

Sphere: Multi-Touch Interactions on a Spherical Display

Hrvoje Benko
1
, Andrew D. Wilson

1
, and Ravin Balakrishnan

1,2

1
Microsoft Research

One Microsoft Way, Redmond, WA, USA

{benko | awilson}@microsoft.com

2
Department of Computer Science

University of Toronto, Toronto, ON, Canada

ravin@dgp.toronto.edu

ABSTRACT

Sphere is a multi-user, multi-touch-sensitive spherical dis-

play in which an infrared camera used for touch sensing

shares the same optical path with the projector used for the

display. This novel configuration permits: (1) the enclosure

of both the projection and the sensing mechanism in the

base of the device, and (2) easy 360-degree access for mul-

tiple users, with a high degree of interactivity without sha-

dowing or occlusion. In addition to the hardware and soft-

ware solution, we present a set of multi-touch interaction

techniques and interface concepts that facilitate collabora-

tive interactions around Sphere. We designed four spherical

application concepts and report on several important obser-

vations of collaborative activity from our initial Sphere

installation in three high-traffic locations.

ACM Classification: H.5.2 [Information interfaces and

presentation]: User Interfaces.

– Input devices and strate-

gies; Graphical user interfaces.

General terms: Design, Human Factors

Keywords: Spherical display, multi-touch, surface compu-

ting, collaboration, single-display groupware.

INTRODUCTION

Spherical displays offer an unobstructed 360° field of view

to all users, enabling them to explore different perspectives

of the displayed data by physically moving around the dis-

play. Viewers can use the spherical nature of the display,

their physical body position and orientation, and additional

cues from the surrounding environment to aid them in spa-

tially finding and understanding data displayed on the

spherical surface. Thus, it is likely that the unique characte-

ristics of the spherical form factor could afford interesting

usage scenarios and interaction challenges that go beyond

what is possible with prevalent flat displays.

While several commercially available spherical displays

exist today [13, 17, 18], such displays are not directly inter-

active and tend to be used as output-only devices. Any

interactivity is usually provided through an auxiliary device

such as a trackball or an additional flat touchscreen.

In this paper, we present an implementation of a novel,

multi-touch-sensitive, spherical display prototype called

Sphere (Figure 1). We use Sphere to explore the interactive

and collaborative possibilities of spherical interfaces

through the development of several concept applications.

Our work makes the following three contributions:

First, we outline and discuss the unique benefits of spheri-

cal displays in comparison to flat displays. While the chal-

lenges of designing applications and interactions are argua-

bly greater for a spherical than for a flat surface, applica-

tions can be designed that exploit the unique characteristics

of spherical displays to create interesting user experience.

Second, we describe hardware and software components

needed to facilitate multi-touch sensing on a spherical dis-

play. Sphere uses a commercially available Magic Planet

display [13] as its core, augmented by our custom touch-

sensing hardware. We also discuss the projections needed

to pre-distort data for display on a spherical surface.

Third, we present a set of direct touch interaction tech-

niques – including dragging, scaling, rotating, and flicking

of objects – that permit interaction and collaboration

around Sphere. We also contribute gestural interactions and

user interface concepts that account for the spherical nature

of the interface. While general in nature, these interactions

were developed within the context of four simple prototype

application concepts that help us explore Sphere’s interac-

tive capabilities, including a picture and video browser, an

omni-directional data viewer, a paint application, and a

“pong” style game application.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

UIST’08, October 19–22, 2008, Monterey, California, USA.

Copyright 2008 ACM 978-1-59593-975-3/08/10...$5.00.

Figure 1: Scaling a picture on Sphere, a multi-user,
multi-touch spherical display prototype built on top
of a Magic Planet display.

RELATED WORK

Although several research prototypes of interactive spheri-

cal and hemispherical displays have been recently pre-

sented, none are able to sense and track multiple touch

points on their curved surfaces.

Kettner et al. [10] explored interactions with spherical data

projected on a spherical surface. Their ViBall display re-

quired multiple external projectors and was not directly

touch-sensitive, but was able to physically rotate in place,

making it behave as a large trackball. This physical-

rotation-only sensing was well suited for the spherical data

Kettner et al. experimented with (e.g., Earth globe images),

but did not allow for direct position sensing of multiple

touch-points on the spherical surface. A similar physical-

rotation-only sensing approach was used in the Globe4D

hemispherical display [2]. Unlike the rotation sensing of

ViBall and Globe4D, Marchese and Rose [14] used several

ultrasonic distance sensors to allow for hand-based interac-

tions away from the display surface. In their system, each

sensor independently controlled two rotation axes and one

zoom axis.

In contrast to spherical displays that present data on their

curved surfaces (a category to which Sphere belongs),

spherical volumetric displays have been used to visualize

and interact with 3D data within the display. Grossman and

colleagues performed several interaction studies on a spher-

ical 3D volumetric display from Actuality Systems, Inc.

[7,8]. They found the two most noticeable interaction diffi-

culties resulted from an inability to: (1) display anything on

the volumetric display’s surface, and (2) physically reach

into the display. To alleviate these problems, Grossman et

al. created a set of interactions based on modified ray-

casting selection from a distance, and used an external mo-

tion tracking system to allow gestural interactions with the

3D data.

While incapable of displaying either spherical or volume-

tric data, the i-ball2 display [24] creates the illusion of pre-

senting data within a transparent sphere. The i-ball2 system

can support up to two users, but only by using two inde-

pendent display systems. Chan et al. [3] designed a system

to track hand gestures above i-ball2. They used computer-

vision techniques to track the user’s hands and pressure

sensors at the base of the ball to detect the user’s touches.

In contrast to our work, Chan et al. do not support spherical

interactions or projections on the sphere itself, but rather

display data on a regular planar display and interact with it

using gestures over a transparent sphere. The glass sphere

in i-ball2 is only used to create the illusion of looking at

something inside a sphere.

There also exist numerous planetarium-style immersive

displays where the user is located within a hemispherical

display that is used to create a completely immersive expe-

rience. A complete discussion of these displays and various

other immersive display technologies is beyond the scope

of this paper, but we refer the reader to [1] for further in-

formation. Furthermore, while all the spherical displays

currently available rely on a projection mechanism for dis-

play, in the future, the availability of flexible displays [4]

should make various curved displays more common. Even

with different implementations of spherical displays, our

interaction principles should remain relevant.

From an interaction perspective, our work primarily ex-

tends the surface computing research in multi-user and

multi-touch interactions (e.g., [5, 9, 15, 19, 25, 26, 27]).

Our multi-touch-sensing technique builds on the computer-

vision finger-tracking solutions developed by many surface

computing prototypes (e.g., HoloWall [15], TouchLight

[25], PlayAnywhere [26], and FTIR [9]). In all of these

solutions, touch-sensing is performed using infra-red light

while projection is done in the visible portion of the light

spectrum. This light separation ensures that sensing is not

disturbed by the visually visible projected data.

The basic unit of interaction on Sphere is a rotation (qua-

ternion), rather than the translation (vector) common to

most flat interactive surfaces. Our interactions are based on

Shoemake’s work on quaternion-based rotation principles

[22] and the ArcBall controller [23].

Research exploring how multiple people collaborate around

an interactive tabletop [11, 16, 21] is also highly relevant,

as we demonstrate that spherical displays may alleviate

some data orientation difficulties commonly associated

with tabletop collaboration. Shen et al’s. DiamondSpin

toolkit [21] enabled arbitrary orientation of all displayed

user interface elements to accommodate various user posi-

tions around a tabletop. We extend this concept by auto-

matically orienting objects around Sphere to simplify col-

laboration. We also show how the territoriality concept of

Scott et al. [20] applies to spherical displays.

THE DESIGN SPACE OF SPHERICAL DISPLAYS

Most current spherical applications primarily focus on out-

put-only presentations of global data (e.g., weather pat-

terns) or simple marketing applications (e.g., spinning lo-

gos or animations). These applications exploit the omni-

directional viewing capability of spherical displays, and

benefit from their novelty. In contrast, enabling interactivi-

ty on spherical displays makes direct manipulation of data

and new applications possible. We believe that in order to

create compelling interactive applications for spherical

displays, it is important to investigate and understand their

unique characteristics. While the following analysis focuses

on Sphere, it also applies more generally to spherical and

hemispherical displays.

Unique Properties

Non-visible Hemisphere: The diffuse nature of the spherical

surface makes it impossible for users to see inside the dis-

play (unlike true 3D volumetric displays [7]) and ensures

that each user, at any given time, can see at most one half

(one hemisphere) of the display. While not being able to

see the entire display simultaneously may be a disadvan-

tage for some applications, we believe that in many scena-

rios this presents a unique benefit. For example, multiple

people can manipulate data on the same display without

disturbing the other users.

No Master User Position or Orientation: In contrast to hori-

zontal tabletop displays for which orientation of displayed

content is often a difficult problem [11, 16, 21], spherical

displays do not have a “master user” position. In many

ways, spherical displays offer an egalitarian user expe-

rience, with each viewer around the display possessing an

equally compelling perspective. In addition, the orientation

of displayed content can be easily adjusted with respect to

the prominent physical features of the display, such as the

top and bottom poles.

Visible Content Changes with Position and Height: In con-

trast to flat vertical displays where multiple users share a

similar perspective, spherical displays offer each viewer a

unique perspective determined by each viewer’s position

around the display, their height, and the height of the dis-

play itself. Even small changes in head position may reveal

new content or hide previously visible content.

Smooth Transition Between Vertical and Horizontal Surfac-

es: A spherical display can be thought of as a continuously

varying surface that combines the properties of both vertic-

al and horizontal surfaces. The top of the display can be

considered a shared, almost horizontal, “flat” zone, while

the sides of the sphere can be thought of as approximating

multiple vertical displays. While this is also true of a cubo-

id or a cylindrical display, spherical displays offer conti-

nuously smooth transitions between all such areas. Another

way to consider this property is to think about spherical

displays as continuously changing in depth and orientation

with respect to the user. This also means that for any user’s

perspective, the best flat surface approximation is the tan-

gential plane at the point closest to the position of the us-

er’s eyes.

Pseudo-Privacy: Viewers collaborating around a spherical

display have a general sense of which portions of the dis-

play are visible to others. Although collaborators are os-

tensibly free to change position and peek at other portions

of the display, such movements are obvious to everyone

involved. Consequently, participants can rely on standard

social cues to ensure “pseudo privacy” for their actions or

content. While spherical displays may not be appropriate

for viewing truly confidential data, certain applications,

such as games, could exploit this ability to make some ac-

tions invisible to others simply by manipulating their loca-

tion.

Borderless but Finite Display: Spherical displays present a

difficult design challenge as they usually require a user

interface to be thought of as a continuous surface without

borders. With standard flat displays, the content can often

stretch beyond the borders of the display, i.e., the display

can be thought of as a window into the larger digital world.

But for a spherical display, such “off-screen space” usually

does not exist; rather, any data moved far enough in one

direction will eventually make it full circle around the dis-

play. Even when borders are physically present, such as at

the base of a spherical display, users tend to mentally

perceive this part of the display simply as a hidden portion

of a continuous spherical surface.

Natural Orientation Landmarks: Relatively few physical

cues exist on the surface of a spherical display. Our infor-

mal observations reveal that most people tend to perceive

the top (“north pole”) as the strongest natural landmark,

followed by the equator and the bottom (although the bot-

tom of Sphere is not visible). In addition to these landmarks

on the display itself, it is plausible that people can use

landmarks in the surrounding environment to help them

navigate spherical displays.

SYSTEM HARDWARE AND SOFTWARE

Hardware Implementation

Sphere is based on the Magic Planet display from Global

Imagination, Inc [13]. Magic Planet spherical displays use a

projector and a wide-angle lens to project imagery from the

bottom of the device onto a spherical surface. They are

available in a variety of sizes ranging in diameter between

16 inches and 6 feet. The spherical surface of Magic Planet

displays is an empty plastic ball coated with a diffuse ma-

terial that serves as a passive curved projector screen. The

bottom of the spherical surface is reserved for the lens and

mounting bracket, leaving the displayable portion of the

sphere at 290° vertically and 360° horizontally. The quality

of the projected image depends on the size of the spherical

surface; the brightness, contrast, and resolution of the pro-

jector; and the amount of ambient light in the surrounding

environment.

Our multi-touch-sensitive Sphere is built on a 34” high

podium version of Magic Planet. We experimented with

spherical surfaces of 16” and 24” diameter (Figure 2). We

use a high-resolution DLP projector (Projection Design F20

sx+, 1400x1050 pixels). Only the central circular portion of

the projected image is actually visible on the surface, which

effectively reduces the useful resolution to a circle with

diameter of 1050 pixels, or approximately 866,000 pixels.

To enable touch-sensing on the spherical surface through

the same optical axis as the projection on the surface, we

added: an infra-red (IR) sensitive camera, an IR-pass filter

for the camera, an IR-cut filter for the projector, an IR il-

lumination ring, and a cold mirror. The physical layout of

these components is illustrated in Figure 3.

Figure 2: Two sizes of spherical surfaces used in
our Sphere prototype: (a) a 16”-diameter ball show-
ing a photo-browsing application, and (b) a 24” -
diameter ball showing an omni-directional panoram-
ic video.

Touch-sensing is performed by an IR camera (Firefly MV

camera by Point Grey Research with an IR-pass filter) that

looks through the same wide-angle lens as the projector.

This camera is able to image the entire displayable portion

of the spherical surface. To ensure that sensing is not dis-

turbed by currently visible projected data, we perform

touch-sensing in the IR portion of the light spectrum, while

projection is in the visible spectrum. This approach has

previously been used in many camera-based sensing proto-

types (e.g., [9, 12, 24, 26]), but not in spherical display

applications. We place an IR-cut filter in front of the pro-

jector to ensure that the projector emits only visible light

which cannot be seen by the IR camera.

The IR light used for sensing comes from a custom ring of

72 wide-angle, IR-light-emitting diodes (LEDs). This ring

fits around the wide-angle lens at the base of the sphere

(Figure 3). The wavelength of light emitted by the LEDs

(880nm) is matched by the IR-pass filter on the camera.

Particular care was taken in designing this illumination

source to ensure that it provides uniform illumination in-

side the sphere, but is not directly visible to the camera.

To combine the optical axis of the camera and the projector

through a single lens, we use a cold mirror (an optical com-

ponent that reflects visible light and transmits IR light).

Figure 4 shows the difference in the optical paths for pro-

jection and sensing. Projected light hits the diffuse surface

and is scattered into the eyes of observers; user fingers

touching the surface reflect IR light back into the lens to be

captured by the camera.

Touch-Sensing Software

In order to track multiple contacts on the surface, the soft-

ware takes a raw camera image of the entire displayable

portion of Sphere, normalizes it, binarizes it, and then finds

and tracks connected components in the binarized image

(Figure 5).

Any finger or object that touches the surface reflects IR

light, and therefore appears brighter than its surroundings

in the raw camera image. However, even with careful de-

sign, illumination is not completely uniform at different

positions on the spherical surface, resulting in contacts on

the top of the sphere (the center of the tracked image) ap-

pearing significantly brighter than contacts close to the base

(as can be seen in Figure 5a). A normalization step ac-

counts for these varying levels of illumination by compu-

ting an image where all pixel values are normalized with

respect to the minimum and maximum brightness observed

at that location. The normalization procedure requires that

during initial calibration, we capture a minimum brightness

image (i.e., an image of an empty surface), and a maximum

brightness image (i.e., an image of a completely covered

surface).

Figure 3: Schematic drawing of Sphere’s hardware
components that enable multi-touch sensing
through the same optical axis as the projection on
the spherical surface. The inset picture shows the
IR illumination ring consisting of 72 wide-angle
LEDs fitted around the wide-angle lens.

Figure 4: Comparison of optical paths in Sphere
taken by: (a) the projection light path (visible), and
(b) the tracking light path (IR).

Figure 5: Different stages of our touch-sensing
software: (a) raw image of two hands touching
Sphere’s surface, (b) normalized image, (c) bina-
rized image, and (d) labeled binarized image with

two tracked and connected components.

Our tracking software is written as a standalone C++ li-

brary and can be used by applications to receive touch up-

dates. The tracking library runs at approximately 30 frames

per second with a camera resolution of 640x480 pixels. As

for projection, the effective tracking area is constrained to

the circle in the image that represents the view through the

wide-angle lens a circle of approximately 400 pixels in

diameter seen in Figure 5a.

Sensing and Projection Distortions

The wide-angle lens introduces significant distortions that

need to be accounted for in both sensing and projection.

The sensing camera is imaging a flat radial image (Figure

5) that is subsequently mapped onto a spherical surface to

report touch contacts in a 3D Cartesian coordinate system.

The projection of data onto the spherical surface requires

the use of the inverse mapping, i.e., the data in 3D Carte-

sian coordinates need to be flattened into a flat radial image

for the projector (Figure 6a). This means that displayed

objects need to be pre-distorted (flattened) in order to ap-

pear undistorted when projected (Figure 6d).

The mapping depends on the physical size of the spherical

ball, as the center maps to the top of the sphere and the

distance from the center corresponds to the particular

height (latitude) on the sphere (Figure 6c). The mapping is

determined once during a separate calibration step and can

be saved and reused later for all surfaces of the same size.

For non-interactive applications, the distortion of data

could be pre-computed off-line and simply replayed when

desired. In fact, most existing spherical applications use

this approach. However, user interaction with displayed

content requires that the system support real-time computa-

tion of distortions. To achieve this, we wrote a custom ver-

tex shader to compute the position of each vertex in a radial

image at every frame. In our approach, the quality of the

distorted image depends greatly on the number of vertices

the object possesses; therefore, we highly tessellate each

displayed object (Figure 6b).

The distortion requirement makes it impossible to author

applications for Sphere using standard graphical user inter-

face toolkits, as these were designed primarily for flat, two-

dimensional interfaces. All of our current applications are

written in C# using Microsoft’s XNA 2.0 framework and

use our custom vertex shader to handle distortions. We run

these applications on a PC with a 2.67 GHz Intel Core2

processor, and NVIDIA GeForce 8600 GT graphics card.

Data Coordinate Systems

Although it is possible to create content for Sphere in the

2D coordinate system of the projected radial disk image,

the distortions described in the previous section make this

approach challenging. However, this works well for setting

the entire background to a texture in which distortions are

not clearly noticeable. For example, the background image

of our circular menu (Figure 11) is authored this way.

Alternatively, authoring content in a cylindrical projection

is relatively straightforward, as everything is performed in

a 2D plane (cylindrical map) which then is mapped onto a

sphere. All currently available commercial spherical dis-

plays are primarily used for displaying spherical data (e.g.,

visualizations of planets and stars), and such data is usually

stored in a 2D map using an equidistant cylindrical projec-

tion (e.g., a flat 2D map of the Earth). However, using cy-

lindrical projections has several well-known distortion

problems; these are most visible at the top and bottom of

the map (the poles of the sphere). The entire top row (or

bottom row) of the cylindrical map is mapped to a single

point at the pole. Using such projections makes it difficult

to display rectilinear objects near the poles.

Another approach is to author content in 3D Cartesian

coordinates in which all objects lie on a unit sphere cen-

tered at the origin (Figure 7). Although this approach is

more difficult, as it requires all content to be specified in

3D coordinates, it does not suffer from the distortion prob-

lems associated with cylindrical projection and offers addi-

tional advantages, such as being able take advantage of 3D

game engines to incorporate shadows or game physics.

Figure 7: Sphere content authored in 3D Cartesian
coordinates: (a) a virtual view of a 3D scene; (b) the
same scene flattened to a radial image for projec-
tion; (c) the scene when displayed on Sphere.

Figure 6: Sphere projection distortions: (a) a radial
image displayed by the projector in which all objects
are pre-distorted by our vertex shader; (b) a wire-
frame view of a portion of the image (a) that reveals
high tessellation of objects; (c) a mapping used to
create the radial image maps each point on a 3D
sphere to a 2D disk; (d) objects rendered on Sphere
appear without distortions.

Finally, a sphere at any given point can be considered lo-

cally flat. This assumption allows one to design a relatively

small portion of the interface completely in 2D, and to then

simply project this flat image from a tangential plane to a

point on the 3D spherical surface. This locally flat approach

is how photographs are displayed in Figure 1.

Ultimately, the choice of which coordinate system to use

for authoring will depend on the content itself and we antic-

ipate that data authored in different coordinate systems will

be combined together in the same application.

MULTI-TOUCH INTERACTIONS

We now discuss various multi-touch interaction techniques

we developed for Sphere. Enabling user interaction on a

spherical surface requires the implementation of basic op-

erations such as selection, translation, rotation, and scaling,

as well as providing support for browsing and task switch-

ing. While implemented within the context of four simple

prototype applications, our interactions are general and

designed to be useful to other applications on spherical or

cylindrical displays. We also discuss implications of these

interactions for multi-user collaboration around Sphere.

Sphere Photo & Video Browser

The first application we explored is a simple browser in

which users can freely manipulate rectangular projections

of images and videos (Figure 1). Such browsing applica-

tions have frequently been demonstrated on flat multi-touch

prototypes (e.g., [9, 19]) as they tend to clearly show the

capabilities of touch-based, direct manipulation interfaces.

Basic Multi-Touch Object Manipulations

Each object (photo or video) in our Sphere Photo & Video

Browser can be independently dragged, rotated, and scaled.

As with most touch-sensitive applications, selection of an

object is implicitly triggered by any touch contact that

lands on that object. Landing on a video object acts as a

simple playback toggle: it starts the video playback if the

video is paused or stops it if the video is running.

Dragging: Enabling a user to drag an object around Sphere

is not as obvious as it might seem at first. The difficulty is

that the curved geometry of the spherical surface is drasti-

cally different from 2D flat space. In Euclidean space

(standard 2D and 3D environments fall into this category),

movement is best represented by a displacement vector

which encapsulates the direction and magnitude of the

movement in a particular line. However, the spherical sur-

face is not a Euclidian space and there are no straight lines

on the sphere as all “lines” are actually curves and thus

more accurately represented as arcs. While in some cases

Euclidean geometry might offer a reasonable local approx-

imation, representing displacement on a sphere with vectors

ultimately leads to problematic behaviors.

Instead of vectors, the movement on a sphere is best

represented by a quaternion, i.e., a rotation (Figure 8). This

has some profound implications for our interactions, as the

standard translation + rotation + scale manipulation model

used in 2D and 3D environments becomes a compound

rotation + scale manipulation model on Sphere. We stress

that the rotation is often a compound action as the object is

spherically “positioned” by a rotation around the sphere’s

origin, and then often oriented further in its local coordinate

system (see the Local Rotation section below).

We adopted the use of quaternions as Sphere’s basic unit of

movement, and we model our interactions on rotational

principles similar to those discussed by Shoemake [22, 23].

While the system treats all dragging interactions as global

rotations around the origin of the sphere, users tend to think

of them from their local context and perceive them as a

physical translation of an object around the sphere. When

asked during demo sessions, users described the interac-

tions purely from their local coordinate system, e.g., “mov-

ing to the left” or “this object is above the other one.”

Local Rotation: In addition to allowing the user to position

(i.e., rotate) an object on Sphere, we facilitate additional 1D

adjustment of the object’s orientation in its local coordinate

system, similar to in-plane rotation of a picture on a flat

surface. This operation requires at least two contacts to be

touching the object; we map the local angular difference

between those two contacts to a 1D rotation of the object.

For all our basic manipulations, when multiple contacts are

touching a particular object, we aggregate their behavior

and apply the aggregate action to the object.

Scaling: Users can scale a picture or a movie by moving

their fingers closer together or further apart on top of the

displayed object (Figure 1). We map the change in arc

length between the touch points to the scaling factor ap-

plied to the object. Given that Sphere is a borderless but

finite display, scaling an object larger has the potential to

envelop the entire surface. While in a single user scenario

this might be desired in order to enlarge a particularly small

feature, scaling by more than a single hemisphere greatly

affects other viewers and ultimately results in either seams

or heavy distortions on the other side of the display. In our

Sphere Photo & Video browser, the scale of an object is

currently restricted to fit within one hemisphere. This

seems to be a good compromise between manipulation

flexibility and reduced disturbance to other users.

Figure 8: A comparison of basic dragging manipula-
tions when moving a finger between points 1 and 2:
(a) on a flat surface this movement is represented by
a 2D vector V; (b) on a spherical surface this move-
ment follows an arc of an angle θ around an axis A (a

3D vector), which is a rotation best described by a 4D
quaternion Q.

Facilitating Collaboration

We found that dragging an object around Sphere often left

it in an awkward orientation (Figure 9a–c). Consequently,

most drags need to be followed by a local rotation to cor-

rect for the object’s orientation. This was particularly ob-

vious with longer drags, e.g., dragging an object over the

top of the display to show it to a collaborator results in an

“upside down” orientation.

Auto-rotation: To eliminate some of these orientation prob-

lems, we enabled each object to automatically orient itself

so that the top of the object always pointed to the top of the

sphere (Figure 9d–f). If the object was placed exactly on

the top, it would remain in its current orientation, until

dragged away. This auto-rotation behavior effectively eli-

minates the need for explicit user controlled local rotations,

which is potentially most beneficial in collaborative scena-

rios. As discussed previously, the top (the “north pole”) is a

natural orientation landmark that provides an omni-

directional “up” cue. Because the system continuously

orients all objects with respect to the top, the user is able to

simply pass a picture to a collaborator on the other side; the

image automatically adjusts its local orientation so that

viewing is correct. Surprisingly, this behavior is very much

expected; during many Sphere demonstrations, users did

not even notice that all objects automatically oriented

themselves. Presumably, this behavior appeared natural to

viewers because it always resulted in the “correct” view.

The auto-rotation feature only became apparent when users

attempted to locally rotate an object, an action which was

now disabled.

Extending User Reach

In many scenarios, it is important to be able to place objects

on the other side of the display. This becomes particularly

important when collaborating with a viewer standing on the

opposite side of Sphere. Although a user can simply drag

an object to the other side, this action is tedious if repeated

often as it requires extensive physical movement. We im-

plemented two interaction techniques to facilitate this ac-

tion by further extending the user’s reach: flicking and

send-to-dark-side.

Flicking: We added inertia to our manipulations to allow the

user to flick an object in a particular direction and have the

object continue traveling in that direction without explicit

further guidance (such as with a finger). The speed and

direction of movement before the user releases an object

determine how far and in which direction the object will

travel. One can also programmatically vary the angular

deceleration (friction) of individual objects in order to en-

sure that it is easy to flick objects to the other side of the

display. By touching an object while in motion, the user

can catch it and stop further movement.

Send-to-Dark-Side:
* This interaction allows the user to ex-

plicitly warp an object and send it instantaneously to the

other side of Sphere. To perform send-to-dark-side, the user

places a flat palm on top of the object and waits one

second. The object is then warped to the mirror position on

the other hemisphere. Rather than sending the object direct-

ly to the opposite point of Sphere, we decided to simply

mirror its position around the plane passing through the top

and the bottom of the sphere (shown as dashed line in Fig-

ure 10). A significant benefit of send-to-dark-side is that

instead of flicking an object and guessing its destination,

the user can explicitly control where the object will appear

by first manipulating the object’s position in its current

hemisphere.

Both the flicking and send-to-dark-side interactions benefit

from enablement of auto-rotation because the latter pre-

vents objects from arriving in the other hemisphere upside

down and thus in need of reorientation.

While designed within the Sphere Photo & Video Browser

application, the combination of basic multi-touch manipu-

lations and the additional interactions that facilitate colla-

boration and extend the user’s reach form a powerful inte-

raction toolset that can be used for designing other compel-

ling applications for the Sphere.

Sphere’s Circular Menu

The abilities to switch between tasks and to select different

options are often needed in an interactive system. In

Sphere, a circular menu allows the user to select between

multiple applications. Currently, the menu is displayed in a

circular arrangement around the top of the display and

therefore visible to most users; however, if a location of the

user were known, it might be better to place the menu in a

semi-circle facing the user. Selection is performed not by

touching an option but rather by rotating the menu in place

*
 We named this interaction after the Moon’s dark side, which is

not illuminated by the Sun.

Figure 10: Send-to-Dark-Side: The user touches an
object with a flat hand and waits 1 second, resulting in
object being warped to the other side of the Sphere.

Figure 9: Comparison of orientation difficulties when
dragging an object along a similar path shown in (a)
and (d): (a–c) default unassisted behavior results in
a difficult object orientation visible in (c); (d–f) Auto-
rotation behavior eliminates such problems by conti-
nuously orienting objects with respect to the top.

(similar to the JDCAD menu [12]). The highlighted option

is selected upon contact removal.

Orb-like Invocation: To invoke a circular menu, the user

places two hands (in an open palm posture) on top of the

display in a symmetric arrangement (Figure 11). The circu-

lar menu fades in accompanied by a sound effect to en-

hance the experience. Similar to the interaction concept of

i-ball2 [3], this gesture is designed to evoke the feeling of

interaction with a fortune-telling magic crystal ball. While

playful and magic-like, this gesture is highly memorable,

easy to repeat, and relatively hard to invoke inadvertently.

The size of the two contacts (palm-sized contact is substan-

tially larger than most other touch contacts) and the particu-

lar symmetric arrangement of this gesture ensure that the

menu is not easily triggered in error.

By combining the orb-like invocation with selection by

rotation rather than direct touching, we enabled task

switching to occur in one continuous interaction (place

hands to invoke, rotate into place, and lift-off to select).

Sphere Omni-Directional Data Viewer

Omni-directional images – such as cylindrical maps of any

spherical object or 360° panoramic images – are well suited

for display on Sphere. To explore user interaction with such

data we designed Sphere Omni-Directional Data Viewer.

Examples used were a live-stream from an omni-directional

video conferencing camera (Figure 2b), omni-directional

images of a city captured by a camera mounted on a car

roof (Figure 12a), and the Earth’s surface (Figure 12b).

The fact that omni-directional data usually spans the entire

display surface presents interesting implications for multi-

user, multi-touch collaboration scenarios. Allowing more

than one person to touch the data often results in conflict

(e.g., multiple people trying to spin the globe in multiple

directions at the same time). While restricting interactions

to a single touch does mitigate some of the problems (e.g.,

the first touch assumes control), such a solution is often

confusing to the other Sphere users. While this issue should

be investigated further, in our current system users are left

to socially mitigate such situations: either taking turns or

allowing one person to “drive” the interaction

Tether: We allow the user to rotate and inspect omni-

directional data; however, this often causes data to be left

in an orientation potentially confusing to others. To miti-

gate this problem, we implemented a tether behavior. Teth-

er allows free manipulation of data via touch contacts, but

upon release of all contacts the object animates back to its

“natural” orientation (Figure 13). Since all of our omni-

directional images have a clear up direction, we use the top

of the sphere as the tether axis; however, any arbitrary axis

can be specified as the tether axis.

Sphere Paint and Sphere Pong

In addition to multi-point interactions that rely on tracking

individual contact points, we explored interactions that use

the entire touch area as input. We designed two concept

applications: Sphere Paint and Sphere Pong (Figure 14). In

Sphere Paint, the user can paint on Sphere with a finger or

any available object (Figure 14a). Exploiting its spherical

shape, we allow Sphere to spin slightly (similar behavior to

a potter’s wheel), thus offering interesting artistic possibili-

ties to the user. Sphere Pong is a game prototype in which

users can use their hands or any other object to bounce sev-

eral balls around the spherical surface and score points

(Figure 14b). As with the classic game Battleship, not be-

ing able to see other users’ actions adds an exciting dimen-

sion to an otherwise standard pong game.

Figure 14: Two concept applications that use the
entire surface contact area as input: (a) Sphere
Paint, and (b) Sphere Pong.

Figure 13: Tether interaction: The user can freely
manipulate omni-directional video. Upon contact re-
lease, the video returns to its horizontal state.

Figure 12: Examples of Sphere omni-directional vi-
sualizations: (a) panoramic walk down Seattle city
street; (b) visualization of the Earth as a globe.

Figure 11: Orb-like Invocation: a bimanual gesture
that invokes a circular task-switching menu.

INITIAL USER OBSERVATIONS

We exhibited Sphere on three occasions at high-traffic lo-

cations in our organization (Figure 15). While these events

were not formal user evaluations, they presented us with an

opportunity to observe hundreds of people interacting with

Sphere in an informal manner with little to no instructions.

We now discuss our observations of multi-user interactions

during these sessions.

Sphere’s unusual shape, large size, and visibility from all

directions attracted large crowds. People frequently de-

scribed their experience as “magical” and “like interacting

with a crystal ball.” Photos and videos were easily browsed

by several people independently, shared with others when

desired, and moved to the unused space on the display for

“storage of unwanted items” (usually the bottom hemis-

phere). This use pattern suggests that the territoriality con-

cepts introduced by Scott et al. [20] are applicable on

Sphere, but more formal evaluation is clearly needed to

explore differences caused by the form factor.

Omni-directional data spanning the entire display proved

more difficult to handle when many people tried to interact

with Sphere at the same time. Because a given user cannot

see other users touch Sphere in the other hemisphere, users

often either fought for control or became confused by

movement that they did not initiate.

We also observed that people were much more inclined to

start touching and interacting with Sphere if the objects

were left in a disorganized, “messy” arrangement by pre-

vious users. In contrast, when the interface was reset and

displayed objects were realigned, we usually had to demon-

strate and explain that Sphere is indeed touch-sensitive and

interactive. This observation is especially important with

respect to public interactive displays which rely on an “at-

tract mode” to solicit public touch and interaction. We sug-

gest placing objects in a non-perfectly aligned arrangement

to draw users into interaction.

During our demo sessions, we logged all touches and

created radial heat maps for further analysis. These heat

maps confirm that spherical displays have no master user

position. While a heat map of a 15-minute single user ses-

sion (Figure 16a) suggests that a user assumes a particular

position and does not move extensively around Sphere, the

3-hour log of a number of different users shows no clear

orientation preference (Figure 16b). In total, we examined

logs of 21 hours of high-traffic use, all of which show simi-

lar user behavior. While promising, these results are clearly

preliminary observations. We are planning to conduct more

formal evaluations to confirm and extend these findings.

Users viewing the Earth’s surface on Sphere often re-

quested high magnification (zoom) capability. In addition

to scaling problems already discussed in this paper, high

zoom level effectively results in a transformation of a

spherical surface data into a mostly flat map-like data,

which is not well suited for display on Sphere. We plan to

further investigate zooming on Sphere and to study its im-

plications for interactivity and collaboration.

DISCUSSION AND CONCLUSIONS

We have presented Sphere, a novel hardware and software

solution that enables multi-touch sensing on a spherical

display. Our unique solution creates a self-enclosed device,

capable of displaying and sensing data on a spherical sur-

face, without occlusions and shadowing problems. To al-

low for rich user interaction, we implemented four concept

applications and a set of multi-touch interaction techniques

that account for the unique characteristics of the spherical

form and assist multi-user collaboration. We also contribute

several interesting observations of Sphere being used by

hundreds of people in three high traffic locations.

The interactions and concepts presented in this paper form

the building blocks for interactive spherical displays, but

much research remains to be done. We are curious about

the effect the Sphere size has on interaction as we believe

that different sizes will yield different interaction para-

digms (e.g., a handheld Sphere vs. a room-sized one). Col-

laborative scenarios interest us the most, given the clear

collaborative potential of this form factor. How do people

align themselves around the display to best accomplish a

task? How can user-interaction conflicts resulting from

omni-directional data be effectively handled? How does

sphere size affect collaboration? We believe all of these

questions are worthy of further research.

In addition, we are investigating using Sphere as a display-

able input device for navigational control of a remote robot

or of an avatar in a synthetic virtual world. A similar sens-

ing mechanism to the one developed for Sphere could also

be used to enable touch-sensing on different convex form

factors (e.g., hemispheres, cylinders, cuboids).

While the work described in this paper focused on Sphere

being used as a single primary device integrating both dis-

Figure 16: Radial heat maps of user touches around
the 24” Sphere: (a) a single user’s 15-minute session;
(b) more than 50 users during a 3-hour demo session.

Figure 15: Collaboration on Sphere in high-traffic lo-
cations: (a) 5 adults browsing videos; (b) 7 children
interacting with a globe.

play and input sensing, it is important to not restrict our

thinking to only solitary device usage scenarios. Indeed, it

is highly likely that future use of Sphere will be within a

broader heterogeneous ecology of displays and input tech-

nologies [6]. Rather than the “one size fits all” approach of

current desktop computing, having different devices, each

well suited to particular tasks, will likely as a whole pro-

vide a richer and more appropriate “workshop” for infor-

mation access and manipulation. We see Sphere as an

integral element in such an information workshop of the

future, and resulting issues such as information transfer

between display formats of vastly different form factors

will continue to provide interesting research challenges.

ACKNOWLEDGMENTS

We thank Mike Foody from Global Imagination for loaning

us two units of the Magic Planet display, Billy Chen and

Eyal Ofek for their feedback and the omni-directional data,

Mike Sinclair for his help with hardware, and Eric Horvitz

and Patrick Baudisch for their brainstorming ideas.

REFERENCES

1. Bowman, D.A., Kruijff, E., LaViola, J.J., and Poupyrev,

I. (2004). 3D User Interfaces: Theory and Practice.

Addison-Wesley, Boston.

2. Companje, R., van Dijk, N., Hogenbirk, H. and Mast,

D. (2007). Globe4D, Time-Traveling with an Interac-

tive Four-Dimensional Globe. ACM MULTIMEDIA. p.

959960.

3. Chan, L.-W., Chuang, Y.-F., Yu, M.-C., Chao, Y.-L.,

Lee, M.-S., Hung, Y.-P. and Hsu, J. (2007). Gesture-

based Interaction for a Magic Crystal Ball. ACM VRST

Virtual Reality Software and Technology. p. 157164.

4. Chen, Y., Au, J., Kazlas, P., Ritenour, A., Gates, H. and

McCreary, M. (2003). Flexible Active-Matrix Electron-

ic Ink Display. Nature. 423. p. 136.

5. Dietz, P. and Leigh, D. (2001). DiamondTouch: A Mul-

ti-User Touch Technology. ACM UIST. p. 219226.

6. Fitzmaurice, G., Khan, A., Buxton, W., Kurtenbach, G.,

and Balakrishnan, R. (2003). Sentient data access via a

diverse society of devices. ACM Queue. p. 53-62.

7. Grossman, T., Wigdor, D. and Balakrishnan, R. (2004).

Multi-Finger Gestural Interaction with 3D Volumetric

Displays. ACM UIST. p. 61–70.

8. Grossman, T. and Balakrishnan, R. (2006). The design

and evaluation of selection techniques for 3D volume-

tric displays. ACM UIST. p. 3–12.

9. Han, J. (2005). Low-cost multi-touch sensing through

frustrated total internal reflection. ACM UIST. p. 115–

118.

10. Kettner, S., Madden, C. and Ziegler, R. (2004). Direct

Rotational Interaction with a Spherical Projection.

Creativity & Cognition Symposium on Interaction: Sys-

tems, Practice and Theory.

11. Kruger, R., Carpendale, S., Scott, S. and Greenberg, S.

(2003). How People Use Orientation on Tables: Com-

prehension, Coordination and Communication. ACM

SIGGROUP Conference on Supporting Group Work. p.

369–378.

12. Liang, J. and Green, M. (2004). JDCAD: A Highly In-

teractive 3D Modeling System. Computers and Graph-

ics. 18(4). p. 499–506.

13. Magic Planet by Global Imagination.

www.globalimagination.com.

14. Marchese, F. and Rose, J. (2006). Projected Hemispher-

ical Display with a Gestural Interface. ACM SIG-

GRAPH Research Posters.

15. Matsushita, N. and Rekimoto, J. (1997). HoloWall:

Designing a Finger, Hand, Body, and Object Sensitive

Wall. ACM UIST. p. 209–210.

16. Morris, M., Ryall, K., Shen, C., Forlines, C. and Ver-

nier, F. (2004). Beyond "Social Protocols": Multi-User

Coordination Policies for Co-located Groupware. ACM

CSCW. p. 262–265.

17. OmniGlobe by ARC Science Simulations.

www.arcscience.com.

18. PufferSphere by Pufferfish.

www.pufferfishdisplays.co.uk.

19. Rekimoto, J. (2002). SmartSkin: An Infrastructure for

Free-hand Manipulation on Interactive Surfaces. ACM

CHI. p. 113120.

20. Scott, S., Sheelagh, M., Carpandale, T. and Inkpen, K.

(2004). Territoriality in Collaborative Tabletop Work-

spaces. ACM CSCW. p. 294–303.

21. Shen, C., Vernier, F., Forlines, C. and Ringel, M.

(2004). DiamondSpin: An Extensible Toolkit for

Around-the-Table Interaction. ACM CHI. p. 167–174.

22. Shoemake, K. (1985). Animating Rotation with Quater-

nion Curves. ACM SIGGRAPH. p. 245–253.

23. Shoemake, K. (1992). ARCBALL: A User Interface for

Specifying Three-Dimensional Orientation Using a

Mouse. Graphics Interface. p. 151–156.

24. Ushida, K., Harashima, H., and Ishikawa, J. (2003). i-

ball2: An Interaction Platform with a Crystal-ball-like

Display for Multiple Users. International Conference

on Artificial Reality and Teleexistence.

25. Wilson, A. (2004). TouchLight: An Imaging Touch

Screen and Display for Gesture-Based Interaction.

ICMI Conference on Multimodal Interfaces. p. 69–76.

26. Wilson, A. (2005). PlayAnywhere: A Compact Table-

top Computer Vision System. ACM UIST. p. 83–92.

27. Wu, M. and Balakrishnan, R. (2003). Multi-Finger and

Whole Hand Gestural Interaction Techniques for Multi-

User Tabletop Displays. ACM UIST. p. 193–202.

http://www.dgp.toronto.edu/~mchi/download/mwu_UIST2003.pdf
http://www.dgp.toronto.edu/~mchi/download/mwu_UIST2003.pdf
http://www.dgp.toronto.edu/~mchi/download/mwu_UIST2003.pdf

