Proving the correctness of optimising destructive
and non-destructive reads over tuple spaces

Rocco De Nicola', Rosario Pugliese!, and Antony Rowstron?

! Dipartimento di Sistemi ed Informatica, Universita di Firenze,
Via C. Lombroso, 6/17 50135 Firenze, Italy.
{denicola, pugliese}@dsi.unifi.it
2 Microsoft Research Ltd, St. George House,

1 Guildhall Street, Cambridge, CB2 3NH, UK.

antr@microsoft.com

Abstract. In this paper we describe the proof of an optimisation that
can be applied to tuple space based run-time systems (as used in Linda).
The optimisation allows, under certain circumstances, for a tuple that
has been destructively removed from a shared tuple space (for example,
by a Linda in) to be returned as the result for a non-destructive read
(for example, a Linda rd) for a different process. The optimisation has
been successfully used in a prototype run-time system.

1 Introduction

In this paper we present the proof of an optimisation that can be applied to
tuple space based run-time systems, which was first presented in Rowstron [1].
Examples of tuple space based systems are JavaSpaces [2], KLAIM [3], Linda
[4], PageSpace [5], TSpaces [6], TuCSoN [7] and WCL [8] to name just a few.

Throughout this paper we will just use the three standard Linda tuple space
access primitives:

out(tuple) Insert a tuple into a tuple space.

in(template) If a tuple exists that matches the template then remove the tuple
and return it to the process performing the in. If no matching tuple is
available then the process blocks until a matching tuple is available.

rd(template) If a tuple exists that matches the template then return a copy
of the tuple to the process that performed the rd. If there is no matching
tuple then the process blocks until a matching tuple is available.

Moreover, we shall assume that a single global tuple space is being used by all
processes.

The optimisation proved in this paper is referred to as tuple ghosting. The
(informal) semantics of the in primitive leads implementers to remove the tuple
that is returned to a process from the tuple space as soon as the in primitive
is completed. Tuple ghosting allows the tuple to potentially remain as a valid
result tuple for a non-destructive read performed by another process whilst a set
of assumptions holds.



Studying the soundness of the optimisation has been highly valuable; it
showed that the original algorithm [1] was too optimistic and allowed the re-
sult to remain visible for too long. In certain circumstances, the original rules
used for the optimisation altered the semantics of the access primitives. We are
confident now that the actual optimisation, modified to use the semantics given
in Section 3, is sound.

1.1 Motivation for the optimisation

Optimisation of tuple removal is useful because often tuples are used to store
shared state between processes. For instance, a list is usually stored in a tuple
space so that the items of the list are stored in separate tuples, with each tuple
containing a unique number as the first field, representing its position in the list.
A single tuple is required that contains a shared counter indicating the number
of the next element that can be added. In order to add an element to the list, the
shared counter is removed using an in, the value of the counter increased and the
tuple is re-inserted, and then a new tuple is inserted containing the number of the
counter and the data as an element in the list. This is a common operation and
there have been proposals for the addition of new primitives to help performing
the update of the shared counter (see e.g. Eilean [9]), and when using compile-
time analysis, to convert the counter updating into a single operation [10]. The
proposals were made with the intention of increasing concurrency. Additionally,
in high performance servers the cost of managing a primitive blocked waiting for
a matching tuple is greater than finding a matching tuple and not blocking. One
of the new challenges for tuple space implementers is to create large-scale high
throughput servers, and therefore optimisations that reduce the server load are
important.

1.2 Implementation

Tuple ghosting has been implemented in a Java run-time environment and it has
proved to be clean and efficient. To provide tuple ghosting the implementation
uses the following informal rules.

When a tuple is returned as the result of an in:

1. the same tuple cannot be returned as a result of another in;

2. the process, which performed the in that matched the tuple, cannot access
the tuple anymore;

3. when the process which performed the in on the tuple performs any tuple
space access or terminates, the tuple is removed.

The kernel works by marking tuples as ghosted once they have been returned
by an in primitive. Every process using the kernel has a Globally Unique Iden-
tifier (GUID) created dynamically as it starts to execute. When the process
registers with the run-time system the GUID is passed to the run-time system
and it creates a primitive counter associated with the process. Each time a pro-
cess performs a tuple space access, the counter associated with the process is



incremented by one (before the primitive is performed). When a process requests
a tuple using an in, the matched tuple is marked as “ghosted” and tagged with
the identity tag of the process that removed the tuple and with the current value
of the primitive counter associated with the process. Any other process can then
perform a rd and have this tuple as the result. However, whenever the tuple is
matched the system compares on-the-fly the current primitive counter associated
with the GUID attached to the tuple with the primitive counter attached to the
tuple. If the primitive counters differ or if the process has terminated then the
tuple is discarded, and not used as a result for the rd.

All communication between the processes must occur through the shared
tuple space. Hidden communication between the processes would allow the pro-
cesses to determine that one had read a tuple after it had been destructively re-
moved by another. Process termination is an example of hidden communication
(where, for example, one process is started after another process terminates).
The starting process can deduce that any tuples removed by the terminated
process should not exist. Therefore, accounting for termination is important.

The rules that the kernel uses are described in detail in Section 3.

1.3 Performance

Table 1 shows some experimental results which demonstrate the advantages of
using tuple ghosting using the example of a list stored in a tuple space. We
use the scenario that the list is accessed by two reader processes that read the
counter 20 times, and a writer processes that appends 40 elements to the end of
the list (update the counter and add a new element).

The experimental run-time was written in Java, with the reader and writer
processes running as Java threads. The results were gathered on a Pentium II
400 MHz PC. The results shown in Table 1 are the average times of 20 execu-
tions with tuple ghosting both enabled and disabled. The execution times (with
standard deviations) are shown for the three processes. For the reader processes,
the number of blocked and ghosted rd primitives are also shown. A ghosted rd
is one that would have blocked if tuple ghosting was not enabled.

The results show (as expected) that no rd primitive leads to blocking when
tuple ghosting is enabled, but when ghosting is disabled we have that 70% of
the rd primitives do lead to a block. Tuple ghosting has therefore increased the
level of concurrency achieved in the system. In addition, the execution times
are reduced when the tuple ghosting is enabled. This is due to the overhead
associated with managing a rd that is blocked because no tuple is available.

The rest of the paper is structured as follows. In the next section the struc-
tural operational semantics for a traditional Linda implementation is outlined,
then in Section 3 the optimisation is outlined in more detail, and the structural
operational semantics for the optimised Linda implementation is presented. The
proof of correctness of the optimised version is then given in Section 4.



Ghosting disabled||Ghosting enabled
Value| St. Dev. Value| St. Dev.
Reader 1 Time (ms) 4367 566 185 39
No. of blocking rd|[15.75 1.37 0 0
No. of ghosted rd| 0 0 9.75 0.64
Reader 2 Time (ms) 4281 743 194 37
No. of blocking rd|[15.35 1.81 0 0
No. of ghosted rd| 0 0 9.9 0.85
Writer Time (ms) 4886 670 590 71
Table 1. Performance of the implementation with tuple ghosting enabled and disabled.

2 Structural Operational Semantics for a Linda Kernel

2.1 Syntax

The three standard Linda tuple space primitives are the elementary actions that
processes can perform. Processes are constructed by using three composition
operators: the null process nil is a process constant that denotes a terminated
process, the action prefix operator a._is a unary operator that denotes a process
that first executes action a and then behaves as its process argument, and the
parallel composition operator _ || _ is a binary operator that denotes the con-
current, execution of its two arguments. Processes can also consist of evaluated
tuples (they are a separate syntactic category), that represent tuples that have
been added to the tuple space (as in [11]). An evaluated tuple is denoted by
out(v) with v € VAL.

We assume the existence of some predefined syntactic categories that pro-
cesses can use. EX P, the category of value expressions, which is ranged over by
e, contains a set of wvariable symbols, VAR, ranged over by z, y and z, and a
non-empty countable set of value symbols, VAL, ranged over by v.

To give a simpler presentation of our formal framework, we make a few
symplifying assumptions. We assume that tuples and templates consists of just
one field. The only difference between tuples and templates is that the formers
can only contain expressions (or values) while the latters can also contain formal
parameters (i.e. variables to be assigned). A parameter x is denoted by z.

By summarizing, the syntax of the language is

P,Q == nillaP|P||Q|P|]O | O|P

O = O_Ut(U) ‘ 01 || 02

a == out(e) | rd(t) | in(t)

t n= ez

Variables which occur in formal parameters of a template ¢ are bound by
rd(t).. and in(t)... If P is a process, we let bv(P) denote the set of bound

variables in P and fv(P) denote that of free variables in P. Sets bv(-) and fuv(.)
can be inductively defined as follows:



o
)
-

fo(nil) = 0 bv(nil) = 0
fv(a.P) & fu(P) \ bv(a) bv(a.P) € bo(P) U bv(a)
fo(P Q)= foP)Ufu(@Q)  bu(P | Q) = bu(P) Uby(Q)
fo(P (] 0) = fu(P) bo(P || 0) = bu(P)
fo(0 || P) = fu(P) bo(O || P) = bu(P)
fu(out(e)) def {(;{]e} loftﬁef‘X:éR bu(out(e)) Ly
s 2 L {0 ETAR gy {11
o) & G e o) E T

As usual, we write P[v/t] to denote the term obtained by substituting each
free occurrence of ¢ in P with v, whenever t € VAR, and to denote P, otherwise.

2.2 Operational semantics

The operational semantics assumes the existence of a function for evaluating
value expressions; [-] : EXP — V AL. So, [ e] will then denote the value of
expression e, provided it does not contain variables.

The operational semantics of the language is defined in the SOS style
[12] by means of a Labelled Transition System (LTS). This LTS is the triple
(Py, L1, —>1) where:

— P1, ranged over by P and @, is the set of processes generated by the syntax
given in Section 2.1.

-0 {out(v), rd(v),in(v)|v € VAL} is the set of labels (we shall use a to
range over £ and s over L}).

— —1C Py x L1 x Py, called the transition relation, is the least relation
induced by the operational rules in Table 2 (to give a simpler presentation
of the rules, we rely on a structural relation defined as the least equivalence

relation closed under parallel composition that satisfies the structural rules
in Table 2). We shall write P —= @ instead of (P, a,Q) €—s.

For s € £f and P,Q € P;, we shall write P -2+ @Q to denote that P = Q,
if s =€, and that 3P,..., Py € Py : P =5 P, -2 ... P,y —» Q, if
S=a1a2...0n.

Let us briefly comment on the rules in Table 2. The structural laws simply say
that, as expected, parallel composition is commutative, associative and has nil
as the identity element. The operational rules S1-S5 should be self-explanatory.
Rule S4 says that a read operation can be performed only if there is a tuple
matching the template used by the operation. To check pattern-matching, con-
dition “[t] = vVt € VAR” is used; it is satisfied when either ¢ is an expression



Structural Rules

Plnl=P PQ=Q[P PIQIR=(PIQ)IR

Operational Rules

S1 aP-%P

99 PP
PlQ— P |Q
out(e
g3 cutle) P A Je]l=w
out(v) f
2 P' || out(s
L(t) !
o P55 P A ([t]=vVicVAR)
P || qut(v) —5 P'[u/t] || out(v)
in(t) ,
g5 P——P A ([t]=vVtEVAR)
P || out(v) = P'[u/1]
g6 P=Q A Q—=5Q AN Q=P

pP-%p

Table 2. Linda Operational Semantics

that evaluates to v (the value stored in the tuple) or ¢ is a variable (a variable
matches any value). Rule S5 differs from S4 just for the management of the ac-
cessed tuple: indeed, in S5, the tuple is consumed, while, in S4, the tuple is left
untouched. Finally, rule S6 ensures that the structural relation does not modify
the behaviour of processes.

3 Structural Semantics for Optimised Linda

Having described the basic Linda structural semantics, we now consider the
structural semantics for the optimised Linda implementation that uses tuple
ghosting. In order to illustrate tuple ghosting in more detail, let us consider two
very simple processes that interact through the tuple space. Their actions are
shown in Table 3.

We shall use Petri Nets and their unfoldings as case graphs to describe the
difference between the “classical” and the “optimized” semantics. In a Petri net
the circles represent places, and the squares represent transitions. A transition
can fire only when all the places that are preconditions for that transition contain



Process A Process B
A1 out(a) B, in(a)
A, rd(a) B> out(b)
Aj rd(b) B3 out(a)

Table 3. Two simple example processes.

tokens. When a transition fires it consumes the tokens in its preconditions and
places a token in each of the output places that are linked to it by arcs.

The Petri net and the case graph showing the parallel composition of our
two processes can be seen in Figure 1. If one ignores the dotted links in the
figure, then the Petri net and the case graph are those created according to the
semantics for the primitives as given in the previous section.

Al:out(a)

Al:out(a)

AZd(a) Blin(a)

gin@ "% “B2oub)
\ rd(a) ’
‘ A2:rd(a) ‘ \ Blin(a) ‘ e
\ P +
Baut(b) B3:out(a)
A3 rd(b) \fout(b) ‘

A3d(b) B3ut(d) A2:rd(a)

B3:out(a) A3d(b) A3d(b)

B3:out(a)

IoLd

Fig. 1. A Petri Net and case graph for processes A and B.

In Figure 1 the token starts in the initial place, and the only transition that
can fire is A1:out (a). When this fires, a token is placed in the three output places
connected to the transition. This means that either the transitions A2:rd(a) or
Bi:in(a) can fire. If Bl:in(a) fires then the other cannot fire, because the
token is removed from one of its preconditions. This token is replaced when the
transition B3:out(a) is fired. If A2:rd(a) fires, then the precondition tokens
are consumed, but the transition is linked to one of its own preconditions. So, a
token is reinserted in that place. However, the same rule cannot re-fire because
the other precondition does not contain a token any longer. This means that the



transition B1:in(a) is the only one that can fire, as it is the only transition that
has all precondition places filled with a token. The case graph shown in the same
figure shows the different ordering of the possible transition firings (of course,
the dotted arc has to be ignored).

In Figure 1 the dotted arcs represent the tuple ghosting optimisation. We
allow the transition A2:rd(a) to fire after the transition Bi:in(a) fires. This
means that the manipulation of a tuple has been suspended in the middle of the
operation; Process B has performed the in operation and has received the tuple
and can continue, but the tuple is not actually removed whilst Process A cannot
know that process B has received the tuple. This only occurs when there is the
possibility of a synchronisation between the two processes, which happens using
the tuple b, when Process B inserts it.

From the global perspective, this appears to be incorrect; it allows the read-
ing of a tuple that should have been removed. We will now present the formal
semantics of the optimised version, and then show the proof that the two se-
mantics are equivalent.

3.1 Optimized operational semantics

The optimized operational semantics of the language is defined by means of an-
other LTS. To this aim, we assume the existence of a set of process locations, Loc,
ranged over by /£, where the parallel components of processes can be allocated,
and of a distinct location, 7, where evaluated tuples are placed. We denote by
Loc a disjoint set of ghost locations (where ghost tuples can be placed) which is
in bijection with Loc via the operation . Finally, we let LOC = LocU LocU {7},
ranged over by A, be the set of all locations. Locations shall be used to model
the GUID given to processes in the implementation.

The idea is that Linda processes are statically allocated, e.g. distributed over
a net of processors, once and for all. The names of locations and the distribution
of processes over locations can be arbitrarily chosen. Hence, for any given process
P, its distribution is determined by the number of its parallel components, i.e. by
the number of occurrences of the parallel operator which are not guarded by any
action. For instance, the process out(1) || out(2).(out(3) || out(4)) has initially
two parallel components (although, after the execution of the out(2) operation,
it could be composed of three parallel processes) and can be allocated over,
at most, two processors. This means that, as far as distribution is concerned,
we have conceptually two different parallel operators and it is convenient to
use different notations for them: we shall use | to denote the occurrences of
the parallel operator that do not cause distribution of their components, e.g.
those occurrences guarded by some action, and shall still use || for the other
occurrences, e.g. (some of) the unguarded occurrences. Obviously, the semantics
of | is defined by rules analogues to S2 and to the structural ones.

To manage locations we introduce two new operators: an allocator operator
A 2 P, that says that process P is allocated at location A, and a location remover
operator P \ A, that says that location A (and the process located there) must
be removed from P.



The optimized LTS is the triple (Ps, Lo, —2) where:

— P,, ranged over by P and @, is the set of processes generated by the syntax
given in Section 2.1 extended with the following productions

PQ = ... |P|Q|Xx:P]| P\
P also contains the distributed versions of processes from P;.

L, {out(v)@Q\, rd(v)QN, in(v)QN, stop@A|v € VAL, X € LOCY is the set
of labels (we shall use @A\ to range over Lo and o over L3).

— —5C Py X Ly X Py, called the transition relation, is the least relation
closed under parallel composition that satisfies the operational rules in Ta-
ble 4 (again, to give a simpler presentation of the rules, we rely on a struc-

tural relation defined as the least equivalence relation closed under parallel

composition that satisfies the structural rules in Table 4). We shall write

P —22%, ) instead of (P,a@)\, Q) €—>».

For 0 € £5 and P,Q € P, we shall write P -2+ Q to denote that P = Q, if

o =, and that 3P;,..., Pyt € Py : P~y p 2@, p _an@
Q, if o= Oél@Al . OéQ@)\Q et Oén@An

Let us briefly comment on the rules in Table 4. The additional structural
laws say that the location remover distributes with respect to parallel compo-
sition and that the removal just concerns the location (and the process located
there) explicitely named by the operator. The operational rules should be quite
explicative. The general idea is the following. Tuples are initially allocated at
location 7. When a tuple located at 7 is accessed by an in action performed
by a process located at £, the tuple becomes a ghost tuple and is allocated at
the ghost location £. Whenever a process located at ¢ performs an action or
terminates, removal of the ghost tuple that could have been allocated at £ takes
place. In particular, we let £ :: nil perform the action stop@f (rule OS2), and,
in the presence of a stop@f action, we require the removal of ghost tuples at £
(rule OS4). Rule OS5 deals with addition of tuples to the tuple space (located
at 7). Rule OS6 says that a rd operation can also access ghost tuples that are
not allocated at the location of the process that performs the operation. Rule
OS7 says that an in operation can access just tuples stored in the tuple space
(i.e., it cannot access ghost tuples). Location removal is actually performed into
two steps: first, a location restriction is put and, then, when applying rule OS8,
the removal actually takes place by means of the structural relation. The infor-
mation stored in the transition labels always refer the location of the process
that performs the operation, apart for rule OS6 that, whenever a ghost tuple is
accessed, stores the location of such a tuple.

The structural relation enjoys the following property (that will be used later).

Proposition 1. For all P € Py and ¢,¢' € Loc, P\ £\ ¢ =P\ '\ L

Proof. By easy induction on the structure of P and transitivity.



Structural Rules

Plnil=P PllQ=Q | P

PIQIR=EIQIR (PIO\NE=P\L][Q\L

(£:: P)\ £L=mnil A:P)\L=Xa:P ifX#YL

0OS1

Operational Rules

P2 P

a@/f

{:P—s/{: P

stop@/

OS2 ¢ :: nil ——— nil

0S3

Q/
pP-=r

a@/t

PllQ—P|Q

0S4
P

P ——

stop@/ ,

stop@/

P\¢

out(e)@l
—— P A Je]l=vw

0S5
P

0s6 £

out(v)@

5 P\ L] 7 2 out(v)

rd(t)Qs

rd(v)@x’

Pl A out(v) =222 Prlu/t\ £ ]| A out(v)

OS7

in(t)Ql

P A ([t]=vVteVAR)

in(v)@(

P 7 out(v) ——— P'lv/t]\ £] £ :: out(v)

0ss P=Q A Q2,0 A Q=P

[©BY
p-222, p

! —
P’ A ([t]=vVteEVAR) A M#£¢ Where}\,:{

Cif A=
A otherwise

Table 4. Optimized Linda Operational Semantics



4 Proof of correctness

In this section, we prove the equivalence of the two semantics.
The two main results can be informally stated as follows:

— each computation from a distributed version of a process P allowed by the
optimized semantics can be simulated by a computation from P within the
original semantics (Theorem 1);

— each computation from a process P allowed by the original semantics can
be simulated by a computation from a distributed version of P within the
optimized semantics (Theorem 2).

First, it is convenient to fix the allocation function used to distribute the
parallel components of processes. To this aim, we assume that {l,7}* C Loc; we
shall use p to range over {l,r}*. Hence, strings of the form llr and rllrl are valid
locations. Now, we define an allocation function that, intuitively, for any process
P € P; returns its “maximal” distribution: each parallel component is allocated
over a different location. Locations of the form {I,r}* are easily “duplicated”:
given a p, pl and pr are two new different locations.

Definition 1. The allocation function L, : P1 — P is defined as follows:

L,(nil) = p Lo(a.P) = p
L,(P1Q) Ly (P\Q) (PIIQ)Zeﬁp()II»Cm«()
L,(P]0) ¥ L,(P)| T(O) L,(0 ] P) ¥ T(0) | £,(P)
T(O1 || 02) € T(O1) || T(O2) T (out(v)) < 7 :: out(v)

where function 7 separately allocates all evaluated tuples at location 7.

Function £, relates the states of P; to those of Py and satisfies the following
basic property.

Proposition 2. For all P € P; and £ € Loc, L,(P)\ £ = L,(P).
Proof. It directly follows from Definition 1 since £ ¢ A(L,(P)).

Correctness will be sketched in the case function £, (hence, maximal distri-
bution) is used for allocating processes. The proof would proceed similarly also
if a different allocation function was used.

We will also use an “inverse” function C that relates the states of Ps to those
of Pl.

Definition 2. The cleaning function C : Ps — P1 is defined as follows:

cie=pP)Ep C(r 1 out(v)) ' out(v)
C(L:: P) = il CPIQ)=P|Q
def

C(PQ)=c(P) @)



With abuse of notation, given a label a@\ € £5 we write C(a@)) to denote the

action part a whenever a € L1, and the empty action € otherwise (i.e. whenever

a = stop). A similar notation shall be used for sequences of labels from £3.
The following property says that C is the inverse function of £,,.

Proposition 3. For all P € Py, C(L,(P)) = P.
Proof. By easy induction on the structure of P.

Given P,, we shall use A(P,) to denote the set of locations occurring in Pp.
Formally, function A : Py — LOC is defined inductively as follows:

Alnil) = A(a.P) = Alout(v)) = AP | Q) =0, AP, || Q) = A(P,) UAQ,),
A(r= P) = {A}, A(P\X) = A(P)\ {A}.

As a matter of notation, given P,, we shall use P,[¢'/{] to denote the term
obtained by substituting each occurrence of £ in P, with ¢'. Finally, we use the
notation ITy,crt; :: out(v;) as a shorthand for ¢y = out(vq) || ... || €n 2 out(vy)
(the order in which the operands ¢; :: out(v;) are arranged is unimportant, as ||
is agsociative and commutative in both the two operational semantics considered
in the paper); and when n = 0, this term will by convention indicate nil.

Let us start proving that the original semantics can simulate the optimized
one. To this aim, let us introduce the following preorder, <, over L3.

Definition 3. Let < the least preorder relation over £} induced by the two
following laws:

TPl o' - rd(v)Qr - in(v)@QL - o < o' - in(v)QL-rd(v)QL- o

TP2 o' -a@\-in(v)Ql- -0 < o -in(w)QL-a@\-o  fAXALL

The intuition behind the preorder < is that if P —25 @ and ¢’ < o then

it also holds that P —Z— Q. Law TP1 permits exchanging the execution order
of two operations accessing the same evaluated tuple in order to avoid access-
ing ghost tuples. Law TP2 permits exchanging the execution order of opera-
tions that are not causally related (its simple presentation relies on the obser-

vation that there cannot be two ghost tuples at the same location, hence if
L,(P) 25O, 2L, () then it should be a = rd(v) and we would fall in

the case dealt with by law TP1).

Let us now introduce some useful notations. We shall write a € s to denote
that there are not sq, ss such that s = sjass (@) ¢ ¢ has a similar meaning).
Moreover, we write g(o) to denote the number of occurrences in o of locations
of Loc (‘g’ stands for ‘ghost’). Intuitively, sequences of labels o € £3 such that
g(o) > 0 are singled out from sequences of operations that make use of ghost
tuples and, hence, cannot be mimicked in the original semantics. However, we
will show that for each o with g(o) > 0 it is possible to find a ¢’ such that
g(o') = 0, hence o' is singled out from a sequence of operations that can also be
performed according to the original semantics, and ¢’ < o, hence ¢’ simulates o
according to the optimized semantics.



The following basic property relates a@/f-labelled transitions to a-labelled
transitions and can be considered the inverse of Proposition 13.

Proposition 4. For all P, € P,, t template and ¢ € Loc, P N ) where
a

a € {in(t),rd(t),out(e)} implies that there are P', Q' € Py such that P' — @'.
Moreover, either P = £ :: P' and Q = £ :: @)', or there is R € Py such that
P=((:P)||R,Q=(=:Q")|]|Rand t ¢ fu(R).

Proof. By induction on the length of the proof of transition P %} Q.

Basic step. The proof has length 1. Then rule OS1 has been used and there
are P',Q' € Py such that P=¢:: P, Q =(:: Q' and P' = Q.
Inductive step. The proof has length n > 1, hence the last applied rule is

0S3. This means that there are P;,Q1, Ry € Py such that P = P, || Ry,
Q =@ || R and P, % Q1. Since P is closed then ¢t ¢ fu(R;). By
inductive hypothesis, we have that there are P', Q' € P; such that P' — Q'
and either P, = ¢ :: P' and Q1 = ¢ :: @', or there is R' € P, such that
P={(=P)Y||R,Qi=((:Q") || R and t € fu(R'). The thesis follows by
taking R = Ry in the former case and R = R' || R; in the latter.

The following property is similar to the previous one but takes into account
stop@/-labelled transitions.

stop@{
Proposition 5. For all P,Q) € Py and ¢ € Loc, P =, @ implies that

either P = £ :: nil and @ = nil, or there is R € Py such that P = (£ :: nil) || R
and Q = nil || R.

top@¢
Proof. By induction on the length of the proof of transition P =, Q.

Basic step. The proof has length 1. Then rule OS2 has been applied and the
thesis obviously follows.
Inductive step. The proof has length n > 1, hence the last applied rule is

0S3. This means that there are Py,Q1, Ry € Py such that P = Py || Ry,

topQ@f
Q =0Q:1 || Ry and P, N 1. By inductive hypothesis, we have that

either P = £ :: nil and Q1 = nil, or there is Ry € Py such that P, = (¢ ::
nil) || R2, @1 = nil || Re. Then, the thesis follows by taking R = Ry in the
former case and R = Ry || Ry in the latter.

Now, we can prove soundness of laws TP1 and TP2.
Proposition 6. For all P € 771', Q1,Q2,Re Py, pef{l,r}*, o€ L5, ve VAL
and £ € Loc, £,(P) -2 @ m(v)@Z> Q- rd(v)@£> R implies that there are
Q3 € Py and ¢' € Loc such that £,(P) 5 Q4 -

d(v)afr' in(v)@¢
CLUNNSITLTN



Proof. Transition )y M) > must have been deduced by applying rule

OS7 (and, possibly, OS8). Hence, there are Py, P, € P, and a template ¢ such
in(t)@t
that Qi = P, || 7 = out(v), P, —=22% Py, Qs = B/ \ £ || £ = out(w),
in(t)@¢
and [t] = v or t € VAR. By Proposition 4, P, ———» P, implies that there
in(t
are P',P| € P, and P|' € P, such that P’ A) P,P =({(:P)| P
Py= (¢ P)) || P/ and t € fo(P"). In the same way, transition Qs rdwet, p
must have been deduced by applying OS6 with A = £ (and, possibly, OS8).
Hence, there are R', R" € P,, a template ¢’ and ¢’ € Loc with ¢' # ¢ (because

A = £ and the premisis of rule OS6 requires that A # £') such that Py[v/t]\{ = R,

d(t"a¢
RS R R = RN L | L out(v), and [#] = v or # € VAR,
d(t"a¢
By Proposition 4, R’ % R'" implies that there are P", Py € P; and
rd(t')

Py € Py such that P' ——— P, BJv/t]\£L =R = (' = P") || P), R" =
(¢ = Py) || Py and t' ¢ fu(Py). Now, by transitivity, from Pa[v/t]\ £ = ((¢ :
PO || P[o/\ €= € = Plloft] || P\ £ and Pofuoj]\ £ = (€' = P") || P it
follows that ¢ :: P{[v/t] || P{' \ £ = (¢’ :: P") || Py from which we get that there
is P; € Py such that P/' = (¢' :: P") || Py and Py = ¢ :: P/[v/t] || (P5\ ).
Therefore, we have that Q; = Py || 7 :: out(v) = £ :: P' || P' || 7 :: out(v) =
L P |0 P || P || 7:outtv) =0 P || £ P P3| 71 out(v)
and that R = R'[v/t'|\ L || £ :: out(v) = (¢’ =z Py || P)[v/t'] \L’ | £ :
out(v) = £ = Pifo/t) || PYNL || € out(v) = € = Bifofe) || (€5 Pilo/1] |
P3 \O\Z | £ out( Y=L Piv/t'] || € Pllv/t] || Ps\ £\ £ || é out(v) =

i Plu/t] || € Pylv/t] || Ps\ £ \ L] £ :: out(v) (where we have also used
Proposmon 1). Now, take Q3 = € :: P' || £' =2 Py[v/t'] || Ps \ £ || 7 :: out(v).
Since P" ﬂ) Pj, by applying rules OS1 and OS3, we get ¢ :: P" || £:: P' ||
P; % ' Py || £:: P'| Ps, and, by applying rules OS6 and OS8, we

get Q1 i) Q3. Moreover, since P’ Lﬁ) P/, by applying rules OS1 and

in(t
OS3,weget £:: P' || ¢ :: Pyjv/t'] || Ps\£ % L P2 Pylo/t] || Ps\E,

and, by applying rules OS7 and OS8, we get Q3 M) R, that concludes
the proof.

Proposition 7. For all P € Py, Q1,Q2, R€ Ps, p€ {l,r}*, 0 € L}, v € VAL,
0 € Loc, A € LOC and a@) € L, L,(P) —Z @ — a@)

> Qo > R
and X\ # (,( imply that there is Q5 € P, such that £,(P) —Z» Q; —22
in(v)@¢
Qs R.

Proof. Transition )y M) > must have been deduced by applying rule

OS7 (and, possibly, OS8). Hence, there are Py, P, € P, and a template ¢ such
in(t)@e

that @1 = P || 7 2 out(v), P L Py, Q2 = Bfu/t]\ L ]| £ = out(v),




in(t)@¢
and [t] = v or t € VAR. By Proposition 4, P, ———» P, implies that there

in(t
are PP/ € Py and P! € P, such that P' ——y p!, p, = (¢ = P') || PV,

Py,=(L::P))|| P/ and t & fu(P"). Now, we have that Q1 = P, || 7 :: out(v) =
£ P | P" || T i out(v) and, since t ¢ fo(P]"), that Q2 = Pev/t]\ £ || £ =
out(v) = (£ P}) || P/ \LI| € out(v) = £ Pllo/t] || P\ €| £ 5 out(v)
and we can proceed by case analysis on action a@A.

a@)\ = stop@f’', for some ¢' € Loc. Then rule OS4 (and, possibly, OS8) has been used to

derive transition Qs LI 3 Hence, there are R',R" € P, such that

stop@f’ . stop@f’
R' ———— R", @2 = R' and R = R"\{. By Proposition 5, R’ R"

implies that there is Ry € Py such that R' = (¢’ :: nil) || Ry and R" = nil ||
Ry. Now, by transitivity, from Q2 = £ :: P/[v/t] || P{'\ £ || £ :: out(v)
and Q2 = R' = (¢' :: nil) || Ry it follows that £ :: P/lv/t] || P{'\ £ || £ ::
out(v) = (¢' :: nil) || Ry from which we get that there is P; € P, such
that P/' = (¢ :: nil) || Ps and Ry = £ = P[[w/t] || (P3\ £) || £ :: out(v).
Therefore, we have that @Q; = £ :: P' || P{' || 7 :: out(v) = £ :: P' || ¢ =
nil || Ps || 7 out(v) = € = nil || €2 P' || P3| 7 : out(v) and that
R=R'\l =il || R\l ={: P{lv/t] || P\ L] £:: out(w))\ £ =2
Plo/t) | PAE | £ out(v) = € P{[o/t] || PA\C\L | €+ out(v) (where we
have also used Proposition 1). Now, take Q3 = £:: P' || P3 \ £ || 7 :: out(v).
stop@/('
Since, by rule OS2, ¢' :: nil L} nil, then, by applying rule OS3, we
stop@/('
get ' =nil || £ P || P || T i out(v) N | ¢: P || Ps |
7 :: out(v) and, by applying rules OS4 and OS8, we get Q1 storal Qs.
in(t)
Moreover, since P —— P/, by applying rules OS1 and OS3, we get

in(t)@¢
P || P\ % £ P || Ps\ £ and, by applying rules OS7 and

0S8, we get Q3 _net g (recall that £ # ¢' and that ¢ ¢ fv(Ps) because

t & fu(P")), that concludes the proof for this case.

a@)\ = out(v')@f', for some ¢' € Loc and v' € VAL. Then rule OS5 (and, possibly, OS8) has

been used to derive transition Q2 BLLLINY ) Hence, there are R', R" € Ps and

out(e’)@f’
e’ € EXP such that " ——— R", Qs = R', R=R'"\ ' || T :: out(v')
out(e')@l’
and [ e' ] = v'. By Proposition 4, R ————— R" implies that there are

out (e’
P".P) € Py and P} € Py such that P’ ——=, p1, R/ = (¢ = P") || PV,

R'"= (' :: P)) || Py and €' ¢ fv(Py'). Now, by transitivity, from Qo = ¢ ::
Plw/t] || P\ £]|| £ :: out(v) and Q2 = R' = (¢' :: P") || Py it follows that
C: Plv/t] || P\ L] £:: out(v) = (¢ :: P") || Py from which we get that
there is P; € Py such that P/’ = (¢' :: P") || P3 and Py = ¢ :: P/[v/t] ||
(P3\0) || £ :: out(v). Therefore, we have that Q1 = £ :: P' || P{' || 7 :: out(v) =
P |0 P || Py || 7out(v) =0 P"||€:: P || Ps|| 7:: out(v) and
that R=R'\ L || 7 =out(v) = = Py || PAY\L || 7 out(v') =4 2 Pi |
(5 Pllo/t] | P\ L] L5 out@)\ £ || 75 out(@) = € 5 PL || € Pl[uft] |




a@)\ = rd(v')@,

a@)\ = in(v")Qr,

Ps\U\L| £:: out(v) || T :: out(v') (where we have also used Proposition 1).
Now, take Q3 = £ :: P' || ¢! =: Py || P3\ £' || 7 :: out(v') || T :: out(v). Since
out(e")

P" ——» Pj, by applying rules OS1 and OS3, we get ¢' :: P" || £ :: P ||
Pyl 75 out(v) 2255, ¢ B € Pl Py || 7 out(v) and, by
applying rules OS5 and OS8, we get @ out(')al Q3. Moreover, since
P! Lw) P/, by applying rules OS1 and OS3, we get £ :: P' || ¢' :: P} ||

in(t)Qf
P\ || 7 :: out(v") A) P[0 Py|| P\ £ || 7 out(v') and, by
applying rules OS7 and 0S8, we get Qs —~ 225 R (recall that £ # ¢ and
that ¢t ¢ fu(Ps3) because t € fu(Py')), that concludes the proof for this case.

for some ¢' € Loc and v' € VAL. Then rule OS6 (and, possibly, OS8) has

been used to derive transition Qs BLLLINY -3 Hence, there are R, R" € P>

rd(t')@¢’
and a template ¢’ such that Rf ————— R", Q2 = R' || 7 = out(v'),

R=R'W/I\L || T :: out(v') and [¢'] = v’ or t' € VAR. By Proposition 4,
d(t)ae'
R’ r:> R" implies that there are P", Py € P, and Py € P, such that

d(t’
P P RU= (¢ P | PY R = (€= PY) || PY and ¢ & fo(PY).

Now, by transitivity, from Q2 = ¢ = P{[v/t] || P/'\ £ || £ :: out(v) and
Q=R || 7:out(v) = = P") || Py || 7 out(v') it follows that
o Pllw/t] || P\ L|| £ :: out(v) = (¢ = P") || Py || 7 :: out(v') from which
we get that there is P; € Py such that P’ = (¢/ :: P") || P3 || 7 :: out(v')
and Py = £ P{[v/t] || (P3\£) || £:: out(v). Therefore, we have that Q1 =
L2P | P 1mout(v) =L P 0P| P ||l 7 out(v') || 71 out(v)
and, since t' ¢ fo(Py'), that R = R"[v'/t'| \ £ || 7 :: out(v') = ((¢' :: Py) ||
PO I\ £ || 7 3 out(e') = €= Pyl /2] | (BYNL) || 7 out(s') = € -
PU ) 1| (€ Plfo/t] | PALI £ out(@)\E || 7 = out(v') = € = Pifo' ¢ |
L Pllo/t] || PBs\ £\ L £:: out(v) || T :: out(v') (where we have also used
Proposition 1). Now, take Q3 = ¢’ :: Py[v'/t'] || €:: P' || P3\ £ || T :: out(v) ||

rd(t")
7 :: out(v'). Since P —— Pj, by applying rules OS1 and OS3, we get

0P L P Py || out(v) EEEES ¢ Py € P Py | out(v)
and, by applying rules OS6 and OS8, we get @1 M) Q@s3. Moreover,
since P’ Lﬂ) P{, by applying rules OS1 and OS3, we get £ :: P' || ¢ :
P ] | P\ £ | 75 out(v') —25 ¢ P €5 Py /1) || P\ L |
T out(v') and, by applying rules OS7 and OS8, we get Q3 invel, p

(recall that ¢ # ¢' and that ¢t € fu(Ps) because t € fu(Py')), that concludes
the proof for this case.

for some ¢' € Loc and v' € VAL. Then rule OS7 (and, possibly, OS8) has

been used to derive transition (s _2@r, R Hence, there are R, R" € P3

in(t')Qr
and ¢ € EXP such that R’ &) R" Q=R || 7 outlv), R =



R'W /N L || £ = out(v') and [t'] = v’ or t' € VAR. By Proposition 4,
in(t')@e’
e R implies that there are P", Py € Py and Py € Py such that

in(t")
P PR = (s PYY || PY, R = (¢ PY) || PY and ¢ & fo(PY).

Now, by transitivity, from Q2 = ¢ :: P{[v/t] || P{" \ £ || £ :: out(v) and
Q=R || 7:out(v) = = P") || Py || 7 out(v') it follows that
o Plw/t] || P'\L || £:: out(v) = (¢ :: P") || Py || 7 = out(v') from which
we get that there is P3 € Py such that P’ = (¢/ :: P") || P3 || T :: out(v')
and Py = £ P{[v/t] || (P3\ £) || £:: out(v). Therefore, we have that Q1 =
L2P | P 1mout(v) =L P 0P| Pl 7 out(v') || 71 out(v)
and, since t' ¢ fo(Py'), that R = R"[v' /'] \ £ || £ :: out(v') = ((¢' :: P3) ||
POW I E || £ 5 out(v) = € 5 PU/E] || (PY\£) || £ out(v') =
s PRI P/t 1| P\ L] s out(@) \ £ ]| €5 out(v') = £ =
B /AT € Pilo/t] || P\ L\ L] £ = out(v) || £ :: out(v') (where we
have also used Proposition 1). Now, take Q3 = ¢' :: Py[v'/t'] || € =+ P' ||
P\l || 7 out(v) || £ :: out(v'). Since P" g) P}, by applying rules

in(t')@e
OS1 and OS3, we get ¢ == P" || £ 2 P' || P3 || 7 = out(v) L) Y

Py || £:: P || P3| 7 : out(v) and, by applying rules OS7 and OS8, we
. Nayg' in(t
get Q1 M Q3. Moreover, since P’ LL> P/, by applying rules OS1
in(t)@Qf

and OS3, we get £ :: P' || ¢' - Pi[v'/t'] || Ps \ £ || £ :: out(v') £) £
Pl || € = P/t || Ps\ £ || £ :: out(v') and, by applying rules OS7 and
0S8, we get Q3 in(v)@f R (recall that £ # ¢' and that ¢t € fv(P;) because
t & fu(Py)), that concludes the proof for this case.

The following proposition shows how the laws of the trace preoder can be
used to reduce the number of ghost tuples accessed during a computation.

Proposition 8. Forall P € Py, Q,R € Py, p € {l,r}*, 0 € LI, v € VAL and

¢ € Loc, L,(P) = Q M) R implies that there are 01,09 € £} such that
o = o1-in(v)@~L-oy. Moreover, if in(v)@Qf ¢ o and for all t@\ € oy we have that

X\ # £,{, then there is £ € Loc such that £,(P) —Zs—22, "4WEC, inel, p

Proof. Transition @ M) R must have been deduced by applying OS6

(and, possibly, OS8) with A = £. In particular, this means that there is Q' €
Py such that @ = Q' || £ :: out(v). Since, by definition, £ ¢ A(L,(P)) then
rule OS7 must have been applied to give rise to the ghost tuple £ :: out(v).
Therefore, label in(v)@¢ occurs in the sequence o, i.e. in(v)@Q¢ € o. Now, let
01,03 € L} be such that o0 = o1 - in(v)@Qf - 05 and in(v)Q@Qf ¢ o,. By hypothesis,

L,(P) - el o2, rdvet, p Hence, if 0o = € then the thesis directly

follows from Proposition 6. Otherwise, by repeatedly applying Proposition 7,

o1 oo in(v)Q¢ . rd(v

we get that £,(P) y—— LNy and, again, the thesis follows
from Proposition 6.




We can now give a method for transforming a generic computation in an
equivalent computation (i.e. with the same final state) that corresponds to a
sequence of operations that never access ghost tuples.

o

Proposition 9. For all P € Py, Q € P2, p€ {l,r}* and 0 € L5, L,(P) — Q
implies that there is ¢’ < o such that £,(P) LN @ and g(¢') = 0.

Proof. By induction on g(o). If g(0) = 0 then we can take o' = o. Otherwise,
let 01,09,03,04 € L} be such that 0 = o1 - rd(v)QL - 09, 01 = 03 - in(v)QL - gy,
in(v)Ql & o4 and X # £, £, for all a@\ € 4. The sequence o4 does exist because
g(o) > 0 and £,(P) -% @ imply the following facts: for some ¢ € Loc and
v € VAL, rd(v)@f € o (because g(o) > 0); hence, in(v)@f¢ € o and there is
some occurrence of label in(v)@/¢ that is on the left of rd(v)@Qf within o (because
label in(v)@/ is singled out when it is produced the ghost tuple £ :: out(v) that
is accessed when label rd(v)@/ is singled out); finally, the occurrences of labels
in(v)@¢ and rd(v)@£ can be chosen in such a way that rd(v)@{ is the first label
after in(v)@/¢ that accesses the ghost tuple at £ and no label with ¢ as location
occurs in between (because, after in(v)@Qf, out(v) is the only ghost tuple at £

untill it will be destroyed by the execution of any operation at £). Now, by

d(v)@l  in(v)at
Proposition 8, there is ¢ € Loc such that £,(P) —Z»-Z25 " (e, e,

R, where R is such that £,(P) —UL)M) R. Hence, by letting o5 = o3 -

o4 - 7d(v)@QL - in(v)@QL - 05, we have that £,(P) —2» Q. The thesis follows by
induction since o5 < ¢ and g(o5) = g(o) — 1.

The following two propositions relate the transitions of the optimized seman-
tics to the transitions of the original one.

Proposition 10. For all P € Py, Q € P2, p € {l,r}*, a € Ly, L €
A(L,(P)) N Loc, L C A(L,(P)) and v; € VAL (Vi : {; € L), L,(P) || Iy, ers
out(v;) —9%%, O implies that there are R € P, pl e {l,r}* and L' C A(L,(R))
such that P — R and Q = L, (R) || Hy,epls == out(v;).

Proof. We proceed by case analysis on a.

a = out(v), for some v € VAL. Then, for deriving transition £,(P) || Hpert; :

out(v;) LU @, rule OS5 (and, possibly, rule OS8) has been used, hence

there are a template ¢t and P', Q" € P> such that [t] = v, L,(P) || IIy;erl;
out(e)@f

out(v;) = P', PP ——— Q' and Q = Q' \ £ || 7 :: out(v). Moreover,
t(e)ar
by Proposition 4, P’ &) Q' implies that there are P;, P € P; and

t
P, € Py such that P, ou:(e)> P,PP={U:P)||PQ ={:P)| P

and e € fuo(P). Now, L,(P) || Iy;erl :: out(v;) = P' = (0 2 Py) || P,
implies that there are Ps, Py € Py such that P = P, || Ps, P, = P| || P
and Q' = (0 P)) || Po = L,(P4) || He;erts o2 out(v;). Hence, we have that
Q=Q'\L|l 7= outlv) = Ly(P1) [| Hyerrgeyls == out(v) [| 7 22 out(v).



Let p’ be such that p = p' - u where u € {l,r}. We let L' = L\ {¢} and
R = Py || out(v), if u = 1, and R = out(v) || Py, if u = r. In both cases
we have L' C A(L, (R)) (namely, AL, (R)) = A(L,(P")) U{r}) and, since

out(e) , . out(v)
P, —— PJ, by applying rules S2, S3 and S6, we get P ———— R, and

the thesis is proven.

, for some v € VAL. Then, for deriving transition £,(P) || et =

out(v;) LU @, rule OS6 (and, possibly, rule OS8) has been used, hence

there are a template ¢ and P',Q" € P such that L,(P) || Hyerli =

rd(t)Q/l
out(v;) = P' || T :: out(v), P’ & Q', Q= Qv/t]\ L] T :: out(v)
d(t)as
and [t] = v or t € VAR. Moreover, by Proposition 4, P’ % Q'
rd(t)

implies that there are Py, P{ € Py and P, € Py such that P, —— P,
P = :P)| P Q = ( :: P)| Poand t ¢ fv(Py). Now,
Ly(P) || Hyerti = out(v) = P || 7 out(v) = (€ :: Pr) || Py || 7 2 out(v)
implies that there are P3, Py, € Py such that P = P, || P; || out(v),
P, = P/[v/t] || Ps || out(v) and Q'[v/t] || T :: out(v) = (£ :: P/[v/t]) ||
Py || 7 i out(v) = L,(Ps) || Hperks = out(v;). Hence, we have that
Q= Q/t\NL| 7= out(v) = Ly(Py) || Hperngnpls == out(v;). Now, let

rd(t
R =Py and L' = L\ {¢}. Since P, A) P{, by applying rule S2, we get
d(t
P || Ps 7ﬂ;()> P/ || P; and, by applying rules S4 (recall that t € fv(P2))

and OS8, we get that P L(U)) R and the thesis is proven.

for some v € VAL. Then, for deriving transition £,(P) || Iyerli :

out(v;) LU @, rule OS7 (and, possibly, rule OS8) has been used, hence

there are a template ¢t and P', Q" € P, such that £,(P) || IIy;erl; = out(v;) =
in(t)Qf

P || T :: out(v), P’ £) Q,Q=Qv/t]\ L] £ :: out(v) and [t] = v
in(t)@¢

or t € VAR. Moreover, by Proposition 4, P’ L) Q' implies that there
in(t

are P;,P{ € Py and P, € Py such that P, A) P/, P ={:P)| P,

Q' = ::P) || P,and t € fu(P2). Now, L,(P) || Herli = out(v;) =

P 7 out(v) = (0 :: Py) || Py || 7 2 out(v) implies that there are

P;, Py, € Py such that P = P, || P; || out(v), P = P{[v/t] || Ps and

Q'lv/t] = (€ :: P{[v/t]) || Po = Lp(Ps) || Hycrl :: out(v;). Hence, we have

that Q = Qu/\L || £ 5 out(w) = Lp(Py) || My ernnls = out(vs) | £

out(v). Now, let R = Py, p' = pl and L' = L (with v; = v for {; = £). We

have that L' C A(L(Py)) (because A(L,(P)) = A(L,(Ps)) U {r}. Since

in(t in(t
Py A) P/, by applying rule S2, we get P, || P3 A) P/ || P; and, by

in(v)

applying rules S4 (recall that t ¢ fv(P)) and OS8, we get that P ————
and the thesis is proven.

Proposition 11. For all P € P, Q € Py, p € {l,r}*, £ € AL,(P)), L C

A(L,(P)) and v; € VAL (Vi : ¢; € L), L,(P) || Hy,ert; =2 out(v;)

stop@/{

Q



implies that there is R € Py such that P = R and Q = L,(R) || Ij;ep\inli =
out(v;).

Proof. Let us take R = P. Obviously, we have P = R. We are left to show that
Q = L,(P) || Hyer\gels =2 out(v;). This can be easily proved by induction on

the length of derivation of transition £,(P) || IIyerts = out(v;) _stop@t, Q.

Indeed, either rule OS4 has been the last rule applied, in which case we have
Q = L,(P) || Iy, cr\se3ti =2 out(v;), or rule OS8 has been the last rule applied,
in which case, by induction, we can assume that there is @' € P, such that
Q' = L,(P) || Hyer\ieyls 2 out(v;) and @ = Q', and the thesis follows by
transitivity.

We can now generalize the previous properties to sequences of transitions.

Proposition 12. Forall P € Py, Q € Py, p € {I,r}* and o € L}, L,(P) -2 Q
and g(o) = 0 imply that there are P’ € Py, p' € {l,r}*, L C A(L,(P')) and

vi € VAL (Vi : f; € L) such that P —~Z P' and Q = L,0(P") || Hy,enls =

out(v;).
Proof. By induction on the length of o.

Basic step. If 0 = € then Q = £,(P) and the thesis easily follows by taking
P =P, p=pand L=0.
Inductive step. Let 0 = ¢'-a@/f for some o' € L3, a € L1U{stop} and £ € Loc.

Hence, g(0') = 0, g(a@f) =0 (i.e. £ € Loc) and there is some R € Py such

that £,(P) SN L UN Q. By induction, there are R' € Py, p1 € {l,7}*,

L' C AL, (R') and v; € VAL (Vi : {; € L) such that P <)% R and
R=L, (R") || el :: out(v;). By using rule OS8, from L,, (P) 7, R,

R, Qand R= Ly (R') || Hy;erti i out(v;) we get that £, (P) <,

Lo(R) || My, crl; o out(v;) and L, (R') || My, el = out(v;) =225 Q. Now

the thesis follows from Proposition 10, if @ € £y, and from Proposition 11
otherwise (i.e. a = stop).

Finally, we have that the original semantics can simulate the optimized one.

Theorem 1. For all P € Py, Q € P2, p € {l,r}* and 0 € L}, L,(P) —= Q

implies that there are o' < o and P’ € Py such that P ), prand C(Q)=P.

Proof. Directly follows from Propositions 9 and 12.
We now prove that the optimized semantics can simulate the original one

(Theorem 2). The following basic property relates a-labelled transitions to a@/(-
labelled transitions.



Proposition 13. For all P,Q € P; and a € £y, P — Q implies that there is

¢ e A(L,(P)) such that £,(P) N L,(Q). Moreover, either £L,(P) = £ :: P

and £,(Q) = € :: Q, or there are P',Q' € Py and R € P, such that P' - @/,
L,(P)=(l=P)[|Rand L,(Q) = (£ Q") | R.

Proof. By induction on the length of the proof of transition P N Q.

Basic step. The proof has length 1. Then rule S1 has been used and there is P;
such that: P = a.P; and ) = P;. By definition, we have £,(P) = p :: a.P;
and £,(Q) = p :: Pi (because P, cannot be of the form P || P{’). The thesis
follows by applying rule OS1 and taking £ = p, P' = a.P; and Q' = P;.

Inductive step. The proof has length n > 1, hence the last applied rule is
S2 or its analogous for the operator |. In the case S2 is the last applied
rule, there are Py, P>,Q1 € Py such that P = P, || P, P, TN Q1 and
Q@ = Q1 || P». By definition, we have that £,(P) = Ly (P1) || L,r(P2) and
L,(Q) = Lyu(Q1) || Lor(P2). By inductive hypothesis, we have that there is

¢ € ALy (P)), such that La(Pr) 2255 £,/(Q1) and either £,(Pr) = '

Py and £,(Q1) = € :: Q1 or there are P/,Q} € P; and R' € P, such that
P =5 Q4, Lu(P) = (¢ = P)) || R and L£,(Q1) = (¢ :: Q) || R'. Hence,

by applying OS3, we get the transition £,(P) = Ly (P1) || Lyr(P2) L,

Lo(Q1) || Lor(P2) = L,(Q). Now, ¢! € A(L,(P)) because A(L,(P)) =
ALy (Pr))UA(L,yy (P2)). Then, the thesis follows by taking ¢ = ¢' and either
R =L, (P;) or R = R'|| L,;(P>). In the case the analogous of S2 for the
operator | is the last applied rule, then there are Py, P»,@; € P; such that
P=P | R P =25 Qy and Q = Q4 | P,. Now, by definition, we have
L,(P)=p: P | Pyand £L,(Q) = p :: Q1 | P». Hence, from P, B I Q1
we get P, | P, — @, | P, (by the analogous of S$2), from which we get

Y

a@
pu P | Py =, p Q1 | P2 (by applying OS1). The thesis then follows
by taking £ = p, P’ = P, | P, and Q' = Q1 | P».

The following four propositions formalize the idea that locations can be ar-
bitrarily chosen and processes that only differ for the names of their locations
behave similarly. The main point is that the allocation function does not pre-
serve structural equivalence. Indeed, when allocating two structurally equivalent
processes, two new processes are obtained that are not structurally equivalent.
However, by appropriately renaming the locations of one of the two processes
by means of a one-to-one function it is possible to obtain a process which is
structurally equivalent to the other one.

We will use the following notation: if P € Py, L C LOC and ¢ : A(P) — L
then ¢(P) denotes the process obatined by replacing in P each occurrence of
any £ € A(P) with ¢(£). A similar notation is used for renaming locations within
transition labels. We use ¢’ o ¢" to denote the composition of functions ¢' and

¢" so that ¢' 0 ¢"(€) = ¢"(¢'(£)).



Proposition 14. For all P € P; and p, p’' € {l,r}*, there is a one-to-one func-
tion ¢ : ALy (P)) — A(L,(P)) such that £,(P) = ¢(L, (P)).

Proof. The proof proceeds by induction on the syntax of P.

Basic step. The basic step is when P has one of the following forms: nil,
a.P and @ | R. In any case, by definition of allocation function we have
L,(P)=p:Pand L, (P)=p :: P, and the thesis follows by taking ¢ such
that ¢ : {p'} — {p} and ¢(p') = p.

Inductive step. We reason by case analisys on the top-level operator in P.

— Suppose that P = @ || R. Then, by definition, means that £,(P) =
La(@) | Lor(R) and Ly(P) = £,0(Q) || (Lpr(R). By induc-
tion, we can assume that there are two one-to-one functions ¢; :
ALy1(Q)) — ALp(Q)) and 62 ¢ A(Lyr(R) — ALy(R)) such
that ¢1(L£,1(Q)) = L,(Q) and ¢2(L,y+(R)) = L, (R). Since dom(¢1) N
dom(¢s) = range(¢1) Nrange(ds) = B, function composition ¢ o g2 gets
a one-to-one function and, by taking ¢ = ¢ o ¢, the thesis follows.

— Suppose that P = @ || O (the symmetric case P = O || @Q is dealt
with similarly). Then, by definition, means that £,(P) = £,(Q) || T(O)
and L, (P) = L,(Q) || T(O). By induction, we can assume that there
are is a one-to-one functions ¢' : A(L,(Q)) — A(L,(Q)) such that
&1 (Ly(Q)) = L£,(Q). Now we have two cases to consider. Either 7 €
A(Ly(Q)), then we take p = p', or 7 & A(L,(Q)), then we take p = p'op”
where p" : {r} — {7} and p"'(7) = 7. In both cases, the thesis follows.

Proposition 15. For all P,P' € P; and p,p' € {l,r}*, if P = P’ can be
proved without using the first structural law, then there is a one-to-one function
¢ ALy (P)) — A(L,(P)) such that £,(P) = ¢(L, (P')).

Proof. The proof proceeds by induction on the length of the proof of P = P’.

Basic step. Only one structural law has been applied to deduce that P = P’.
The proof for this case proceeds by case analisys on the structural law used.
— Suppose that the structural law applied is Q1 || Q2 = Q2 || @1, where
P =@ || Q2 and P' = @2 || Q1. This, by definition, means that
L,(P) = L(Q1) || £,r(Qs) and that L, (P') = L,yu(@Q2) || Ly (Q1).
Now, by Proposition 14, we have that there are two one-to-one functions
b1 ALpr(Q1) — ALp(Q1) and b : ALpi(Q2)) — ALp(Q2))
such that ¢1(Ly7(Q1)) = La(Q1) and ¢2(Lyi(Q2)) = Lyr(Q2). Since
dom(é1) Ndom(¢a) = range(dr1) Nrange(ps) = @, function composition
@1 o ¢ gets a one-to-one function and, by taking ¢ = ¢, o ¢, the thesis
follows.

If the structural law applied is Q1 | Q2 = Q2 | @1, where P = Q1 | Q2
and P' = Q2 | @1, then, by definition, £,(P) = p = (@1 | Q2) and
Ly(P') =p :(Q2] Q1), and the thesis follows by taking ¢ such that

¢ :{p'} — {p} and ¢(p") = p.



— Suppose that the structural law applied is @1 || (Q2 || @3) = (@1 ||
Q) || Qs, where P = Qy || (Qs || Qs) and P' = (@1 || @) || @s. This,
by definition, means that £,(P) = Ly(Q1) || (Lm(Q2) || Lorr(Q3))
and that £, (P') = (Lou(Q1) || Lyir(@2)) || Lpr(Qa). Now, by
Proposition 14, we have that there are three one-to-one functions ¢ :
MLu(Q1)) — ALu(@1)), b2+ ALp1p(Q2)) —> ALy (Q2)), and
¢35+ A(Lyr(Q3)) —> A(Lprr(Q3)) such that ¢1(Lyu(Q1)) = Lu(Q1),
$2(Lpir(Q2)) = Lon(Q2) and ¢3(L,y1(Q3)) = Lor(Qs). Since defini-
tion domains and ranges of these functions are pairwise disjoint, their
composition is a one-to-one function too and, by taking ¢ = ¢ o ¢s o @3,
the thesis follows.

If the structural law applied is @1 | (Q2 | Q3) = (@1 | @2) | @3, where
P = Ql | (QQ | Qg) and P’ = (Ql ‘ QQ) | Q3, then, by deﬁnition,
£,(P) = ps Qi | (Q2]Qs) and Ly (P') = o = (@1 | @2) | Qa, and the
thesis follows by taking ¢ such that ¢ : {p'} — {p} and ¢(p’) = p.
Inductive step. In this case the proof proceeds by case analisys on the last
structural law applied when proving that P = P'. Suppose that P"” € P
is such that P = P" and P" = P’ can be proved without using the first
structural law and the last equivalence is proved by a single application of
one of the remaining structural laws. By induction, for any p"” € {I,r}*,
there is a one-to-one function ¢" : A(L,(P")) — A(L,(P)) such that
L,(P) = ¢" (L, (P")). By reasoning as in the basic step, there is a one-to-one
function ¢’ : A(L, (P")) — A(Ly» (P")) such that L, (P") = ¢' (L, (P')).
Then, the thesis follows by taking ¢ = ¢’ o ¢".

Proposition 16. For all P,P' € Py, a € Ly, ¢ € A(P), L C LOC and ¢ :
A(P) — L one-to-one function, if P 990, P! then o(P) BLON o(P").

Proof. By easy induction on the length of the proof of P _aat, pr,

Proposition 17. For all P,P',Q" € Py, p,p' € {l,r}* and ¢ : A(L, (P')) —
A(L,(P)) one-to-one function, if P = P’ can be proved without using the first
structural law, ¢(L, (P')) = L,(P) and A(L, (P')) = A(L,(Q')) then there is
Q € P1 such that Q = Q' and ¢(L,(Q")) = L,(Q).

Proof. The proof relies on the following fact:

if A(Ly(P')) = A(Ly(Q')) then processes P' and @' have the same
number of sequential components and the same structure with respect
to parallel composition

that can be proved by induction on the syntax of P’. It is then possibile to
define a one-to-one function 7 from the sequential components of P’ to those
of @' so that n(P') = @'. Since P = P’ can be proved without using the
first structural law, P and P’ have the same sequential componets and only
differ for their composition. This implies that «(P) € P;, and that processes
7(P) and Q' have the same sequential components and only differ for their



composition, hence, by using the structural rules it is possible to prove that
n(P) = Q'. Now, take @ = 7(P). Since function 7 commutes both with £
and with ¢, from the hipothesis that ¢(L, (P')) = L,(P) that also implies
that ¢(L, (P')) and £,(P) have the same sequential components, it follows that
Ly (Q) = oLy (x(P'))) = w(d(L,y (P1))) = 7(L,(P)) = L, (n(P)) = L,(Q),

and the thesis is proved.

Now, by exploiting the previous properties, we are able to prove the relation-
ship between the transitions of the original semantics and those of the optimized
one. Notice that the states of the optimized semantics can also consist of ghost
tuples.

Proposition 18. For all P,Q € Py, a € L1, p € {l,r}*, L C A(L,(P)) and

v; € VAL (Vi: ¢; € L), P — @ implies that there are R € Py, £ € A(L,(P))

and L' C A(L,(R)) such that R = @ and L,(P) || Ierli = out(v;) SULUN

Ly(R) || Heer b = out(v;).
Proof. By induction on the length of the derivation of transition P —— Q.

Basic step. The transition has length 1 and one of rules S3, S4 or S5 is the
only rule used to infer the transition. We proceed by case analysis on the
applied rule.

Rule S3: Then a = out(v) for some v € VAL and there are e € EXP and P’ € Py

out(e
such that [e] = v, P #> P'and Q = P' || out(v). By Proposition 13,
t(e)@rt
we have that £,(P) % L,(P") for some ¢ € A(L,(P)). Hence,

t(e)@r
by applying rule OS3, we get that £,(P) || ITy,er.l; :: out(v;) %

L,(P") || Iy;erts = out(v;). Now, by applying rule OS5, we get the

transition £,(P) || My erls = out(v;) ——2% (£,(P') || Hyert; -
out(v;)) \ £ || T :: out(v). By Proposition 2, we have that (£,(P') ||
Myperls s out) \ L || 7 5 out(®) = £,(P) || Myery gyl out(v) |
T 1 out(v). By definition of allocation function, we have that £,(P’') ||
Myer\inti = out(vy) || 7w out(v) = L,(P' || out(v)) || Hper\geyli =
out(v;) and the thesis follows by taking R = @ and L' = L\ {{}, and by
applying rule OSS8.

Rule S4: Then a = rd(v) for some v € VAL and there are a template ¢t and
P',P" € Py such that [t] = v ort € VAR, P = P’ || out(v),

rd(t
P’ L) P" and @Q = P"[v/t] || out(v). By definition, £,(P) =

rd(t)Q¢
L,(P") || 7 :: out(v), and, by Proposition 13, £,(P") ——— L,(P")

for some ¢ € A(L,(P')). Hence, by applying rule OS3, we get that

rd(t)Q¢
Ly(P') || Heerts o out(vi) ——— L,(P") || Heerts = out(v;). Then,

by applying rules OS6 and OS8, we get the transition £,(P) || IIscrt;
out(v;) —5 (L,(P") || Muerls = out@i)lo/t) \ L || 7 5 out(v).
Now, function £, and substitution [v/t] commute, hence (L,(P") ||




Myerts = out(®))o/t] = £,(P"[/f) || Hyerts = out(v;). Moreover.,
since £ & A(L,(P"[v/t])), by Proposition 2, we have that (L,(P"[v/t]) ||
My epls = out(vi)) \ L= Lo(P"[v/t]) || Hyerygali o2 out(v;). Finally, by
definition of allocation function, £,(P"[v/t]) || Iy er\qeli = out(v;) ||
7 out(v) = Ly(P'[v/t] || out(v)) || Iy, er\qeyli =2 out(v;). The thesis
follows by taking L' = L\ {¢{} and by applying rule OS8.

Rule S5: Then a = in(v) for some v € VAL and there are a template ¢ and
P',P" € Py such that [t] = v ort € VAR, P = P’ || out(v),

in(t
P’ i) P" and Q = P"[v/t]. By definition, £,(P) = L,(P') |

in(t)@¢
T 1 out(v), and, by Proposition 13, £,(P') ———— L,(P") for some

¢ € A(L,(P)). Hence, by applying rule OS3, we get that £,(P') ||

in(t)@¢
Iyert; o out(vi) —— L,(P") || Hyerls :: out(v;). Then, by ap-

plying rules OS7 and OS8, we get the transition £,(P) || Iyerl;

out(v;) " (£,(P") || Hyerts = out(w)w/0\ € || € = out(v).
Now, function £, and substitution [v/t] commute, hence (L,(P") ||
yerts = out(@)o/t] = £,(P"[v/f]) || Hyerts = out(v;). Moreover,
since £ & A(L,(P"[v/t])), by Proposition 2, we have that (£,(P"[v/t]) ||
Iyertli o out(vi)) \ L= L,(P"[v/t]) || Hp,er\qeyli = out(v;). The thesis
follows by taking L' = L (with v; = v for ¢; = £) and by applying rule
0Ss8.

Inductive step. The last applied rule is S6, hence there are P', Q' € P; such
that P = P', P' -2 Q' and Q = Q'. Without loss of generality, we can
assume that P = P’ (and @ = Q') is proved without using the first structural
law, hence P and P’ (resp. @ and Q') have the same number of parallel
components. Indeed, it can be easily seen that, for Ry, R{,Rs € P; and

a' € L1, Ry || Ro —“ R || Re if and only if Ry || nil || R % R! ||
nil || R2. By induction we have that for any given p’ € {l,r}* and L; C
A(L, (P')), there are R' € Pa, ¢! € A(L,(P')) and Ly C A(L, (R')) such

that R' = Q' and L, (P') || IIy,er, ¥ = out(v;) BN Ly (R") || Hyeryti =
out(v;). Since P and P’ have the same number of parallel components, by
Proposition 15, there is a one-to-one function ¢ : A(L, (P')) — A(L,(P))
such that £,(P) = ¢(L, (P')) and, then, that £,(P) || Iscrl; :: out(v;) =
ALy (P') || Hy,er, i o2 out(v;)). By Proposition 16, we have that ¢(L, (P') ||

Mer, b = out(v) s §(L,(R') | Hieraly = out(vy). Finally, by
Proposition 17, we have that there is R € P such that R = R’ and £,(R) =
#(Ly (R')). Then, by taking L' = ¢(L3), we have that £,(R) || Ipecrl;
out(vi) = ¢(Ly(R') || Hyerots 2 out(v;)), from which, by applying rule
0S8, the thesis follows.

The previous property is now generalized to nonempty sequences of transi-
tions.



Proposition 19. For all P,Q € Py, p € {l,7}* and s € L], P -2 @ implies
that there are R € Py, 0 € L3, L C A(L,(R)) and v; € VAL (Vi : {; € L) such
that £,(P) — L,(R) || I;ert; = out(v;), s = C(o) and R = Q.

Proof. By induction on the length of the sequence s.

Basic step. In this case s = a for some a € £; and the thesis is an immediate
consequence of Proposition 18.
Inductive step. Suppose now that s = s'a for some s' € £ and a € L;.

Then there is P' € P such that P s—l> P' -5 Q. By induction, there are
R € Py, 0" € LF, L' C A(L,(R") and v} € VAL (Vi : ¢; € L") such that
L,(P) LA Ly(R") || Hy,erts = out(vj), s' =C(0') and R' = P'. Now, from
R' = P’ and from the hypothesis P’ - @, by applying S6, we get that

a

R' — Q. Hence, from Proposition 18, there are R" € Py, p € {l,r}* and

L" C A(L,(R")) such that R” = Q and L,(R') || yerl; = out(v]) —=5%

L,(R") || Iy, cr L :: out(vi). This concludes the proof (just take o = ¢'-a@/,
R=R'"and L=1L").

Finally, we can prove that the optimized semantics can simulate the original
one.

Theorem 2. For all P,Q € Py, p € {l,r}* and s € £, P -2 @Q implies that
there are R € Py and o € £} such that £,(P) —— R, s = C(0) and C(R) = Q.

Proof. If s = € then Q = P; hence, taken 0 = ¢ and R = L,(P), the thesis
follows from Proposition 3. Otherwise, from Proposition 19 it follows that there
are R' € Py, 0 € L, L C A(L,(R")) and v; € VAL (Vi : ¢; € L) such that
L,(P) == L,(R") || Hyert; = out(vi), s = C(o) and R' = Q. Now, take
R = L,(R) || Hperli :: out(v;). By definition of C, we have that C(L,(R') ||
Iyl oz out(v;)) = C(L,(R)) || C(Hp,ert = out(v;)) = C(L,(R')). Moreover,
by Proposition 3, we have that C(£,(R')) = R’ which implies the thesis.

5 Conclusion

We have described a tuple ghosting optimisation that allows tuples to be still
used as the results of non-destructive tuple space accesses once they have been
destructively removed. The motivation for tuple ghosting has been briefly out-
lined, as have some practical results from a prototype system demonstrating the
advantage of the approach.

The operational semantics of the original Linda and of the version with the
optimisation are illustrated. Using these operational semantics, we have pre-
sented a the formal proof of the tuple ghosting optimisation, and shown that the
optimisation does not alter the semantics of the primitives from a programmers’
perspective. This has been achieved by proving that the optimised semantics can
simulate the original semantics, and that a sequence of transitions from the opti-
mised semantics can be mimicked by a sequence of transitions from the original
semantics.



References

1.

10.

11.

12.

A. Rowstron. Optimising the Linda in primitive: Understanding tuple-space run-
times. In J. Carroll, E. Damiani, H. Haddad, and D. Oppenheim, editors, Proceed-
ings of the 2000 ACM Symposium on Applied Computing, volume 1, pages 227-232.
ACM Press, March 2000.

. Sun Microsystems. Javaspace specification. available at: http://java.sun.com/,

1999.

R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering, 24(5):315—
330, 1998.

. N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,

32(4):444-458, 1989.

P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and A. Knoche. Coordinating mul-
tiagent applications on the WWW: A reference architecture. IEEE Transactions
on Software Engineering, 24(5):362-366, 1998.

P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. TSpaces. IBM Systems
Journal, 37(3):454-474, 1998.

A. Omicini and F. Zambonelli. Coordination for internet application development.
Autonomous Agents and Multi-agent Systems, 2(3):251-269, 1999. Special Issue
on Coordination Mechanisms and Patterns for Web Agents.

A. Rowstron. WCL: A web co-ordination language. World Wide Web Journal,
1(8):167-179, 1998.

J. Carreria, L. Silva, and J. Silva. On the design of Eilean: A Linda-like library for
MPI. Technical report, Universidade de Coimbra, 1994.

N. Carriero and D. Gelernter. Tuple analysis and partial evaluation strategies
in the Linda precompiler. In D. Gelernter, A. Nicolau, and D. Padua, editors,
Languages and Compilers for Parallel Computing, Research Monographs in Parallel
and Distributed Computing, pages 114-125. MIT Press, 1990.

R. De Nicola and R. Pugliese. A process algebra based on linda. In P. Ciancarini
and C. Hankin, editors, Proceedings of the First International Conference on Co-
ordination Models and Languages (COORDINATION’96), volume 1061 of Lecture
Notes in Computer Science, pages 160-178. Springer, 1996.

G.D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Dep. of Computer Science, Aarhus University, Denmark, 1981.



