
Depth-Sensing Video Cameras for 3D Tangible Tabletop Interaction

Andrew D. Wilson

Microsoft Research

Redmond, WA

awilson@microsoft.com

Abstract

Recently developed depth-sensing video camera

technologies provide precise per-pixel range data in

addition to color video. Such cameras will find

application in robotics and vision-based human

computer interaction scenarios such as games and

gesture input systems. We present an interactive

tabletop system which uses a depth-sensing camera to

build a height map of the objects on the table surface.

This height map is used in a driving simulation game

that allows players to drive a virtual car over real

objects placed on the table. Players can use folded bits

of paper, for example, to lay out a course of ramps and

other obstacles. A projector displays the position of the

car on the surface, such that when the car is driven

over a ramp, for example, it jumps appropriately. A

second display shows a synthetic graphical view of the

entire surface, or a traditional arcade view from

behind the car. Micromotorcross is a fun initial

investigation into the applicability of depth-sensing

cameras to tabletop interfaces. We present details on

its implementation, and speculate on how this

technology will enable new tabletop interactions.

1. Introduction

Tabletops distinguish themselves from other

surfaces in the everyday world by their ability to

support objects placed on them. This property lends

tabletops to a wide variety of complex, productive

tasks involving physical objects. A garage workbench,

for example, is often the site of intricate assembly

tasks, while architects still build physical models of

buildings and landscapes on horizontal surfaces.

Accordingly, many interactive tabletop systems

include some ability to sense and use physical objects

placed on them. Often these capabilities are based on

capacitive sensing, RFID, active infrared emitting

devices, generic computer vision-based object

recognition, or visual barcode recognition.

However, while these objects live in a 3D world,

interactions with them on interactive surfaces are

typically 2D in nature. For example, a game piece

placed on the surface would typically indicate the 2D

position of a player on a board game. Beyond tabletop

interfaces, the field of augmented reality offers

sophisticated techniques to reason about 3D objects,

but these efforts are often based on manipulating some

aspect of the physical object, or are primarily

concerned with determining camera position.

A few interactive tabletop systems deal with 3D

objects more generally. Illuminating Clay [2], for

example, uses a laser scanner, while SandScape
1
 uses

infrared illumination, an infrared camera, and

translucent beads to deduce a height map of the

surface. The Perceptive Workbench [3] combines

views of objects placed on its surface to perform 3D

reconstruction. Meanwhile, 3D gesture interfaces over

tabletops are typically based on augmented reality or

VR techniques such as magnetic trackers or other

motion capture techniques.

In this paper we propose the use of recently

developed depth-sensing video cameras to support a

wide range of 3D interactions on interactive tabletops.

This new camera technology enables the real-time 3D

capture of everyday objects placed on the surface for

example. We present an early demonstration system

which uses the calculated height map in a driving

simulation that allows the player to drive a virtual car

over real objects placed on the table.

2. Depth-sensing cameras

We refer to camera systems which recover depth

information throughout the captured scene (i.e., depth

per pixel) as depth-sensing. While we acknowledge the

utility of other camera-based means of 3D capture for

interactive surfaces, such as recognizing an object from

1
 http://tangible.media.mit.edu/projects/sandscape

a. b. c. d.

Figure 1. 3DV ZSense uses pulsed infrared light (a) and solid state shutter to compute depth
image. Reflected light from closer surfaces arrives sooner (b). Fast shutter truncates light (c) while

imaging sensor integrates more light from closer surfaces. A second captured image is used to

normalize for differences in reflectance. Example depth image (d). Illustrations adapted from [1].

two views [4], a fully detailed range image permits a

great deal of flexibility.

Laser scanners have been used in robotics and other

fields to calculate accurate depth images. Despite being

available for many years, such technology is still

expensive, and often is barely fast enough for

interactive applications (Illuminating Clay reports 3Hz

scan rate).

Correlation-based stereo is another old approach

which suffers from a number of difficulties. For

example, stereo matching typically fails on regions of

the scene with little or no texture. Secondly, even today

stereo matching requires a great deal of computational

power to obtain interactive rates at reasonable

resolution. Finally, stereo camera setups typically

require fine calibration.

 New camera technologies under development

observe depth information in a more direct fashion, and

so address many of the drawbacks of previous

approaches.

In the present work we use the ZSense camera by

3DV Systems, Ltd [1]. The ZSense times the return of

pulsed infrared light: reflected light from nearer objects

will arrive sooner. A Gallium-Arsenide (GaAs) solid-

state shutter makes this possible (see Figure 1). The

result is an 8 bit depth image, over a variable dynamic

range (70cm to 3m). Figure 1d illustrates an example

ZSense depth image. The ZSense camera also includes

a separate color camera. The output of the color

camera is registered with the depth image to obtain a

complete “RGBZ” image at 30Hz.

3. Micromotocross

3.1 Motivation

To explore the application of depth-sensing cameras

to interactive tabletops, we built a projection-vision

system which uses the camera to recover the height

map of the table surface and the objects placed on it.

Graphics are then projected on the same surface.

We are interested in exploring the range of

interactions made possible by this configuration. To

begin, we implemented a simple driving simulation

using the XNA game development platform. Players

drive a virtual dune buggy around and over any objects

placed on the table surface. The players can arrange

folded bits of construction paper, for example, to lay

out a course of ramps and other obstacles. A projector

is used to display the position of the car on the surface,

such that when the car drives over a ramp, for example,

the car jumps appropriately. Players control their cars

with a wireless Xbox 360 controller.

3.2 Terrain model

The 320x240 depth image is returned by the camera

at a frame rate of 30Hz. The camera is configured to

place its depth-sensing dynamic range at the height of

the table and about 70cm above the table.

Because the focal length of the camera is known, it

is possible to calculate the 3D position (in centimeters,

for example) indicated at each pixel in the depth

image. It is straightforward to then construct a vertex

buffer for this height map, and it is similarly easy to

texture map this mesh with the color image also

returned by the camera.

In the present implementation, instead of converting

the mesh to world coordinates as suggested above, the

depth image is normalized between a minimum depth

image collected offline when the surface is clear of

objects, and a maximum depth image, collected when

the surface is raised about 20cm.

The ZSense depth image is somewhat noisy. For

some applications it will be necessary to smooth the

image to mitigate the effects of shot noise. In

Micromotocross, where every bump due to noise is

potentially a huge pothole, we found it necessary to use

a mixture of spatial and temporal smoothing. This has

the effect of adding a significant delay from when an

object on the surface is moved, to when this change is

reflected in the modeled terrain.

Figure 2. Micromotocross demonstration. Left: Tabletop with paper ramps and obstacles, and top-
down projected cars. Middle: Synthetic (graphics) overview of tabletop, showing extracted terrain
model, two cars, synthetic shadows, and user’s hand in the scene. Right: In the synthetic view, a

car is airborne after taking a jump.

3.3 Projection-vision system

In order to project graphics that are correctly

registered with the sensed image, it is necessary to

model the coordinate transform that relates a position

in the sensed image to a position in the projected

image. In the common case of a 2D camera and

projection on a 2D surface, this can be handled using a

projective transform and a simple calibration procedure

which maps the four corners of the table surface in the

camera view to display coordinates [5].

When using a 3D camera to sense objects and

various depths, projected graphics need further

correction such that, for example, the virtual dune

buggy appears the same size whether it is on the table

surface or on some object of significant height placed

on the table surface.

We use a simple extension of the 2D case which

allows an easy two step calibration process. Offline,

the calibration of the 2D projective transform mapping

image coordinates to display coordinates is run twice:

first when the table is clear, and second with the table

raised about 20cm from its normal height. In each

calibration, the user clicks on 4 projected points in the

color video image. This yields two 2D projective

transforms, one for each table height.

The display coordinates of any point in the

normalized depth image can then be determined by

interpolating between the results of both projective

transforms, at an amount given by the depth value. It is

convenient to incorporate these calculations in the

graphics vertex shader, replacing the usual graphics

camera projection, so that the application developer

need not be aware of such details when constructing

the graphics scene, and so that this transformation

imparts no overhead to the system. Figure 2 illustrates

the tabletop with projection and extracted terrain.

In addition to the table projection display, the

Micromotocross system includes a secondary LCD

display which shows a purely synthetic overview of the

scene. In this view, the terrain is textured with the

color image. Players can switch to a conventional

arcade view, in which the graphics camera is placed

just behind the car (Figure 3). A player can toggle this

view by hitting a button on the controller. The second

player can switch the display back to the overview by

hitting the same button on their controller.

3.4 Physics model

Two players can control their dune buggies using

standard driving controls on wireless Xbox 360

controllers. The car’s movement is calculated by the

Newton physics library, which includes a detailed

vehicle dynamics model of acceleration, steering, tire

friction effects and chassis rigid body dynamics. Figure

2 shows a car airborne after a jump, for example.

Most physics libraries include facilities for collision

detection that are specialized to efficiently handle

many separate rigid bodies. Typically the geometry of

each object is constrained to be static, so that various

structures such as convex hulls and BSP trees can be

pre-computed to speed collision detection. In

Micromotocross, however, these techniques are

inappropriate when detecting the collision of the cars

Figure 3. Traditional arcade view for blue

player shows other player and ramp ahead.

with the dynamically changing height map.

Fortunately, because the height field is a regular grid of

points, determining which parts of the mesh are

potentially in contact with the car’s tires, for example,

is a simple lookup operation.

Unfortunately, most available physics libraries do

not support dynamically changing meshes in the

calculation of collision response. Fast changes in the

mesh can result in unpredictable dynamics. If the

player moves an object quickly against the virtual car,

the response of the car may not look convincing, or

may even penetrate the terrain mesh.

Finally, it is important to note that a height map-

based terrain model is indifferent to the motion of

distinct objects as it relates to the simulation of

friction. For example, if the car is sitting on a physical

object that the user then moves across the table, the car

will not stay on the object (even if its brakes are on).

An appropriate analogy may be moving one’s hand

under a bed sheet, with objects sitting on the sheet: the

objects are likely to stay in place.

3.5 User experiences

Micromotocross has been experienced by hundreds

of people of a wide variety of ages and backgrounds.

People have fun manipulating objects on the table,

setting up ramps and bridges from one object to

another. Many are impressed by the magical quality of

the interaction.

Some users prefer to look at the synthetic view

(overview or behind-car), while others prefer to look at

the table projection. Some may prefer the synthetic

view because it is easier to see the car as it goes

through the air over a jump, or because it has higher

resolution.

Many people are amused to find that the system will

incorporate their hands into the scene when they are

placed on the table. Some try to drive their buggy over

their friend’s hand, or even up their arm, while a few

try to hold the car in the palm of their hand to move it

(if the hand cupped and moved slowly, this is often

successful). Children often will have fun knocking the

car driven by their friend off the table, but are annoyed

when this happens when it is their turn to drive.

4. Further interactions

It is interesting to watch people attempt to interact

with the virtual cars directly with their hands. Once

they realize that the system sees their hands, and that

the virtual objects tend to react in somewhat

appropriate ways to real physical objects on the table,

many people try to pick up and move the car. These

observations suggest that users would be able to use a

gesture-based interface to manipulate virtual objects,

just as they would manipulate real objects on the table.

In fact, it has been our goal all along to explore the

use of gestures in the 3D space on and above the table

surface. The depth image will make certain gestures

potentially easier to recognize, and the 3D information

should ease interactions with the physical objects.

The current prototype supports an initial

implementation of a pinching gesture that may be

suitable for picking up objects (see [6]). Presently, this

gesture must be done well above the surface of the

table, and instead of grasping a virtual object, the

gesture creates an obstacle (a heavy block) which is

dropped into the scene.

We envision the ability to pick up a virtual object

with this grasping gesture, place it on a physical object

sitting on the table, or even hold the virtual object in

the palm of the hand. So that such interactions behave

in the way that users expect, it may be desirable to

drive such interactions from the physics engine (in

contrast to recognizing the hand as a special object, for

example). Such an approach will require significant

upgrades to the physics simulation’s support of

dynamic meshes.

4. Acknowledgements

Thanks to 3DV Systems, Ltd., for providing the

ZSense prototype which made this work possible.

5. References

[1] G. J. Iddan and G. Yahav, "3D Imaging in the Studio,"

SPIE, vol. 4298, pp. 48, 2001.

[2] B. Piper, C. Ratti, and H. Ishii, "Illuminating Clay: A 3-

D Tangible Interface for Landscape Analysis," presented at

CHI 2002 Conference on Human Factors in Computing

Systems, 2002.

[3] T. Starner, B. Leibe, D. Minnen, T. Westeyn, A. Hurst,

and J. Weeks, "The perceptive workbench: Computer-vision-

based gesture tracking, object tracking, and 3D

reconstruction for augmented desks," Machine Vision and

Applications, vol. 14, pp. 51-71, 2003.

[4] A. Wilson, "TouchLight: An Imaging Touch Screen and

Display for Gesture-Based Interaction," presented at

International Conference on Multimodal Interfaces, 2004.

[5] A. Wilson, "PlayAnywhere: A Compact Tabletop

Computer Vision System," presented at Symposium on User

Interface Software and Technology (UIST), 2005.

[6] A. Wilson, "Robust computer vision-based detection of

pinching for one and two-handed gesture input," presented at

UIST, 2006.

