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Abstract 
 

Recently developed depth-sensing video camera 

technologies provide precise per-pixel range data in 

addition to color video. Such cameras will find 

application in robotics and vision-based human 

computer interaction scenarios such as games and 

gesture input systems. We present an interactive 

tabletop system which uses a depth-sensing camera to 

build a height map of the objects on the table surface. 

This height map is used in a driving simulation game 

that allows players to drive a virtual car over real 

objects placed on the table. Players can use folded bits 

of paper, for example, to lay out a course of ramps and 

other obstacles. A projector displays the position of the 

car on the surface, such that when the car is driven 

over a ramp, for example, it jumps appropriately. A 

second display shows a synthetic graphical view of the 

entire surface, or a traditional arcade view from 

behind the car. Micromotorcross is a fun initial 

investigation into the applicability of depth-sensing 

cameras to tabletop interfaces. We present details on 

its implementation, and speculate on how this 

technology will enable new tabletop interactions. 

 

1. Introduction 
 

Tabletops distinguish themselves from other 

surfaces in the everyday world by their ability to 

support objects placed on them. This property lends 

tabletops to a wide variety of complex, productive 

tasks involving physical objects. A garage workbench, 

for example, is often the site of intricate assembly 

tasks, while architects still build physical models of 

buildings and landscapes on horizontal surfaces. 

Accordingly, many interactive tabletop systems 

include some ability to sense and use physical objects 

placed on them. Often these capabilities are based on 

capacitive sensing, RFID, active infrared emitting 

devices, generic computer vision-based object 

recognition, or visual barcode recognition. 

However, while these objects live in a 3D world, 

interactions with them on interactive surfaces are 

typically 2D in nature. For example, a game piece 

placed on the surface would typically indicate the 2D 

position of a player on a board game. Beyond tabletop 

interfaces, the field of augmented reality offers 

sophisticated techniques to reason about 3D objects, 

but these efforts are often based on manipulating some 

aspect of the physical object, or are primarily 

concerned with determining camera position. 

A few interactive tabletop systems deal with 3D 

objects more generally. Illuminating Clay [2], for 

example, uses a laser scanner, while SandScape
1
 uses 

infrared illumination, an infrared camera, and 

translucent beads to deduce a height map of the 

surface. The Perceptive Workbench [3] combines 

views of objects placed on its surface to perform 3D 

reconstruction. Meanwhile, 3D gesture interfaces over 

tabletops are typically based on augmented reality or 

VR techniques such as magnetic trackers or other 

motion capture techniques. 

In this paper we propose the use of recently 

developed depth-sensing video cameras to support a 

wide range of 3D interactions on interactive tabletops. 

This new camera technology enables the real-time 3D 

capture of everyday objects placed on the surface for 

example. We present an early demonstration system 

which uses the calculated height map in a driving 

simulation that allows the player to drive a virtual car 

over real objects placed on the table. 

 

2. Depth-sensing cameras 
 

We refer to camera systems which recover depth 

information throughout the captured scene (i.e., depth 

per pixel) as depth-sensing. While we acknowledge the 

utility of other camera-based means of 3D capture for 

interactive surfaces, such as recognizing an object from 

                                                           
1
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Figure 1. 3DV ZSense uses pulsed infrared light (a) and solid state shutter to compute depth 
image. Reflected light from closer surfaces arrives sooner (b). Fast shutter truncates light (c) while 

imaging sensor integrates more light from closer surfaces. A second captured image is used to 

normalize for differences in reflectance. Example depth image (d). Illustrations adapted from [1]. 

two views [4], a fully detailed range image permits a 

great deal of flexibility.  

Laser scanners have been used in robotics and other 

fields to calculate accurate depth images. Despite being 

available for many years, such technology is still 

expensive, and often is barely fast enough for 

interactive applications (Illuminating Clay reports 3Hz 

scan rate).  

Correlation-based stereo is another old approach 

which suffers from a number of difficulties. For 

example, stereo matching typically fails on regions of 

the scene with little or no texture. Secondly, even today 

stereo matching requires a great deal of computational 

power to obtain interactive rates at reasonable 

resolution. Finally, stereo camera setups typically 

require fine calibration. 

 New camera technologies under development 

observe depth information in a more direct fashion, and 

so address many of the drawbacks of previous 

approaches.  

In the present work we use the ZSense camera by 

3DV Systems, Ltd [1]. The ZSense times the return of 

pulsed infrared light: reflected light from nearer objects 

will arrive sooner. A Gallium-Arsenide (GaAs) solid-

state shutter makes this possible (see Figure 1).  The 

result is an 8 bit depth image, over a variable dynamic 

range (70cm to 3m). Figure 1d illustrates an example 

ZSense depth image. The ZSense camera also includes 

a separate color camera. The output of the color 

camera is registered with the depth image to obtain a 

complete “RGBZ” image at 30Hz.  

 

3. Micromotocross 
 

3.1 Motivation 
 

To explore the application of depth-sensing cameras 

to interactive tabletops, we built a projection-vision 

system which uses the camera to recover the height 

map of the table surface and the objects placed on it. 

Graphics are then projected on the same surface. 

We are interested in exploring the range of 

interactions made possible by this configuration. To 

begin, we implemented a simple driving simulation 

using the XNA game development platform. Players 

drive a virtual dune buggy around and over any objects 

placed on the table surface. The players can arrange 

folded bits of construction paper, for example, to lay 

out a course of ramps and other obstacles. A projector 

is used to display the position of the car on the surface, 

such that when the car drives over a ramp, for example, 

the car jumps appropriately. Players control their cars 

with a wireless Xbox 360 controller. 

 

3.2 Terrain model 
 

The 320x240 depth image is returned by the camera 

at a frame rate of 30Hz. The camera is configured to 

place its depth-sensing dynamic range at the height of 

the table and about 70cm above the table. 

Because the focal length of the camera is known, it 

is possible to calculate the 3D position (in centimeters, 

for example) indicated at each pixel in the depth 

image. It is straightforward to then construct a vertex 

buffer for this height map, and it is similarly easy to 

texture map this mesh with the color image also 

returned by the camera. 

In the present implementation, instead of converting 

the mesh to world coordinates as suggested above, the 

depth image is normalized between a minimum depth 

image collected offline when the surface is clear of 

objects, and a maximum depth image, collected when 

the surface is raised about 20cm. 

The ZSense depth image is somewhat noisy. For 

some applications it will be necessary to smooth the 

image to mitigate the effects of shot noise. In 

Micromotocross, where every bump due to noise is 

potentially a huge pothole, we found it necessary to use 

a mixture of spatial and temporal smoothing. This has 

the effect of adding a significant delay from when an 

object on the surface is moved, to when this change is 

reflected in the modeled terrain. 

 



 
 

Figure 2. Micromotocross demonstration. Left: Tabletop with paper ramps and obstacles, and top-
down projected cars. Middle: Synthetic (graphics) overview of tabletop, showing extracted terrain 
model, two cars, synthetic shadows, and user’s hand in the scene. Right: In the synthetic view, a 

car is airborne after taking a jump. 

3.3 Projection-vision system 
 

In order to project graphics that are correctly 

registered with the sensed image, it is necessary to 

model the coordinate transform that relates a position 

in the sensed image to a position in the projected 

image. In the common case of a 2D camera and 

projection on a 2D surface, this can be handled using a 

projective transform and a simple calibration procedure 

which maps the four corners of the table surface in the 

camera view to display coordinates [5]. 

When using a 3D camera to sense objects and 

various depths, projected graphics need further 

correction such that, for example, the virtual dune 

buggy appears the same size whether it is on the table 

surface or on some object of significant height placed 

on the table surface. 

We use a simple extension of the 2D case which 

allows an easy two step calibration process.  Offline, 

the calibration of the 2D projective transform mapping 

image coordinates to display coordinates is run twice: 

first when the table is clear, and second with the table 

raised about 20cm from its normal height. In each 

calibration, the user clicks on 4 projected points in the 

color video image. This yields two 2D projective 

transforms, one for each table height.   

The display coordinates of any point in the 

normalized depth image can then be determined by 

interpolating between the results of both projective 

transforms, at an amount given by the depth value. It is 

convenient to incorporate these calculations in the 

graphics vertex shader, replacing the usual graphics 

camera projection, so that the application developer 

need not be aware of such details when constructing 

the graphics scene, and so that this transformation 

imparts no overhead to the system. Figure 2 illustrates 

the tabletop with projection and extracted terrain. 

In addition to the table projection display, the 

Micromotocross system includes a secondary LCD 

display which shows a purely synthetic overview of the 

scene. In this view, the terrain is textured with the 

color image. Players can switch to a conventional 

arcade view, in which the graphics camera is placed 

just behind the car (Figure 3). A player can toggle this 

view by hitting a button on the controller. The second 

player can switch the display back to the overview by 

hitting the same button on their controller. 

 

3.4 Physics model 
 

Two players can control their dune buggies using 

standard driving controls on wireless Xbox 360 

controllers. The car’s movement is calculated by the 

Newton physics library, which includes a detailed 

vehicle dynamics model of acceleration, steering, tire 

friction effects and chassis rigid body dynamics. Figure 

2 shows a car airborne after a jump, for example. 

Most physics libraries include facilities for collision 

detection that are specialized to efficiently handle 

many separate rigid bodies.  Typically the geometry of 

each object is constrained to be static, so that various 

structures such as convex hulls and BSP trees can be 

pre-computed to speed collision detection. In 

Micromotocross, however, these techniques are 

inappropriate when detecting the collision of the cars 

 
 

Figure 3. Traditional arcade view for blue 

player shows other player and ramp ahead. 



with the dynamically changing height map. 

Fortunately, because the height field is a regular grid of 

points, determining which parts of the mesh are 

potentially in contact with the car’s tires, for example, 

is a simple lookup operation. 

Unfortunately, most available physics libraries do 

not support dynamically changing meshes in the 

calculation of collision response. Fast changes in the 

mesh can result in unpredictable dynamics. If the 

player moves an object quickly against the virtual car, 

the response of the car may not look convincing, or 

may even penetrate the terrain mesh. 

Finally, it is important to note that a height map-

based terrain model is indifferent to the motion of 

distinct objects as it relates to the simulation of 

friction. For example, if the car is sitting on a physical 

object that the user then moves across the table, the car 

will not stay on the object (even if its brakes are on). 

An appropriate analogy may be moving one’s hand 

under a bed sheet, with objects sitting on the sheet: the 

objects are likely to stay in place. 

 

3.5 User experiences 
 

Micromotocross has been experienced by hundreds 

of people of a wide variety of ages and backgrounds. 

People have fun manipulating objects on the table, 

setting up ramps and bridges from one object to 

another. Many are impressed by the magical quality of 

the interaction. 

Some users prefer to look at the synthetic view 

(overview or behind-car), while others prefer to look at 

the table projection. Some may prefer the synthetic 

view because it is easier to see the car as it goes 

through the air over a jump, or because it has higher 

resolution. 

Many people are amused to find that the system will 

incorporate their hands into the scene when they are 

placed on the table. Some try to drive their buggy over 

their friend’s hand, or even up their arm, while a few 

try to hold the car in the palm of their hand to move it 

(if the hand cupped and moved slowly, this is often 

successful). Children often will have fun knocking the 

car driven by their friend off the table, but are annoyed 

when this happens when it is their turn to drive. 

 

4. Further interactions 
 

It is interesting to watch people attempt to interact 

with the virtual cars directly with their hands. Once 

they realize that the system sees their hands, and that 

the virtual objects tend to react in somewhat 

appropriate ways to real physical objects on the table, 

many people try to pick up and move the car. These 

observations suggest that users would be able to use a 

gesture-based interface to manipulate virtual objects, 

just as they would manipulate real objects on the table. 

In fact, it has been our goal all along to explore the 

use of gestures in the 3D space on and above the table 

surface. The depth image will make certain gestures 

potentially easier to recognize, and the 3D information 

should ease interactions with the physical objects.   

The current prototype supports an initial 

implementation of a pinching gesture that may be 

suitable for picking up objects (see [6]). Presently, this 

gesture must be done well above the surface of the 

table, and instead of grasping a virtual object, the 

gesture creates an obstacle (a heavy block) which is 

dropped into the scene. 

We envision the ability to pick up a virtual object 

with this grasping gesture, place it on a physical object 

sitting on the table, or even hold the virtual object in 

the palm of the hand. So that such interactions behave 

in the way that users expect, it may be desirable to 

drive such interactions from the physics engine (in 

contrast to recognizing the hand as a special object, for 

example). Such an approach will require significant 

upgrades to the physics simulation’s support of 

dynamic meshes. 
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