Towards MSR-Bing Challenge: Ensemble of Diverse Models for Image Retrieval

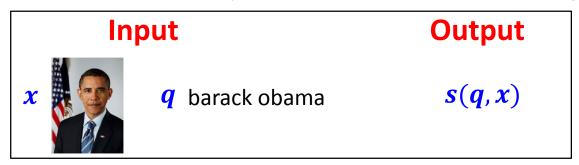
Quan Fan, Hanqiu Xu, Ruowei Wang, Shengsheng Qian, Ting Wang, <u>Jitao Sang</u>, Changsheng Xu

Institute of Automation, Chinese Academy of Sciences
Chinese-Singapore Institute of Digital Media

October 07, 2013

Review of The Task

- Task: Develop a score system to assess the queryimage relevance
 - For each image-query pair, output a floating score indicating how effective the query is used to describe the image.



Evaluation

- For one specific query q, image rank list is generated by sorting the relevance scores $s(q,\cdot)$;
- Ave. DCG@25 over all test queries is employed as the final evaluation metric.

Data Set

Training Set:

image ID <tab> query <tab> click count

fall :113;fall pictures :85;fall leaves :48;fall

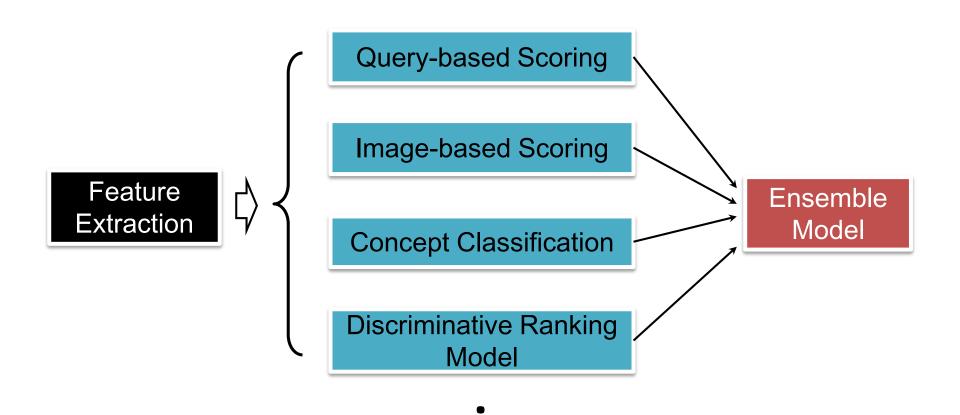
Development Set:

query <tab> image ID <tab> judgment (Excellent/Good/Bad)

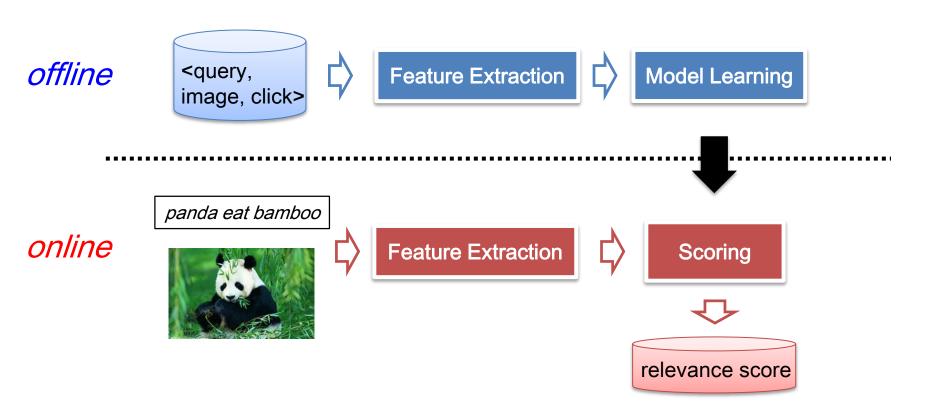
"katrina darling" img1504 Excellent

"katrina darling" img2817 Bad

Our Solution



System Illustration



Feature Extraction

- Query Features
 - BoW representation: $q = (q_1, ..., q_T) \in \mathbb{R}^T$, T = 100,000;
 - Feature value: word occurrence
- Image Features (d = 22,312)
 - Local Features
 - > HOG+LLC+SPM
 - > LBP
 - Global Features
 - > Color moment
 - ➤ Edge histogram
 - ➤ Wavelet texture feature
 - ➤ GIST feature

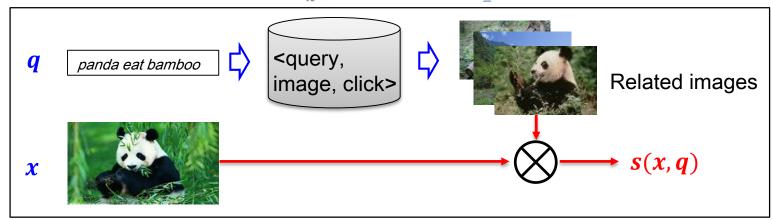
#1 Query-based Scoring

Motivation

Transfer to measure image-image visual similarity.

- Retrieve the related image set X by issuing the test query q into the training set;
- Calculate query-image relevance by aggregating the visual similarities between test image x and the query-related images.

$$s(x,q) = \frac{1}{|X|} \sum_{x_k \in X} K_{\sigma}(x - x_k), K_{\sigma}(x - x_k)$$



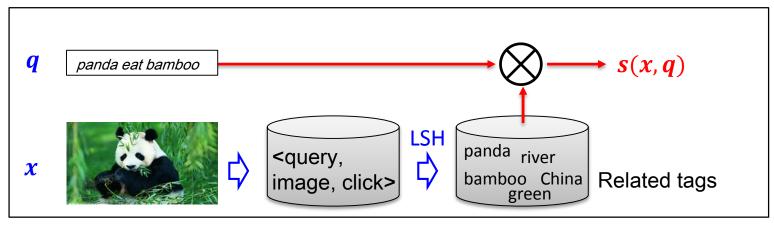
#2 Image-based Scoring

Motivation

Transfer to measure query-tag textual similarity.

- Retrieve the related tag set H by issuing the test query x into the training set via locality sensitive hashing (LSH);
- Calculate query-image relevance by aggregating the textual similarities between test query q and the image-related tags.

$$s(x,q) = \sum_{(x_k,q_k)\in(X,Q)} e^{-l_k} R_k$$



#3 Concept Classification

Motivation

- Transfer to an image classification problem;
- Classification confidence as query-image relevance.

- Concept set
 - ➤ Concept refers to a salient term or phrase
 - ➤ Construct 249,527 concept vocabulary from training queries;
 - Using OpenNLP toolbox.

Table 2: The statistics of our extracted concepts

#Term	132,416	#Name	30,962
#Chunk	78,860	#Location	5,289
#Query	2,000		

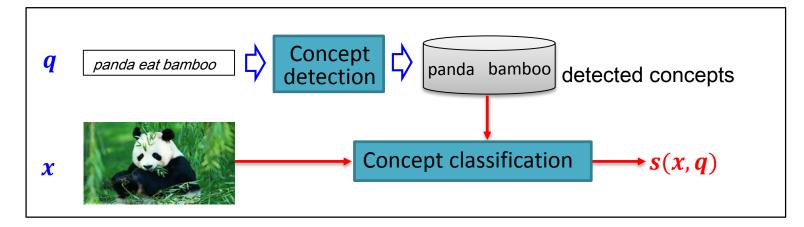
#3 Concept Classification

Solution

- Concept classifier training
 - ➤ Large-margin classifier (SVM, boosting, etc.);
 - ➤ Positive v.s. Negative sample collection.

Test

- Concept detection from test query;
- Calculate the classification confidences of the test image to each detected concept;
- > Sum. or Ave. fusion of confidences as the final relevance score.



#4 Discriminative Ranking

Motivation

 Learn a discriminative model that both reserves ranked relationship in the training set and boosts ranking performance on new data.

Solution

- Based on model from [1].
- Learn a mapping function f_{θ} from image space to text space:

$$s(x,q) = q \bullet f_{\theta}(x)$$

 f is optimized towards minimizing the supervised loss for image-query ranking in the training set:

$$\min_{\theta} \sum_{i=1}^{N^{+}} \sum_{j=1}^{N^{-}} \max(0, 1 - s(x_i, q) + s(x_j, q)) + \frac{\lambda}{2} \|\theta\|^{2}$$

Generalization capability is guaranteed by SVM-alike formulation.

Ensemble Model

Ranking SVM-based ensemble

- Ensemble on score level
- Supervised learning to obtain optimal fusion weight on the development set.

Ensemble schemes

- Two Model Fusion
 - Concept Classification + Discriminative Ranking
- All Model Fusion
 - ➤ Image-based Scoring
 - Query-based Scoring
 - Concept Classification
 - Discriminative Ranking

Evaluation Results

Table 4: Performance of the individual models and ensemble models on the test set

Model	Public Leaderboard DCG@25	
Concept Classification	0.4937	
Query-based Scoring	-	
Image-based Scoring	-	
Discriminative Ranking Model	0.4962	
Two Models Fusion	0.5017	
Ensemble of All Models	0.5033	

Discussion

- What's the most difficult part in this challenge?
 - Textual query complexity (noise, multiple words, etc.).
- What did you spend most of your time on?
 - Implement and compare between different models.
- How did you handle system scalability?
 - Model-based && preprocessing.
- What would you do if you do it again?
 - Explicitly analyze the word relations within test query.
- What would you do if the data size increases to 40 M?
 - Most of the examined models are expected to scale well.
- What else can we do with this dataset?
 - If extended by the user dimension, tasks of personalized image retrieval is enabled.

Multimedia Computing group http://nlpr-web.ia.ac.cn/mmc/ National Lab of Pattern Recognition Institute of Automation, Chinese Academy of Sciences



Q & A?

#5 Matrix Factorization-based Scoring

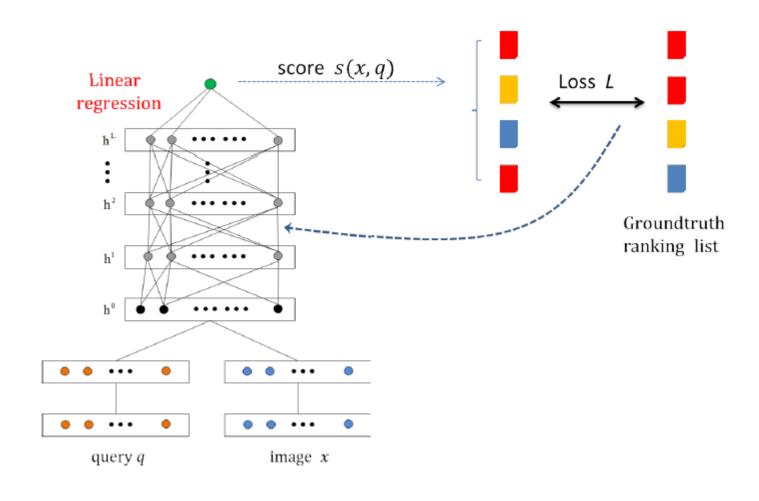
Motivation

- Assumption: similar images are relevant to similar queries;
- Transfer to a recommendation problem.

- Analogous to collaborative filtering
 - ➤ Image-query relevance as the confidence of recommending the image to the query
- Factorization Machine (FM [2]) model

$$s(x,q) = w_0 + \sum_{j=1}^{A} w_j \alpha_j + \sum_{j=1}^{A} \sum_{k=j+1}^{A} \langle p_j, p_k \rangle \beta_j \beta_k$$

#6 Multimodal Deep Learning



Results on Development Set

Model	Development set
Concept Classification	0.6955
Query-based Scoring	0.6759
Image-based Scoring S1	0.6794
Image-based Scoring S2	0.6815
Image-based Scoring S3	0.6802
Image-query-based Scoring	0.6785
Multimodal Deep Learning	0.6842
Matrix Factorization	0.6732
Discriminative Ranking Model	0.6976