertext. For this reason the functions

Evaluator::multiply_plain with a plaintext multiplier 0, and Evaluator:exponentiate

with exponent 0, are now not allowed, and will result in SEAL throwing an exception.

Thread safety Earlier versions of SEAL used a memory pool (class util::MemoryPool),
but this was not thread-safe. As a result, each Encryptor, Decryptor, Evaluator, and all the
encoders had their own memory pools, and in a multi-threaded application each thread would
have to contain its own local instance of these objects if they were to be used concurrently.
The util::MemoryPool class is now thread-safe, and there is one single global instance of if
used by the entire library.4 Consequently, a single instance of each of the classes mentioned
above can now be used concurrently from any number of threads. As before, classes such as
BigUInt, BigPoly, BigPolyArray, and PolyCRTBuilder are not fully thread-safe, and the
limitations are described in the comments in the header files.

Default source of randomness Previous versions of SEAL assumed that the user supplied
their own cryptographic source of randomness to EncryptionParameters, and if this was not
done it did not use real randomness (for testing purposes). As supplying a custom randomness
source is slightly non-trivial, the default behavior was changed to use std::random_device

for randomness. For more details, see Section 7.

1.3 From SEAL v2.0 to SEAL v2.1

The changes from SEAL v2.0 to SEAL v2.1 are mostly technical improvements, and involve
only a few minor changes or additions to the public API. However, here we will focus on
describing the API changes.

Inherent noise The earlier inherent_noise functions have been removed from SEAL v2.1,
and replaced by a member function Decryptor::inherent_noise. As typically the user
never cares about the exact BigUInt value of the inherent noise but only its bit length, a
convenient function Decryptor::inherent_noise_bits was created to instead return the
significant bit count of the inherent noise. Similarly, the function inherent_noise_max has
been removed from SEAL v2.1, and replaced by a member function EncryptionParameters

::inherent_noise_max. As the new inherent_noise function, inherent_noise_max also
comes with a variant inherent_noise_bits_max that instead returns the significant bit count
of the maximum noise.

Simpler encoders The BinaryEncoder and BalancedEncoder have been merged into one
class called IntegerEncoder, which takes any integer base ≥ 2 as an argument, and under
the hood works as either a BinaryEncoder or as a BalancedEncoder, depending on the
base. Moreover, note that BalancedEncoder (and hence IntegerEncoder) supports now also
even integers as base. Similar changes were made to merge BinaryFractionalEncoder and
BalancedFractionalEncoder into one FractionalEncoder class. Both IntegerEncoder and
FractionalEncoder use base 2 as a default when no base is explicitly given.

4 The global memory pool can be accessed through util::MemoryPool::default_pool().

exponentiate and multiply_many relinearize by default In SEAL v2.1 we have de-
cided to enable automatic relinearization for the two functions Evaluator:exponentiate

and Evaluator::multiply_many. Relinearization to size 2 is performed after each multipli-
cation, and the final result of the computation will always be a ciphertext of size 2. This is
in contrast to Evaluator::multiply, where no relinearization is done. Note that the user is
responsible for ensuring that enough evaluation keys have been generated and given to the
constructor of Evaluator.

Faster operations with NTT In order to use the number theoretic transform (NTT) to
speed up some essential operations – encryption, relinearization and decryption – we require
coeff_modulus to be a prime q with the property that q ≡ 1 (mod 2n), where n is the degree
of poly_modulus. We use David Harvey’s algorithm for NTT as described in [18], which
additionally requires that 4q ≤ β, where

β = 264dlog(q)/64e

denotes the word size. Thus, NTT will only be used if 2n|(q− 1) and 4q ≤ β holds. Otherwise
slower algorithms will be used.

New default parameters In SEAL v2.1 we have updated the set of default parameters based
on more recent security estimates (see [1]). Our default parameters are chosen conservatively
to ensure security against improvements to known attacks. See Table 3 for the new list of
default parameters.

Changes to PolyCRTBuilder The PolyCRTBuilder class has changed significantly. The
constructor takes an EncryptionParameters instance as input, and checks that the parame-
ters are valid and appropriate for use with batching functionality. In particular, it verifies that
2n|(t−1), where t is the plain_modulus. For manipulating slot contents, the PolyCRTBuilder
class now contains only the compose and decompose functions, whereas SEAL v2.0 had in
addition functions such as get_slot and set_slot. However, compose and decompose are
now hugely faster than before due to the use of NTT. More precisely, they are implemented
now via a negacyclic variant of the Number Theoretic Transform (see e.g. [21]).

Encryption parameter qualifiers Depending on what encryption parameters the user
chooses, different functionalities are enabled in the library. We call these different properties
of the encryption parameters their qualifiers. Given an instance of EncryptionParameters,
the user can call EncryptionParameters::get_qualifiers to return the set of qualifiers as
an instance of a struct EncryptionParameterQualifiers, which is a simple container for
several Boolean flags that tell which features will be enabled with the particular parameter
set. If the set of parameters is not valid for use with SEAL v2.1, the flag parameters_set

will be false. It is impossible to create tools such as Encryptor or Decryptor with invalid
parameters.

There is one important change in what parameters are considered valid. We no longer
allow poly_modulus to be anything but a power-of-2 cyclotomic polynomial, i.e. of the form
xn + 1, where n is a power of 2.

Faster squaring We have added a function Evaluator::square which uses a different al-
gorithm for homomorphic multiplication of a ciphertext with itself. This is significantly faster
than using Evaluator::multiply. The classes SimulationEvaluator and ChooserEvaluator

contain a similar square function.

Self-assignment in Evaluator Earlier many of the functions in Evaluator failed when the
destination was equal to one of the inputs. This problem has now been corrected.

No throwing on decoder overflow Earlier versions of SEAL threw an exception when an
encoder failed to decode a plaintext polynomial due to the output not fitting into the output
container. This is a potential security issue if the user does not catch the exception and deal
with it silently, as any passively observing party might notice the program crashing and be
able to deduce information about the underlying plaintext. Typically the user might want to
catch such an exception and deal with it accordingly, but since SEAL v2.1 does not yet have
its own exception classes, for now throwing on decoder overflow is disabled.

2 Notation

We use b·c, d·e, and b·e to denote rounding down, up, and to the nearest integer, respectively.
When these operations are applied to a polynomial, we mean performing the corresponding
opearation to each coefficient separately. The norm ‖ · ‖ always denotes the infinity norm.
We denote the reduction of an integer modulo t by [·]t. This operation can also be applied to
polynomials, in which case it is applied to every integer coefficient separately. The reductions
are always done into the symmetric interval [−t/2, t/2). loga denotes the base-a logarithm,
and log always denotes the base-2 logarithm.Table 1 below lists commonly used parameters,
and in some cases their corresponding names in SEAL v2.1.

3 The FV Scheme

In this section we give the definition of the FV scheme as presented in [15].

3.1 Plaintext Space and Encodings

In FV the plaintext space is Rt = Zt[x]/(xn + 1), that is, polynomials of degree less than n
with coefficients modulo t. We will also use the ring structure in Rt, so that e.g. a product of
two plaintext polynomials becomes the product of the polynomials with xn being converted to
a −1. The homomorphic addition and multiplication operations on ciphertexts (that will be
described later) will carry through the encryption to addition and multiplications operations
in Rt.

If one wishes to encrypt (for example) an integer or a rational number, it needs to be
first encoded into a plaintext polynomial in Rt, and can be encrypted only after that. In
order to be able to compute additions and multiplications on e.g. integers in encrypted form,
the encoding must be such that addition and multiplication of encoded polynomials in Rt
carry over correctly to the integers when the result is decoded. SEAL provides a few different
encoders for the user’s convenience. These are discussed in more detail in Section 6 and
demonstrated in the SEALExamples project that comes with the code.

Parameter Description Name in SEAL (if applicable)

q Modulus in the ciphertext space (coefficient modulus) coeff_modulus

t Modulus in the plaintext space (plaintext modulus) plain_modulus

n A power of 2

xn + 1 The polynomial modulus which specifies the ring R poly_modulus

R The ring Z[x]/(xn + 1)

Ra The ring Za[x]/(xn + 1), i.e. same as the ring R but with
coefficients reduced modulo a

w A base into which ciphertext elements are decomposed during
relinearization

logw decomposition_bit_count

` There are `+ 1 = blogw qc+ 1 elements in each component of
each evaluation key

δ Expansion factor in the ring R (δ ≤ n)

∆ Quotient on division of q by t, or bq/tc

rt(q) Remainder on division of q by t, i.e. q = ∆t+ rt(q),
where 0 ≤ rt(q) < t

χ Error distribution (a truncated discrete Gaussian distribution)

σ Standard deviation of χ noise_standard_deviation

B Bound on the distribution χ noise_max_deviation

Table 1: Notation used throughout this document.

3.2 Ciphertext Space

Ciphertexts in FV are arrays of polynomials in Rq. These arrays contain at least two poly-
nomials, but grow in size in homomorphic multiplication operations unless relinearization
is performed. Homomorphic additions are performed by computing a component-wise sum of
these arrays; homomorphic multiplications are slightly more complicated and will be described
below.

3.3 Description of Textbook-FV

Let λ be the security parameter. Let w be a base, and let `+1 = blogw qc+1 denote the number
of terms in the decomposition into base w of an integer in base q. We will also decompose
polynomials in Rq into base-w components coefficient-wise, resulting in `+ 1 polynomials. By

a
$← S we denote that a is sampled uniformly from the finite set S.
The scheme FV contains the algorithms SecretKeyGen, PublicKeyGen, EvaluationKeyGen,

Encrypt, Decrypt, Add, and Multiply. These algorithms are described below.

• SecretKeyGen(λ): Sample s
$← R2 and output sk = s.

• PublicKeyGen(sk): Set s = sk, sample a
$← Rq, and e← χ. Output pk = ([−(as+ e)]q, a).

• EvaluationKeyGen(sk, w): for i ∈ {0, . . . , `}, sample ai
$← Rq, ei ← χ. Output

evk =
(
[−(ais+ ei) + wis2]q, ai

)
.

• Encrypt(pk,m): For m ∈ Rt, let pk = (p0, p1). Sample u
$← R2, and e1, e2 ← χ. Compute

ct = ([∆m+ p0u+ e1]q, [p1u+ e2]q) .

• Decrypt(sk, ct): Set s = sk, c0 = ct[0], and c1 = ct[1]. Output[⌊
t

q
[c0 + c1s]q

⌉]
t

.

• Add(ct0, ct1): Output (ct0[0] + ct1[0], ct0[1] + ct1[1]).
• Multiply(ct0, ct1): Compute

c0 =

[⌊
t

q
ct0[0]ct1[0]

⌉]
q

,

c1 =

[⌊
t

q
(ct0[0]ct1[1] + ct0[1]ct1[0])

⌉]
q

,

c2 =

[⌊
t

q
ct0[1]ct1[1]

⌉]
q

.

Express c2 in base w as c2 =
∑`

i=0 c
(i)
2 wi. Set

c′0 = c0 +
∑̀
i=0

evk[i][0]c
(i)
2 ,

c′1 = c1 +
∑̀
i=0

evk[i][1]c
(i)
2 ,

and output (c′0, c
′
1).

4 How SEAL Differs from Textbook-FV

In practice, some operations in SEAL are done slightly differently, or in slightly more gen-
erality, than in textbook-FV (see Section 3.3). In this section we discuss these differences in
detail.

To make clear the generalization of FV operations it is convenient to think of each cipher-
text component as corresponding to a particular power of the secret key s. In particular, in
a ciphertext ct = (c0, c1, . . . ck) of size k + 1, the c0 term is associated with s0, the c1 term
with s1, and so on, so that the ck term is associated with sk.

4.1 Decryption

A SEAL v2.1 ciphertext ct = (c0, . . . , ck) is decrypted by computing[⌊
t

q
[ct(s)]q

⌉]
t

=

[⌊
t

q

[
c0 + · · ·+ cks

k
]
q

⌉]
t

.

This generalization of decryption (compare to Section 3.3) is handled automatically. The
decryption function determines the size of the input ciphertext, and generates the appropriate
powers of the secret key which are required to decrypt it. Note that because we consider well-
formed ciphertexts of arbitrary length valid, we automatically lose the compactness property
of homomorphic encryption. Roughly speaking, compactness states that the decryption circuit
should not depend on ciphertexts, or on the function being evaluated. For more details, see [2].

4.2 Multiplication

Consider the Multiply function as described in Section 3. The first step that outputs the
intermediate ciphertext (c0, c1, c2) defines a function Evaluator::multiply5, and causes the
ciphertext to grow in size. The second step defines a function that we call relinearization, im-
plemented as Evaluator::relinearize, which takes a ciphertext of size 3 and an evaluation
key, and produces a ciphertext of size 2, encrypting the same underlying plaintext. Note that
the ciphertext (c0, c1, c2) can already be decrypted to give the product of the underlying plain-
texts (see Section 4.1), so that in fact the relinearization step is not necessary for correctness
of homomorphic multiplication.

It is possible to repeatedly use a generalized version of the first step of Multiply to
produce even larger ciphertexts if the user has a reason to further avoid relinearization. In
particular, let ct1 = (c0, c1, . . . , cj) and ct2 = (d0, d1, . . . , dk) be two SEAL v2.1 ciphertexts
of sizes j + 1 and k+ 1, respectively. Let the ciphertext output by Multiply(ct1, ct2), which
is of size j + k + 1, be denoted ctmult = (C0, C1, . . . , Cj+k). The polynomials Cm ∈ Rq are
computed as

Cm =

[⌊
t

q

(∑
r+s=m

crds

)⌉]
q

.

In SEAL v2.1 we define the function Multiply (or rather family of functions) to mean this
generalization of the first step of multiplication. It is implemented as Evaluator::multiply.

5 This is not quite true, because previous versions of SEAL used YASHE’, where ciphertexts did not grow
in size, but instead the resulting ciphertext had to instead be decrypted under a single higher power of the
secret key. Note that in SEAL v2.1 decryption will require the entire sequence s0, s1, s2.

4.3 Relinearization

The goal of relinearization is to decrease the size of the ciphertext back to (at least) 2 after
it has been increased by multiplications as was described in Section 4.2. In other words,
given a size k + 1 ciphertext (c0, . . . , ck) that can be decrypted as was shown in Section 4.1,
relinearization is supposed to produce a ciphertext (c′0, . . . , c

′
k−1) of size k, or – when applied

repeatedly – of any size at least 2, that can be decrypted using a smaller degree decryption
function to yield the same result. This conversion will require a so-called evaluation key (or
keys) to be given to the evaluator, as we will explain below.

In FV, suppose we have a size 3 ciphertext (c0, c1, c2) that we want to convert into a
size 2 ciphertext (c′0, c

′
1) that decrypts to the same result. Suppose we are also given a pair

a pair evk =
(
[−(as+ e) + s2]q, a

)
, where a

$← Rq, and e ← χ. Now set c′0 = c0 + evk[0]c2,
c′1 = c1 + evk[1]c2, and define the output to be the pair (c′0, c

′
1). Interpreting this as a size 2

ciphertext and decrypting it yields

c′0 + c′1s = c0 + (−(as+ e) + s2)c2 + c1s+ ac2s = c0 + c1s+ c2s
2 − ec2 .

This is almost what is needed, i.e. c0 + c1s + c2s
2 (see Section 4.1), except for the additive

extra term ec2. Unfortunately, since c2 has coefficients up to size q, this extra term will make
the decryption process fail.

Instead we use the classical solution of writing c2 in terms of some smaller base w (see

e.g. [8, 7, 5, 15]) as c2 =
∑`

i=0 c
(i)
2 wi. Instead of having just one evaluation key (pair) as above,

suppose we have `+1 such pairs constructed as in Section 3.3. Then one can show that instead
setting c′0 and c′1 as in Section 3.3 successfully replaces the large additive term that appeared
in the naive approach above with a term of size linear in w.

This same idea can be generalized to relinearizing a ciphertext of any size k+1 to size k ≥ 2,
as long as a generalized set of evaluation keys is generated in the EvaluationKeyGen(sk, w)
function. Namely, suppose we have a set of evaluation keys evk2 (corresponding to s2), evk3
(corresponding to s3) and so on up to evkk (corresponding to sk), each generated as in
Section 3.3. Then relinearization converts (c0, c1, . . . , ck) into (c′0, c

′
1, . . . , c

′
k−1), where

c′0 = c0 +
∑̀
i=0

evkk[i][0]c
(i)
k ,

c′1 = c1 +
∑̀
i=0

evkk[i][1]c
(i)
k ,

and c′j = cj for 2 ≤ j ≤ k − 1.
Note that in order to generate evaluation keys, one needs to access the secret key, and

so in particular the evaluating party would not be able to do this. The owner of the secret
key must generate an appropriate number of evaluation keys and pass these to the evaluating
party in advance of the relinearization computation. This means that the evaluating party
should inform the key generating party beforehand whether or not they intend to relinearize,
and if so, by how many steps. Note that if they choose to relinearize after every multiplication
only one evaluation key, evk2, is needed.

In SEAL v2.1 we define the function Relinearize (or rather family of functions) to mean
this generalization of the second step of multiplication as was described in Section 3.3. It is
implemented as Evaluator::relinearize. Suppose a ciphertext ct has size K and L ∈ [2,K)
is an integer, then relinearize(ct,L) returns a ciphertext of size L encrypting the same
message as ct.

4.4 Addition

We also need to generalize addition to be able to operate on ciphertexts of any size. Suppose we
have two SEAL v2.1 ciphertexts ct1 = (c0, . . . , cj) and ct2 = (d0, . . . dk), encrypting plaintext
polynomials m1 and m2, respectively. Suppose WLOG j ≤ k. Then

ctadd = ([c0 + d0]q, . . . , [cj + dj]q, dj+1, . . . , dk)

encrypts [m1 +m2]t. Subtraction works exactly analogously.
In SEAL v2.1 we define the functions Add (or rather family of functions) to mean this

generalization of addition. It is implemented as Evaluator::add. We also provide a function
Sub for subtraction, which works in an analogous way, and is implemented as Evaluator::sub.

4.5 Other Homomorphic Operations

In SEAL v2.1 we provide a function Negate to perform homomorphic negation. This is im-
plemented in the library as Evaluator::negate.

We also provide the functions AddPlain(ct,madd) and MultiplyPlain(ct,mmult) that,
given a ciphertext ct encrypting a plaintext polynomial m, and unencrypted plaintext poly-
nomials madd,mmult, output encryptions of m+madd and m ·mmult, respectively. When one
of the operands in either addition or multiplication does not need to be protected, these op-
erations can be used to hugely improve performance over first encrypting the plaintext and
then performing the normal homomorphic addition or multiplication. We will also see later in
Section 5 that MultiplyPlain incurs much less noise to the ciphertext than normal Multiply,
which will allow the evaluator to perform significantly more MultiplyPlain than Multiply

operations. These functions are implemented in SEAL v2.1 as Evaluator::add_plain and
Evaluator::multiply_plain. Analogously to AddPlain we have implemented a plaintext
subtraction function as Evaluator::sub_plain.

In many situations it is necessary to multiply together several ciphertexts homomorphi-
cally. The naive sequential way of doing this has very poor noise growth properties. Instead,
the user should use a low-depth arithmetic circuit. For homomorphic addition of several values
the exact method for doing so is less important. SEAL v2.1 defines functions MultiplyMany

and AddMany, which either multiply together or add together several ciphertexts in an optimal
way. These are implemented as Evaluator::multiply_many and Evaluator::add_many.

SEAL v2.1 has a faster algorithm for computing the Square of a ciphertext. The difference
is only in computational complexity, and the noise growth behavior is the same as in calling
Evaluator::multiply with a repeated input parameter. Square is implemented as Evaluator
::square.

Exponentiating a ciphertext to a non-zero power should be done using a similar low-depth
arithmetic circuit that MultiplyMany uses. We denote this function by Exponentiate, and
implement it as Evaluator:exponentiate. The implementations of both MultiplyMany and
Exponentiate relinearize the ciphertext down to size 2 after every multiplication. It is the
responsibility of the user to create enough evaluation keys beforehand to ensure that these
operations can be done.

4.6 Key Distribution

In Section 4.3 we already explained how key generation in SEAL v2.1 differs from textbook-
FV. There is another subtle difference, that is also worth pointing out. In textbook-FV the

secret key is a polynomial sampled uniformly from R2, i.e. it is a polynomial with coeffi-
cients in {0, 1}. In SEAL v2.1 we instead sample the key uniformly from R3, i.e. we use
coefficients {−1, 0, 1}.

5 Inherent Noise

In this section we explain the concept of inherent noise, or ciphertext noise. We will explain
how the noise grows in homomorphic operations, presenting practical estimates that are used
by SimulationEvaluator and by the automatic parameter selection module to help the user
determine appropriate optimized parameters for their computation (see Section 7.5). Although
in textbook-FV all ciphertexts have size 2, in SEAL v2.1 we allow ciphertexts of any size
greater than or equal to 2. We give general bounds accordingly.

Definition 1 (Inherent noise). Let ct = (c0, c1, . . . , ck) be a ciphertext encrypting the
message m ∈ Rt. Its inherent noise is the unique polynomial v ∈ R with smallest infinity
norm such that

ct(s) = c0 + c1s+ · · ·+ cks
k = ∆m+ v + aq

for some polynomial a.

We will often refer to both v and its infinity norm ‖v‖ as inherent noise. We will see below
in Section 5.1 that in fact ‖v‖ is what matters the most, and in particular in the comments
in the code ‖v‖ is what inherent noise always refers to. In SEAL v2.1 the quantity ‖v‖ is
output by the function Decryptor::inherent_noise. To instead return the significant bit
count of ‖v‖, use the function Decryptor::inherent_noise_bits.

5.1 Maximal Noise

The main result related to inherent noise is that once it reaches a large enough value the
ciphertext becomes corrupted and impossible to decrypt even with the correct secret key.
The upper bound on the inherent noise depends on both the coefficient modulus q and the
plaintext modulus t.

Lemma 1. The function (or family of functions) Decrypt, as presented in Section 4.1, cor-
rectly decrypts a ciphertext as long as the inherent noise satisfies ‖v‖ < ∆/2.

Proof. Consider a ciphertext ct = (c0, c1, . . . , ck). Its decryption m′ under a secret key s is
defined as

m′ =

[⌊
t

q

[
c0 + c1s+ · · ·+ cks

k
]
q

⌉]
t

.

By definition of inherent noise, c0 + c1s+ · · ·+ cks
k = ∆m+ v (mod q), so

m′ =

[⌊
t(∆m+ v)

q

⌉]
t

=

[⌊
m− rt(q)

q
m+

t

q
v

⌉]
t

,

where we used q = ∆t+rt(q). This means that m′ = m in Rt as long as the terms −rt(q)m/q+
tv/q are removed by the rounding. In other words, we need∥∥∥∥−rt(q)q m+

t

q
v

∥∥∥∥ < 1

2
.

Since ∥∥∥∥−rt(q)q m+
t

q
v

∥∥∥∥ ≤ t

q
· ‖m‖+

t

q
‖v‖ ≤ t2

q
+
t

q
‖v‖ ,

it suffices to require that
t2

q
+
t

q
‖v‖ < 1

2
,

which can be written as

‖v‖ < q

2t
− t =

∆

2
+
rt(q)

2t
− t < ∆

2
.

ut

The noise bound ∆/2 is output by EncryptionParameters::inherent_noise_max. To
instead return the significant bit count of ∆/2, use the function EncryptionParameters::

inherent_noise_bits_max.

5.2 Overview of Noise Growth

We now present an overview of how the user can expect to noise behave in homomorphic
operations in typical applications.

Since the results presented here are probabilistic estimates, it might be possible to con-
struct examples of plaintexts and ciphertexts that yield very different looking results. Never-
theless, the estimates are vastly simpler to read and interpret than exact formulas, and can
be expected to be accurate in most cases.

The noise growth estimates are presented in Table 2. For each operation we describe
the output noise in terms of the noises of the inputs and the encryption parameters (recall
Table 1). For input ciphertexts cti we always denote their respective inherent noises by vi.
When there is a single encrypted input ct we denote its inherent noise by v.

We would like to take this opportunity to point out a few important facts about noise
growth that the user should keep in mind.

1. Every ciphertext, even if it is freshly encrypted, contains a non-zero amount of noise.
2. In FV the noise in a freshly encrypted ciphertext depends only on the degree n of the

polynomial modulus and a bound B on the output of the error distribution χ.
3. Addition and subtraction have small impact on noise. Note that rt(q) < t, and in practice

we almost always have t� ∆/2.
4. Plain multiplication increases the noise by a constant factor that depends on the plaintext

multiplier m. If integer encoders are used, N (the number of nonzero coefficients of m)
and especially ‖m‖ can be small, in which case the increase in noise can be just a few
bits. When PolyCRTBuilder is used the situation is radically different as N ≈ n and
‖m‖ ≈ t, and plain multiplication results in roughly the same kind of noise growth as
normal multiplication.

5. Roughly speaking, multiplication increases the noise by a multiplicative factor of t when
integer encoders are used, and by a factor of nt when PolyCRTBuilder is used. However,
there is an additional multiplicative factor that depends in an exponential way on the
sizes of the ciphertexts. When relinearization is used, the sizes never grow too large and
this factor becomes largely insignificant. However, if relinearization is not used, it can
easily become the dominant factor in the noise of the result. In addition to performance
increases from having smaller ciphertext sizes, this gives another good reason to perform
relinearization.

Operation Input description Estimated output noise

Encrypt Plaintext m ∈ Rt 2B
√

2n/3

Negate Ciphertext ct ‖v‖

Add/Sub Ciphertexts ct1 and ct2 ‖v1‖+ ‖v2‖+ rt(q)

AddPlain/SubPlain Ciphertext ct and plaintext m ‖v‖+ rt(q)

MultiplyPlain Ciphertext ct and plaintext m N‖m‖ (‖v‖+ rt(q)/2)
with N non-zero coefficients

Multiply Ciphertexts ct1 and ct2 of sizes t (‖v1‖+ ‖v2‖+ rt(q))

(with integer encoders) j1 + 1 and j2 + 1 ×
⌈√

2n/3
⌉j1+j2−1

2j1+j2

Multiply Ciphertexts ct1 and ct2 of sizes nt (‖v1‖+ ‖v2‖+ rt(q))

(with PolyCRTBuilder) j1 + 1 and j2 + 1 ×
⌈√

2n/3
⌉j1+j2−1

2j1+j2

Square Ciphertext ct of size j Same as Multiply(ct, ct) but faster

Relinearize Ciphertext ct of size K and target ‖v‖+ (K − L)
√
nB(`+ 1)w

size L such that 2 ≤ L < K

AddMany Ciphertexts ct1, . . . , ctk
∑

i ‖vi‖+ (k − 1)rt(q)

MultiplyMany Ciphertexts ct1, . . . , ctk Apply Multiply in a tree-like manner,
and Relinearize down to size 2 after

every multiplication

Exponentiate Ciphertext ct and exponent k Apply MultiplyMany to k copies of ct

Table 2: Noise estimates for homomorphic operations in SEAL.

6. Relinearization increases the noise only by an additive factor c∆l, where c is a constant
determined by the encryption parameters, and ∆l equals the difference in ciphertext lengths
before and after Relinearization. This should be contrasted with multiplication, which
increases the noise by a multiplicative factor. This means, for example, that after a few
multiplications have been performed so that the noise has reached a size larger than the
additive factor, relinearization no longer has a large impact on noise. Instead, it will only be
beneficial due to the smaller noise increase in subsequent multiplications (see above). On
the other hand, relinearizing after the very first multiplication is typically not an optimal
strategy due to the additive factor being significantly larger than the noise resulting purely
from multiplications. Subsequent multiplications will then build more noise on top of the
(relatively large) additive factor that came from relinearization.

7. The decomposition bit count (recall Table 1) has a significant effect on both performance
(recall Section 4.3) and noise growth in relinearization. Tuning down the decomposition bit
count has a positive impact on noise growth in relinearization, and a negative impact on the
computational cost of relinearization. However, when the entire computation is considered,
it is not obvious at all what an optimal decomposition bit count should be, and at which
points in the computation relinearization should be performed. Optimizing these choices
is a difficult task and an interesting research problem. We have included several examples
in the code to illustrate the situation, and we recommend the user to experiment to get a
good understanding of how relinearization behaves.

6 Encoding

One of the most important aspects in making homomorphic encryption practical and useful
is in using an appropriate encoder for the task at hand. Recall from Section 3 that plaintext
elements in the FV scheme are polynomials in Rt (represented in SEAL as BigPoly objects),
and homomorphic operations on ciphertexts are reflected in the plaintext side as corresponding
(multiplication and addition) operations in the ring Rt. In typical applications of homomorphic
encryption the user would instead want to perform computations on integers (or real numbers),
and encoders are responsible for converting these integer (or real number) inputs to elements
of Rt in an appropriate way.

It is easy to see that encoding is a highly non-trivial task. The rings Z and Rt are very
different (most obviously the set of integers is infinite, whereas Rt is finite), and they are
certainly not isomorphic. However, typically one does not need the power to encrypt any
integer, so we can just as well settle for some finite reasonably large subset of Z and try to
find appropriate maps from that subset into Rt. But again there is a problem, because no
non-trivial subset of Z is closed under additions and multiplications, so we have to settle for
something that does not respect an arbitrary number of homomorphic operations. It is then
the responsibility of the evaluating party to be aware of the type of encoding that is used,
and perform only operations such that the underlying plaintexts throughout the computation
remain possible to decode.

6.1 Scalar Encoder

Perhaps the simplest possible encoder is what we could call the scalar encoder. Given an
integer a, simply encode it as the constant polynomial a ∈ Rt. Obviously we can only encode
integers modulo t in this manner. Decoding amounts to reading the constant coefficient of the
polynomial and interpreting that as an integer. The problem is that as soon as the underlying

plaintext polynomial (constant) wraps around t at any point during the computation, we are
no longer doing integer arithmetic, but rather modulo t arithmetic, and decoding might yield
an unexpected result. This means that t must be chosen to be possibly very large, which
creates problems with the noise growth for two reasons. First, recall that the noise ceiling is
∆/2, where ∆ = bq/tc, which decreases when t increases. Second, recall from Table 2 that the
noise growth in most of the operations, and particularly in multiplication, depends strongly
on t, so increasing t even a little bit can possibly significantly reduce the amount of noise that
is available for homomorphic computations.

One possible way around this is to encrypt the integer twice, using two or more relatively
prime plaintext moduli {ti}. Then if the computation is done separately to each of the encryp-
tions, in the end after decryption the result can be combined using the Chinese Remainder
Theorem to yield an answer modulo

∏
ti. As long as this product is larger than the largest

underlying integer appearing during the computation, the result will be correct as an integer.
The scalar encoder is currently not implemented in SEAL v2.1. Instead, it can be con-

structed as a special case of some of the other encoders by choosing their parameters in a
certain way. In most practical applications the scalar encoder is not a good choice, as it is
extremely wasteful in the sense that the entire huge plaintext polynomial is used to encode
and encrypt only one small integer. The other encoders attempt to make better use of the
plaintext polynomials by either packing more data into one polynomial, or spreading the data
around inside the polynomial to obtain encodings with smaller coefficients.

6.2 Integer Encoder

In SEAL v2.1 the integer encoder is used to encode integers in a much more efficient manner
than what the scalar encoder (Section 6.1) could do. The integer encoder is really a family of
encoders, one for each integer base B ≥ 2. We start by explaining how the integer encoder
works with B = 2, and then comment on the general case, which is an obvious extension.

When B = 2, the idea of the integer encoder is to encode an integer −(2n−1) ≤ a ≤ 2n−1
as follows. First, form the (up to n-bit) binary expansion of |a|, say an−1 . . . a1a0. Then the
binary encoding of a is

IntegerEncode(a,B = 2) = sign(a) ·
(
an−1x

n−1 + . . .+ a1x+ a0
)
.

Remark 3. In SEAL v2.1 we only have an unsigned big integer data type (BigUInt), so we
represent each coefficient of the polynomial as an unsigned integer modulo t. For example,
the −1 coefficients of the polynomial will be stored as the unsigned integers t− 1.

Decoding (IntegerDecode) amounts to evaluating the plaintext polynomial at x = 2. It is
clear that in good conditions (see below) the integer encoder respects integer operations:

IntegerDecode [IntegerEncode(a,B = 2) + IntegerEncode(b, B = 2)] = a+ b ,

IntegerDecode [IntegerEncode(a) · IntegerEncode(b, B = 2)] = ab .

When the integer encoder with B = 2 is used, the norms of the plaintext polynomials are
guaranteed to be bounded by 1 only when no homomorphic operations have been performed.
When two such encodings are added together, the coefficients sum up and can therefore get
bigger. In multiplication this is even more noticeable due to the appearance of cross terms.
In multiplications the polynomial length also grows, but often in practice this is not an issue

due to the large number of coefficients available in the plaintext polynomials. Things will go
wrong as soon as any modular reduction – either modulo the polynomial modulus xn + 1,
or modulo the plaintext modulus t – occurs in the underlying plaintexts at any point during
the computation. If this happens, decoding will yield an incorrect result, but there will be no
other indication that something has gone wrong. It is therefore crucial that the evaluating
party understands the limitations of the integer encoder, and makes sure that the plaintext
underlying the result ciphertext will still be possible to decode correctly.

When B is set to some integer larger than 2, instead of a binary expansion (as was done
in the example above) a base-B expansion is used, where the coefficients are chosen from
the symmetric set [−(B − 1)/2, . . . , (B − 1)/2]. There is a unique such representation with
at most n coefficients for each integer in [−(Bn − 1)/2, (Bn − 1)/2]. Decoding is obviously
performed by evaluating a plaintext polynomial at x = B. Note that with B = 3 the integer
encoder provides encodings with equally small norm as with B = 2, but with a more compact
representation, as it does not waste space in repeating the sign for each non-zero coefficient.
Larger B provide even more compact representations, but at the cost of increased coefficients.
In most common applications taking B = 2 or 3 is a good choice, and there is little difference
between these two.

The integer encoder is significantly better than the scalar encoder, as the coefficients in the
beginning are much smaller than in plaintexts encoded with the scalar encoder, leaving more
room for homomorphic operations before problems with reduction modulo t are encountered.
From a slightly different point of view, the binary encoder allows a smaller t to be used,
resulting in both smaller noise growth in homomorphic operations, and a larger noise ceiling.

The integer encoder is available in SEAL v2.1 through the class IntegerEncoder. Its
constructor will require both the plain_modulus and the base B as parameters. If no base is
given, the default value B = 2 is used.

Binary and balanced encoders In earlier versions of the library the integer encoder was
instead exposed through two classes, the BinaryEncoder and the BalancedEncoder. These
classes still exist, and are used under the hood by IntegerEncoder. In future releases we
might prevent the user from creating them directly, so at this point it is recommended to
start using IntegerEncoder instead.

6.3 Fractional Encoder

There are several ways for encoding rational numbers. The simplest and often most efficient
way is to simply scale all rational numbers to integers, encode them using the integer encoder
described above, and modify any computations to instead work with such scaled integers.
After decryption and decoding the result needs to be scaled down by an appropriate amount.
While efficient, in some cases this technique can be annoying, as it will require one to always
keep track of how each plaintext has been scaled. Here we describe what we call the fractional
encoder. Just like the integer encoder (Section 6.2 above), the fractional encoder is a family
of encoders, parametrized by an integer base B ≥ 2. The function of this base is exactly the
same as in the integer encoder, so since the generalization is obvious, we will only explain how
the fractional encoder works when B = 2.

The easiest way to explain how the fractional encoder (with B = 2) works is through a
simple example. Consider the rational number 5.8125. It has a finite binary expansion

5.875 = 22 + 20 + 2−1 + 2−2 + 2−4 .

First we take the integer part and encode it as usual with the integer encoder, obtaining the
polynomial IntegerEncode(5, B = 2) = x2 + 1. Then we take the fractional part 2−1 + 2−2 +
2−4, add n (recall Table 1) to each exponent, and convert it into a polynomial by changing
the base 2 into the variable x, resulting in xn−1+xn−2+xn−4. Next we flip the signs of each of
the terms, in this case obtaining −xn−1− xn−2− xn−4. For rational numbers r in the interval
[0, 1) with finite binary expansion we denote this encoding by FracEncode(r,B = 2). For any
rational number r with finite binary expansion we set

FracEncode(r,B = 2) = sign(r)·[IntegerEncode(b|r|c, B = 2) + FracEncode({|r|} , B = 2)] ,

where {·} denotes the fractional part. For example,

FracEncode(5.8125, B = 2) = −xn−1 − xn−2 − xn−4 + x2 + 1 .

Decoding works by essentially reversing the steps described above. First, separate the high-
degree part of the plaintext polynomial that describes the fractional part. Next invert the
signs of those terms and shift their exponents by −n. Finally evaluate the entire expression
at x = 2. We denote this operation FracDecode(·, B = 2).

It is not hard to see why this works. As a very simple example, imagine computing 1/2 · 2,
where FracEncode(1/2, B = 2) = −xn−1 and FracEncode(2, B = 2) = x. Then in the ring Rt
we have

FracEncode(1/2, B = 2) · FracEncode(2, B = 2) = −xn = 1 ,

which is exactly what we would expect, as FracDecode(1, B = 2) = 1. For a more complicated
example, consider computing 5.8125 · 2.25. We already computed FracEncode(5.8125, B = 2)
above, and FracEncode(2.25, B = 2) = −xn−2 + x. Then

FracEncode(5.8125, B = 2) · FracEncode(2.25, B = 2)

= (−xn−1 − xn−2 − xn−4 + x2 + 1) · (−xn−2 + x)

= x2n−3 + x2n−4 + x2n−6 − 2xn − xn−1 − xn−2 − xn−3 + x3 + x

= −xn−1 − xn−2 − 2xn−3 − xn−4 − xn−6 + x3 + x+ 2 .

Finally,

FracDecode(−xn−1 − xn−2 − 2xn−3 − xn−4 − xn−6 + x3 + x+ 2, B = 2)

=
[
x3 + x+ 2 + x−1 + x−2 + 2x−3 + x−4 + x−6

]
x=2

= 13.078125 .

There are several important aspects of the fractional encoder that require further clari-
fication. First of all, above we described only how FracEncode(·, B = 2) works for rational
numbers that have finite binary expansion, but many rational numbers do not, in which case
we need to truncate the expansion of the fractional part to some precision, say nf bits (equiv-
alently, high-degree coefficients of the plaintext polynomial). Next, the decoding process needs
to somehow know which coefficients of the plaintext polynomial should be interpreted as be-
longing to the fractional part and which to the integer part. For this purpose we fix a number
ni to denote the number of coefficients reserved for the integer part, and all of the remaining
n−ni coefficients will be interpreted as belonging to the fractional part. Note that nf+ni ≤ n,
and that nf only matters in the encoding process, whereas ni is needed both in encoding (can
only encode integer parts up to ni bits) and in decoding.

Decoding can fail for two reasons. First, if any of the coefficients of the underlying plaintext
polynomials wrap around the plaintext modulus t the result after decoding is likely to be
incorrect, just as in the normal integer encoder (recall Section 6.2). Second, homomorphic
multiplication will cause the fractional parts of the underlying plaintext polynomials to expand
down towards the integer part, and the integer part to expand up towards the fractional part.
If these different parts get mixed up, decoding will fail. Typically the user will want to choose
nf to be as small as possible, as many rational numbers will have dense infinite expansions,
filling up most of the leading nf coefficients. When such polynomials are multiplied, cross
terms cause the coefficients to quickly increase in size, resulting in them getting reduced
modulo t unless t is chosen to be very large.

When B is set to some integer larger than 2, instead of a binary expansion (as was done
in the example above) a base-B expansion is used, where the coefficients are chosen from the
symmetric set [−(B − 1)/2, . . . , (B − 1)/2]. Again, in this case decoding amounts to evaluating
polynomials x = B.

The fractional encoder is available in SEAL v2.1 through the classe FractionalEncoder.
Its constructor will require the plain_modulus, the base B, and positive integers nf and ni
with nf + ni ≤ n as parameters. If no base is given, the default value B = 2 is used.

Binary and balanced fractional encoders In earlier versions of the library the frac-
tional encoder was instead exposed through two classes, the BinaryFractionalEncoder and
the BalancedFractionalEncoder. These classes still exist, and are used under the hood by
FractionalEncoder. In future releases we might prevent the user from creating them directly,
so at this point it is recommended to start using FractionalEncoder instead.

6.4 CRT Batching

The last encoder that we describe is very different from the previous ones, and extremely
powerful. It allows the user to pack n integers modulo t into one plaintext polynomial, and
to operate on those integers in a SIMD (Single Instruction, Multiple Data) manner. This
technique is often called batching in homomorphic encryption literature. For more details and
applications we refer the reader to [6, 25].

Batching only works when the plaintext modulus t is chosen to be a prime number and
congruent to 1 (mod 2n), which we assume to be the case6. In this case the multiplicative
group of integers modulo t contains a subgroup of size 2n, which means that there is an integer
ζ ∈ Zt such that ζ2n = 1 (mod t), and ζm 6= 1 (mod t) for all 0 < m < 2n. Such an element
ζ is called a primitive 2n-th root of unity modulo t. Having a primitive 2n-th root of unity in
Zt is important because then the polynomial modulus xn + 1 factors modulo t as

xn + 1 = (x− ζ)(x− ζ3) . . . (x− ζ2n−1) (mod t) ,

and according to the Chinese Remainder Theorem (CRT) the ring Rt factors as

Rt =
Zt[x]

(xn + 1)
=

Zt[x]∏n−1
i=0 (x− ζ2i+1)

CRT∼=
n−1∏
i=0

Zt[x]

(x− ζ2i+1)
∼=

n−1∏
i=0

Zt[ζ2i+1] ∼=
n−1∏
i=0

Zt .

All of the isomorphisms above are isomorphisms of rings, which means that they respect
both the multiplicative and additive structures on both sides, and allows one to perform n

6 Note that this means t > 2n, which can in some cases turn out to be an annoying limitation.

coefficient-wise additions (resp. multiplications) in integers modulo t (right-hand side) at the
cost of one single addition (resp. multiplication) in Rt (left-hand side). It is easy to describe
explicitly what the isomorphisms are. For simplicity, denote αi = ζ2i+1. In one direction the
isomorphism is given by

Decompose : Rt
∼=−→

n−1∏
i=0

Zt , m(x) 7−→ [m(α0),m(α1), . . . ,m(αn−1)] .

The inverse is slightly tricker to describe, so we omit it here for the sake of simplicity. We define
Compose to be the inverse of Decompose. In SEAL v2.1, these isomorphisms are computed
using a negacylic variant of the Number Theoretic Transform (NTT).

When used correctly, batching can provide an enormous performance improvement over
the other encoders. When using batching for computations on encrypted integers rather than
on integers modulo t, one needs to ensure that the values in the slots never wrap around
t during the computation. Note that this is exactly the same limitation the scalar encoder
has (recall Section 6.1), and could be solved by choosing t to be large enough, which will
unfortunately cause large noise growth and reduce the noise ceiling.

SEAL v2.1 provides all of the batching-related tools in the PolyCRTBuilder class. The
constructor of PolyCRTBuilder takes an instance of EncryptionParameters as argument,
and will throw an exception unless the parameters are appropriate, as was described in the
beginning of this section.

7 Encryption Parameters

Everything in SEAL v2.1 starts with the construction of an instance of a container that holds
the encryption parameters (EncryptionParameters). This will store the parameters xn + 1
(poly_modulus), q (coeff_modulus), t (plain_modulus), σ (noise_standard_deviation),
B (noise_max_deviation), logw (decomposition_bit_count), and a source of randomness
(random_generator). Some of these parameters are optional, e.g. if the user does not specify
σ or B they will be set to default values. If the user does not set the decomposition bit count,
SEAL will assume that no relinearization is going to be performed, and prevents the creation
of any evaluation keys (recall Section 1.2 and Section 4.3). If no randomness source is given,
SEAL will automatically use std::random_device.

Remark 4. The choice of encryption parameters significantly affects the performance, capabil-
ities, and security of the encryption scheme. Some choices of parameters may be insecure, give
poor performance, yield ciphertexts that will not work with any homomorphic operations, or
a combination of all of these.

In this section we will describe the encryption parameters and their impact on performance.
We will discuss security briefly in Section 8. In Section 7.5 we will discuss the automatic
parameter selection tools in SEAL v2.1, which can assist the user in determining (close to)
optimal encryption parameters for certain use-cases.

7.1 Default Values

Unlike in previous versions of SEAL, the constructor of EncryptionParameters sets the values
for σ and B by default to the ones returned by the static functions

ChooserEvaluator::default_noise_standard_deviation()

and

ChooserEvaluator::default_noise_max_deviation() .

Currently these default values are set to 3.19 and 15.95, respectively, but it should be easy
for a user to change them if they desire to.

As we have mentioned several times before, the user no longer needs to set a value for
decomposition_bit_count unless they choose to use relinearization. By default the construc-
tor will set this value to zero, which will prevent the construction of evaluation keys.

SEAL v2.1 contains a list of pairs (n, q) that are returned by the static function

ChooserEvaluator::default_parameter_options() .

The list that is currently used by default is presented in Table 3.

n 1024 2048 4096 8192 16384

q 235 − 214 + 211 + 1 260 − 214 + 1 2116 − 218 + 1 2226 − 226 + 1 2435 − 233 + 1

Table 3: Default pairs (n, q).

7.2 Polynomial Modulus

The polynomial modulus (poly_modulus) should be a polynomial of the form xn + 1, where
n is a power of 2. This is both for security and performance reasons (see Section 8).

Using a larger n allows for a larger q to be used without decreasing the security level,
which in turn increases the noise ceiling and thus allows for larger t to be used, which is
often important for integer encodings to work (recall Section 6). Increasing n will significantly
decrease performance, but on the other hand it will allow for more elements of Zt to be batched
into one plaintext when using PolyCRTBuilder.

7.3 Coefficient Modulus and Plaintext Modulus

Suppose the polynomial modulus is held fixed. Then the choice of the coefficient modulus q
affects two things: the upper bound on the inherent noise that a ciphertext can contain7 (see
Section 5.1), and the security level8 (see Section 8.2 and references therein).

In principle we can take q to be any integer, as long as it is not too large to cause security
problems (see above). However, taking q to be of special form provides huge performance
benefits, as we will now explain. First, if q is of the form 2A − B, where B is an integer of
small absolute value, then modular reduction modulo q can be sped up, yielding overall better
performance.

Next, if 2n|(q−1), SEAL can use the Number Theoretic Transform (NTT) for polynomial
multiplications, resulting in huge performance benefits perhaps most importantly in relin-
earization and encryption. We use David Harvey’s algorithm for NTT as described in [18],
which additionally requires that 4q ≤ β, where β denotes the word size,

β = 264dlog(q)/64e .

7 Bigger q means higher noise bound (good).
8 Bigger q means lower security (bad).

If both requirements are not met, SEAL v2.1 automatically uses slower algorithms.

Third, if t|(q−1) (i.e. rt(q) = 1), then the noise growth properties are improved in certain
homomorphic operations (recall Table 2). In principle, the plaintext modulus t can be any
integer, but choosing t to be a power of 2 makes it very easy to have this last property satisfied.

The default parameters of Table 3 satisfy all of these guidelines. They are prime numbers
of the form 2A − B where B is much smaller than 2A. They are congruent to 1 modulo 2n,
and not too close to the word size boundary. Finally, rt(q) = 1 for t that are reasonably large
powers of 2, for example the default parameters for n = 4096 provide good performance for t
a power of 2 up to 218.

Note that when using batching (recall Section 6.4) it will not be possible to have t be a
power of 2, as t needs to instead be a prime of particular form. In this case the user can try
to choose the entire triple (n, q, t) simultaneously so that t = 1 (mod 2n) and q satisfies as
many of the good properties listed above as possible.

7.4 Encryption Parameter Qualifiers

Instances of the EncryptionParameters class are given as input to the constructors of tools
such as Encryptor and Decryptor. These constructors then inspect the parameters, decide
whether they are valid for use in SEAL, and which optimized algorithms they support.
To make this process cleaner and visible to the user, SEAL v2.1 contains a struct called
EncryptionParameterQualifiers, which is a dumb container for a small set of Boolean flags
that describe critical features of the parameters. Given an instance of EncryptionParameters,
the user can call EncryptionParameters::get_qualifiers to return an instance of the qual-
ifiers struct, and inspect these flags. However, the only way to change the qualifiers is to
change the encryption parameters themselves to support the particular features. Currently
EncryptionParameterQualifiers contains 6 qualifiers, which are described in Table 4.

Qualifier Description

parameters_set true if the encryption parameters are valid for SEAL v2.1, otherwise false

enable_relinearization true if decomposition_bit_count is positive, otherwise false

enable_nussbaumer Describes whether Nussbaumer convolution [10] can be used for polynomial
multiplication. This is true if poly_modulus is of the form xn + 1, where n
is a power of 2, and otherwise false. Note that in SEAL v2.1 this is necessarily
true if parameters_set is true, as we only allow polynomial moduli of this form.

enable_ntt true if NTT can be used for polynomial multiplication [18, 21], otherwise false.
See Section 7.3 above for details.

enable_batching true if batching (PolyCRTBuilder) can be used, otherwise false. See Section 6.4
for details.

enable_ntt_in_multiply Not currently used.

Table 4: Encryption Parameter Qualifiers.

7.5 Automatic Parameter Selection

To assist the user in choosing parameters for a specific computation SEAL v2.1 provides
an automatic parameter selection module. It consists of two parts: a Simulator component
that simulates noise growth in homomorphic operations using the estimates of Table 2, and a
Chooser component, which estimates the growth of the coefficients in the underlying plaintext

polynomials, and uses Simulator to simulate noise growth. Chooser also provides tools for
computing an optimized parameter set once it knows what kind of computation the user
wishes to perform.

Simulator Simulator consists of two components. A Simulation is a model of the inherent
noise ‖v‖ (recall Section 5) in a ciphertext. SimulationEvaluator is a tool that performs all
of the usual homomorphic operations on simulations rather than on ciphertexts, producing
new simulations with noise value computed according to Table 2. Simulator is implemented
in SEAL v2.1 by the Simulation and SimulationEvaluator classes.

Chooser Chooser consists of three components. A ChooserPoly models a plaintext polyno-
mial, which can be thought of as being either encrypted or unencrypted. In particular, it keeps
track of two quantities: the largest coefficient in the plaintext (coefficient bound), and the num-
ber of non-zero coefficients in the plaintext (length bound). It also stores the operation history
of the plaintext, which can involve encryption, and any number of homomorphic operations
with an arbitrary number of other ChooserPoly objects as inputs. ChooserPoly also provides
a tool for estimating the noise that would result when the operations stored in its operation
history are performed, which it does using Simulator, and a tool for testing whether a given
set of encryption parameters can support the computations in its history. ChooserEvalua-
tor is a tool that performs all of the usual homomorphic operations on ChooserPoly objects
rather than on ciphertexts, producing new ChooserPoly objects with coefficient bound and
length bound estimates based on the operation in question, and on the inputs. Furthermore,
ChooserEvaluator contains a tool for finding an optimized parameter set, which we will dis-
cuss below. ChooserEncoder creates a ChooserPoly that models an unencrypted plaintext
(empty operation history), encoded using the integer encoder (recall Section 6.2). ChooserEn-
cryptor converts ChooserPoly objects with empty operation history (modeling unencrypted
plaintexts) into ones with operation history consisting only of encryption. These tools are all
implemented in SEAL v2.1 by the ChooserPoly, ChooserEvaluator, ChooserEncoder, and
ChooserEncryptor classes.

Parameter Selection One of the most important tools in Chooser is the SelectParame-

ters functionality. It takes as input a ChooserPoly, a set ParameterOptions of pairs (n, q),
a value for σ, and a value for B, and attempts to find an optimal pair (nopt, qopt) from Pa-

rameterOptions, together with an optimal value topt, and returns the triple (nopt, qopt, topt),
along with an optimal value for the decomposition bit count if relinearization was used. It also
sets the parameters σ and B (see below). SelectParameters is implemented in SEAL v2.1
by the function ChooserEvaluator::select_parameters.

Recall from Section 7.1 that SEAL v2.1 has an easy-to-access (and easy-to-modify) default
list of pairs (n, q), and values for σ and B. The basic version of the function ChooserEvaluator

::select_parameters uses these, but there is also an overload that lets the user pass their
own values to be used instead. There is also a third kind of overload that takes several
ChooserPoly objects as input and ensures that the parameters returned are large enough to
support the operation histories of each of them.

The way the ChooserEvaluator::select_parameters function works is as follows. First
it looks at the ChooserPoly input(s) it is given, and selects a t just large enough to be sure
that all the computations can be done without reduction modulo t taking place in the plaintext

polynomials9. Next, it loops through each (n, q) pair available in the order they were given,
and runs the ChooserPoly::test_parameters function every time until a set of parameters
is found that gives enough room for the noise.

If the computation involved relinearization, things are a little bit trickier. Whenever a new
pair (n, q) is selected, the decomposition bit count is set to be the smallest possible so that
blogw qc+1 = 2 (recall Table 1). This means that in relinearization the polynomial coefficients
can be split into two base-w components, which offers the best performance at the cost of
higher noise growth, as noise grows in relinearization by an additive factor proportional to w
(recall Table 2). If these parameters fail, the decomposition bit count will be decremented
until decryption is expected to succeed, or the decomposition bit count becomes so small that
blogw qc+1 > 5, in which case the outermost loop moves on to the next (n, q) pair. If eventually
a good parameter set is found, the function populates the instance of EncryptionParameters
given to it, and returns true. Otherwise it returns false. The SEALExamples project that
comes with the code contains a detailed demonstration of using the parameter selection tools.

8 Security of FV

8.1 RLWE

The security of the FV encryption scheme is based on the apparent hardness of the famous
Ring Learning with Errors (RLWE) problem [22]. We give a definition of the decision-RLWE
problem appropriate to the rings that we use.

Definition 2 (Decision-RLWE). Let n be a power of 2. Let R = Z[x]/(xn + 1), and
Rq = Zq[x]/(xn + 1) for some integer q. Let s be a random element in Rq, and let χ be
the distribution on Rq obtained by choosing each coefficient of the polynomial from a discrete
Gaussian distribution over Z. Denote by As,χ denote the distribution obtained by choosing
a← Rq uniformly at random, choosing e← χ, and outputting (a, [a ·s+ e]q). Decision-RLWE
is the problem of distinguishing between the distribution As,χ and the uniform distribution
on R2

q .

It is possible to prove that for certain parameters the decision-RLWE problem is as hard as
solving certain famous lattice problems in the worst case. However, in practice the parameters
that are used are not necessarily in the range where the reduction holds, and the reduction
might be very difficult to perform in any case.

Remark 5. While it is possible to prove security results for certain choices of the polynomial
modulus other than xn + 1 for n a power of 2 (see [22, 13]), these proofs require the error
terms e to be sampled from the distribution χ in a way very different from how SEAL does
so. This is one reason why we only allow polynomial moduli of the form xn + 1 for n a power
of 2.

In practice an attacker will not have unlimited access to the oracle generating samples in
the decision-RLWE problem, but the number of samples available will be limited to d. We call
this the d-sample decision-RLWE problem. It is possible to prove that solving the d-sample
decision-RLWE problem is equally hard as solving the (d−1)-sample decision-RLWE problem
with the secret s instead sampled from the error distribution χ [23]. Furthermore, it is possible

9 This makes sense in the context of the binary and balanced encoders. Currently automatic parameter
selection is only designed to work with these integer encoders.

to argue [17, 15] that the security level remains roughly the same even if s is sampled from
almost any narrow distribution with enough entropy, such as the uniform distribution on R2

or R3, as in SEAL v2.1 (recall Section 4.6).

It is easy to give an informal argument for the security of the FV scheme, assuming the
hardness of decision-RLWE. Namely, the FV public key is indistinguishable from uniform
based on the hardness of 2-sample decision-RLWE (or rather the hardness of the 1-sample
small secret variant described above). Subsequently, an FV encryption is indistinguishable
from uniform based on the 3-sample decision-RLWE (or rather the hardness of the 2-sample
small secret variant described above), and the assumed uniformity of the public key. We refer
the reader to [23] and [15] for further details and discussion.

8.2 Choosing Parameters for Security

Each RLWE sample (as + e, a) ∈ R2
q can be used to extract n Learning with Errors (LWE)

samples [24, 20]. To the best of our knowledge, the most powerful attacks against d-sample
RLWE all work by instead attacking the nd-sample LWE problem, and when estimating the
security of a particular set of RLWE parameters it makes sense to instead focus on estimating
the security of the induced set of LWE parameters.

At the time of writing this, determining the concrete hardness of parametrizations of
(R)LWE is an active area of research (see e.g. [11, 9, 1]) and no standardized (R)LWE param-
eter sets exist. We strongly suggest that the user consults experts in the security of (R)LWE
when choosing parameters for SEAL.

8.3 Circular Security

Recall from Section 3 that in textbook-FV we require an evaluation key, which is essentially
a masking of the secret key raised to the power 2 (or, more generally, to some higher power).
Unfortunately, it is not possible to argue the uniformity of the evaluation key based on the
decision-RLWE assumption. Instead, one can think of it as an encryption of (some power of)
the secret key under the secret key itself, and to argue security one needs to make the extra
assumption that the encryption scheme is secure even when the adversary has access to all
of the evaluation keys which may exist. In [15] this is assumption is noted as a form of weak
circular security.

In SEAL v2.1 we do not perform relinearization by default, and therefore do not require
the generation of evaluation keys, so it is possible to avoid having to use this extra assumption.
However, in many cases using relinearization has massive performance benefits, and – as far
as we are aware – there exist no known practical attacks that would exploit the evaluation
keys.

8.4 Circuit Privacy

The privacy goal of SEAL is to allow the evaluation of arithmetic circuits on encrypted inputs,
without revealing anything about the values of the input wires to the circuits beyond what is
revealed by the output wires. In particular, no attempt is made to keep the arithmetic circuit
itself private.

There are ways in which a semi-honest party can find information about a circuit that was
evaluated on encrypted data simply by looking at the resulting ciphertexts, or – even better
– at resulting ciphertext/plaintext pairs. For example, if no relinearization is used, they can

read the highest power that was computed from the size of the output ciphertext. Whoever
holds the secret key can compute the noise in the ciphertext and deduce information about
the structure of the circuit from that, especially if no relinearization was used.

It is possible to obtain circuit privacy in a couple of ways. One way already described
by Gentry in [16] is to flood the noise by first relinearizing the ciphertext size down to 2,
and then adding an encryption of 0 with noise super-polynomially larger than the old noise.
This will statistically hide the old noise, but seriously restricts the number of homomorphic
operations that can be performed. An alternative to this approach, replacing flooding with
a soak-spin-repeat strategy, is given by Ducas and Stehlé in [14]. This technique restricts the
scheme less, but uses Gentry’s bootstrapping process to repeatedly re-encrypt the ciphertext.
This is unfortunately slow, requires also a significant amount of room for noise, and is not
currently implemented in SEAL. Finally, there are scheme specific circuit privacy techniques
that can in some cases be much more efficient than the two generic method mentioned above.
One such method for the GSW cryptosystem is described in [4].

References

[1] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors. J.
Mathematical Cryptology, 9(3):169–203, 2015.

[2] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela Jäschke, Christian A.
Reuter, and Martin Strand. A guide to fully homomorphic encryption. Cryptology ePrint Archive,
Report 2015/1192, 2015. http://eprint.iacr.org/2015/1192.

[3] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security for a ring-based fully
homomorphic encryption scheme. In Cryptography and Coding, pages 45–64. Springer, 2013.

[4] Florian Bourse, Rafaël Del Pino, Michele Minelli, and Hoeteck Wee. Fhe circuit privacy almost for free.
[5] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In

Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer
Science, pages 868–886. Springer, 2012.

[6] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in lwe-based homomorphic encryption.
In Public-Key Cryptography–PKC 2013, pages 1–13. Springer, 2013.

[7] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
pages 309–325. ACM, 2012.

[8] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) lwe.
SIAM Journal on Computing, 43(2):831–871, 2014.

[9] Johannes A. Buchmann, Niklas Büscher, Florian Göpfert, Stefan Katzenbeisser, Juliane Krämer, Daniele
Micciancio, Sander Siim, Christine van Vredendaal, and Michael Walter. Creating cryptographic chal-
lenges using multi-party computation: The LWE challenge. In Keita Emura, Goichiro Hanaoka, and Rui
Zhang, editors, Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography,
AsiaPKC@AsiaCCS, Xi’an, China, May 30 - June 03, 2016, pages 11–20. ACM, 2016.

[10] Richard Crandall and Carl Pomerance. Prime numbers: a computational perspective, volume 182. Springer
Science & Business Media, 2006.

[11] Eric Crockett and Chris Peikert. Challenges for ring-lwe. Cryptology ePrint Archive, Report 2016/782,
2016. http://eprint.iacr.org/2016/782.

[12] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
Manual for using homomorphic encryption for bioinformatics. Technical report, Microsoft Research, 2015.
http://research.microsoft.com/apps/pubs/default.aspx?id=258435.

[13] Léo Ducas and Alain Durmus. Ring-lwe in polynomial rings. In Marc Fischlin, Johannes A. Buchmann,
and Mark Manulis, editors, Public Key Cryptography - PKC 2012 - 15th International Conference on
Practice and Theory in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings,
volume 7293 of Lecture Notes in Computer Science, pages 34–51. Springer, 2012.

[14] Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part I, volume 9665 of Lecture Notes in Computer Science, pages 294–310. Springer, 2016.

http://eprint.iacr.org/2015/1192
http://eprint.iacr.org/2016/782
http://research.microsoft.com/apps/pubs/default.aspx?id=258435

[15] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology
ePrint Archive, Report 2012/144, 2012. http://eprint.iacr.org/.

[16] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, volume 9, pages 169–178,
2009.

[17] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness of the
learning with errors assumption. 2010.

[18] David Harvey. Faster arithmetic for number-theoretic transforms. Journal of Symbolic Computation,
60:113–119, 2014.

[19] Rachel Player Kim Laine. Simple encrypted arithmetic library - seal (v2.0). Technical report, September
2016.

[20] Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic encryption schemes fv and
yashe. In Progress in Cryptology–AFRICACRYPT 2014, pages 318–335. Springer, 2014.

[21] Patrick Longa and Michael Naehrig. Speeding up the number theoretic transform for faster ideal lattice-
based cryptography. Cryptology ePrint Archive, Report 2016/504, 2016. http://eprint.iacr.org/2016/
504.

[22] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30 - June
3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 1–23. Springer, 2010.

[23] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-lwe cryptography. In An-
nual International Conference on the Theory and Applications of Cryptographic Techniques, pages 35–54.
Springer, 2013.

[24] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N.
Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of Com-
puting, Baltimore, MD, USA, May 22-24, 2005, pages 84–93. ACM, 2005.

[25] Nigel P Smart and Frederik Vercauteren. Fully homomorphic simd operations. Designs, codes and
cryptography, 71(1):57–81, 2014.

http://eprint.iacr.org/
http://eprint.iacr.org/2016/504
http://eprint.iacr.org/2016/504

	Simple Encrypted Arithmetic Library - SEAL v2.1

