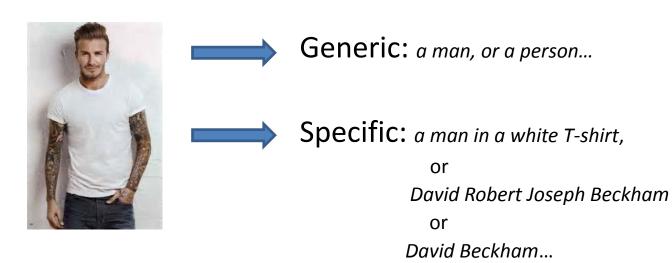
France Telecom Orange Labs (Beijing) AT MSR-BING CHALLENGE ON IMAGE RETRIEVAL 2013

Lezi Wang & Shusheng Cen wanglezi@bupt.edu.cn

Build a system that can recognize everything

- -Generic **VS** Specific information
- -Both are included in the Challenge



Build a system that can recognize everything

Given a **limited** set of data, predict a reasonable order based on the relevance.

I have seen following images which are relevant to "drones". And I will predict the relevance score based on them.

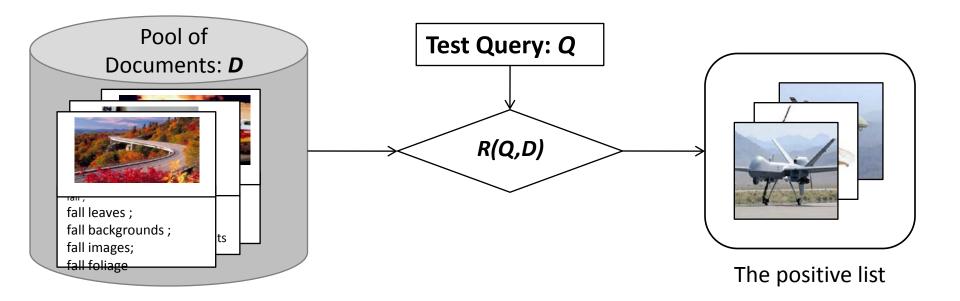
- Generate the positive list
- Compute visual similarity

Generate positive list: Text Search

Generate documents database

- Remove "Stop Word", Non-English logs, 23M query logs, 1M images, ~20 query terms per document on average
- Word stemming
- Query terms concatenation assign a confidence to each query $Q_i \in D$: $Confi(D,Q_i) = \frac{C_i}{\sum_{m} C_m}$

Image ID	Query Term	Click
1	border colli golden retriev mix	4
1	golden retriev mix dog	3
1	border colli golden retriev mix puppi	2
1	chow chow mix	2
1	chow mix	2



The R(Q,D) is defined as:

$$R(Q,D) = \sigma \sum_{j \in D} S(Q,Q_j) Confi(D,Q_j) \text{ where } Q_j \in D$$

 $S(Q,Q_j)$ indicates the word overlap between two queries; $\sigma \propto click \ count \ of \ D;$

 The open source library Lucene¹ is used: index one query term over 23M logs < 1s

Compute Visual Similarity: Features

Three types of features are used to describe the images:

- GIST [M. Douze, H. Jegou, et.al,2009]
- LBP-RGB Histogram(LRH) [G. Chechik, V. Sharma, et.al, 2009]
- Color-Sift(CSIFT) [G. J. Burghouts & J. M. Geusebroek, 2009] + Bag of Word Model (AKM):
 - Book Size varies in 1k,10k,1M

Three runs submitted for evaluation

Primary run

"bootLearn": Cluster-based Query-Image Relevance Assessment

Additional Runs

"fast_v1" and "learn_RF": no clusters, faster than primary run

Three runs submitted for evaluation

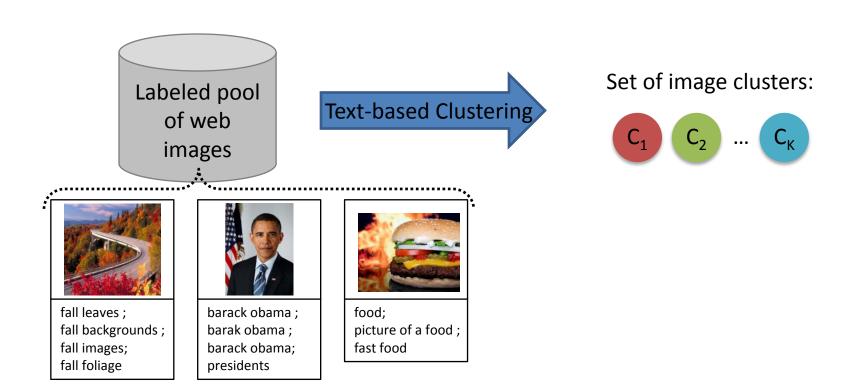
Primary run

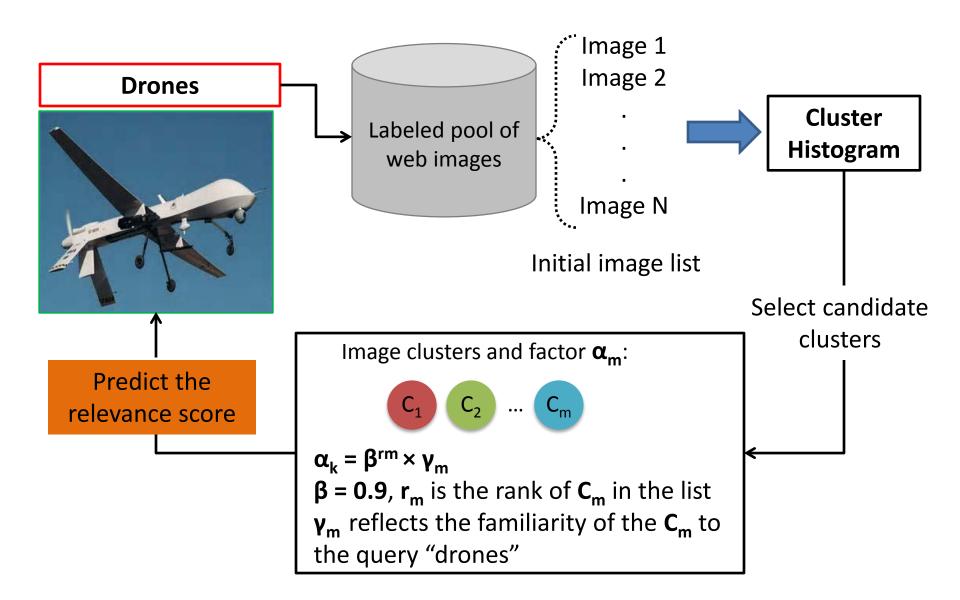
"bootLearn": Cluster-based Query-Image Relevance Assessment

Additional Runs

"fast_v1" and "learn_RF": no clusters, faster than primary run

- 1M images, ~10K image categories, ~200k isolated images
- A cluster can be seen as an expert judging the relevance on a query-image pair





M Image clusters:

Re
$$l(Q, I) = \sum_{m} \alpha_{m} \cdot S(I, C_{m})$$

- $S(I, C_m)$ is the average of visual similarities between I and top-N images in C_m ; N = 5 experimentally
- Weighted visual similarity is computed between image I_i and I_j [T.Deselaers & V. Ferrari,2011]

$$S_w(x_i, x_j) = \sum_d w_d(x_i^d, x_j^d)$$

Generate positive image pairs (x_m, x_n) and negative pairs (x_k, x_l)
positive: <excellent, excellent>, <excellent, good>, <pairs in same category>

$$S_w(x_k, x_l) \le b - 1 < b + 1 \le S_w(x_m, x_n)$$

$$y_n(w^T X_n - b) \ge 1 \ \forall n = (i, j)$$

$$\min_{w,\xi} \frac{1}{2} ||w||^2 + C \sum_n \xi_n$$

s.t.
$$y_n(w^T X_n - b) \ge 1 - \xi_n \ \forall n = (i, j)$$

 ~80K query-image pairs in DEV dataset, 1000 different query terms

Method	DCG@25 (DEV)	Time Cost (one pair)
Random	0.471	_
Direct Gist	0.501	2s
weighted Gist	0.512	3s
Direct LRH	0.474	2s
weighted LRH	0.489	2s
CSIFT Booksize = 1k	0.472	5s
CSIFT Booksize = 10k	0.497	6s
CSIFT Booksize = 1M	0. 529	7s

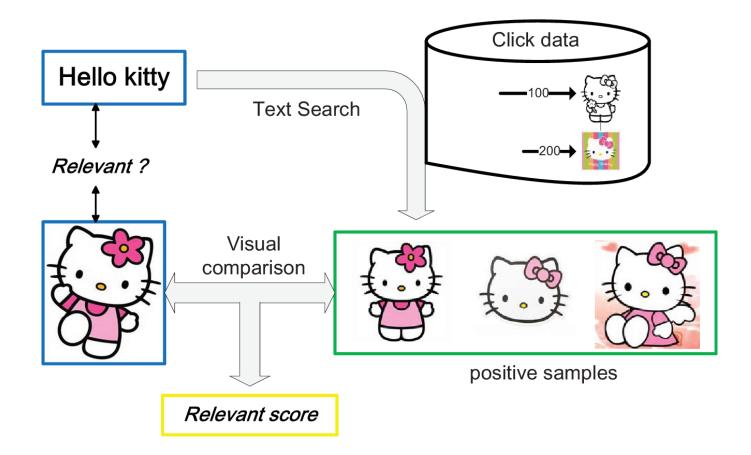
Three runs submitted for evaluation

Primary run

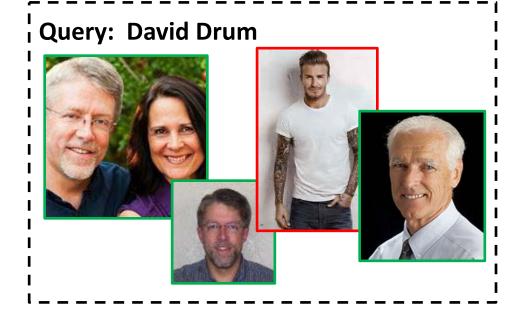
"bootLearn": Cluster-based Query-Image Relevance Assessment

Additional Runs

"fast_v1" and "learn_RF": no clusters, faster than primary run



I have not seen any image labeled as "David Drum"; HOW TO MEASURE THE RELEVANCE?



???

I have not seen any image labeled as "David Drones"; HOW TO MEASURE THE

A little trick:

all the previous test data will be added into positive list (List Supplementary)

Query: David Drum

Runs summary & Performance

Primary run

"bootLearn": Document Clustering + Text Search + Clusters Mapping + List Supplementary + CSIFT + 1M BOW

Additional Runs:

```
"fast_v1": Text Search + Direct Gist
```

"learn_RF": Text Search + Direct Gist + List Supplementary

Runs summary & Performance

 DEV and EVA dataset are very similar in terms of the data size and content; EVA set contains 77406 query-image pairs

Run	DCG@25 on develop set	DCG@25 on test set
fast vl	0. 478	0. 480
learn RF	0. 501	0. 516
BoostLearn	0. 529	0. 531