
Proving the correctness of optimising destructiveand non-destructive reads over tuple spacesRocco De Nicola1, Rosario Pugliese1, and Antony Rowstron21 Dipartimento di Sistemi ed Informatica, Universit�a di Firenze,Via C. Lombroso, 6/17 50135 Firenze, Italy.fdenicola, puglieseg@dsi.unifi.it2 Microsoft Research Ltd, St. George House,1 Guildhall Street, Cambridge, CB2 3NH, UK.antr@microsoft.comAbstract. In this paper we describe the proof of an optimisation thatcan be applied to tuple space based run-time systems (as used in Linda).The optimisation allows, under certain circumstances, for a tuple thathas been destructively removed from a shared tuple space (for example,by a Linda in) to be returned as the result for a non-destructive read(for example, a Linda rd) for a di�erent process. The optimisation hasbeen successfully used in a prototype run-time system.1 IntroductionIn this paper we present the proof of an optimisation that can be applied totuple space based run-time systems, which was �rst presented in Rowstron [1].Examples of tuple space based systems are JavaSpaces [2], KLAIM [3], Linda[4], PageSpace [5], TSpaces [6], TuCSoN [7] and WCL [8] to name just a few.Throughout this paper we will just use the three standard Linda tuple spaceaccess primitives:out(tuple) Insert a tuple into a tuple space.in(template) If a tuple exists that matches the template then remove the tupleand return it to the process performing the in. If no matching tuple isavailable then the process blocks until a matching tuple is available.rd(template) If a tuple exists that matches the template then return a copyof the tuple to the process that performed the rd. If there is no matchingtuple then the process blocks until a matching tuple is available.Moreover, we shall assume that a single global tuple space is being used by allprocesses.The optimisation proved in this paper is referred to as tuple ghosting. The(informal) semantics of the in primitive leads implementers to remove the tuplethat is returned to a process from the tuple space as soon as the in primitiveis completed. Tuple ghosting allows the tuple to potentially remain as a validresult tuple for a non-destructive read performed by another process whilst a setof assumptions holds.

Studying the soundness of the optimisation has been highly valuable; itshowed that the original algorithm [1] was too optimistic and allowed the re-sult to remain visible for too long. In certain circumstances, the original rulesused for the optimisation altered the semantics of the access primitives. We arecon�dent now that the actual optimisation, modi�ed to use the semantics givenin Section 3, is sound.1.1 Motivation for the optimisationOptimisation of tuple removal is useful because often tuples are used to storeshared state between processes. For instance, a list is usually stored in a tuplespace so that the items of the list are stored in separate tuples, with each tuplecontaining a unique number as the �rst �eld, representing its position in the list.A single tuple is required that contains a shared counter indicating the numberof the next element that can be added. In order to add an element to the list, theshared counter is removed using an in, the value of the counter increased and thetuple is re-inserted, and then a new tuple is inserted containing the number of thecounter and the data as an element in the list. This is a common operation andthere have been proposals for the addition of new primitives to help performingthe update of the shared counter (see e.g. Eilean [9]), and when using compile-time analysis, to convert the counter updating into a single operation [10]. Theproposals were made with the intention of increasing concurrency. Additionally,in high performance servers the cost of managing a primitive blocked waiting fora matching tuple is greater than �nding a matching tuple and not blocking. Oneof the new challenges for tuple space implementers is to create large-scale highthroughput servers, and therefore optimisations that reduce the server load areimportant.1.2 ImplementationTuple ghosting has been implemented in a Java run-time environment and it hasproved to be clean and e�cient. To provide tuple ghosting the implementationuses the following informal rules.When a tuple is returned as the result of an in:1. the same tuple cannot be returned as a result of another in;2. the process, which performed the in that matched the tuple, cannot accessthe tuple anymore;3. when the process which performed the in on the tuple performs any tuplespace access or terminates, the tuple is removed.The kernel works by marking tuples as ghosted once they have been returnedby an in primitive. Every process using the kernel has a Globally Unique Iden-ti�er (GUID) created dynamically as it starts to execute. When the processregisters with the run-time system the GUID is passed to the run-time systemand it creates a primitive counter associated with the process. Each time a pro-cess performs a tuple space access, the counter associated with the process is

incremented by one (before the primitive is performed). When a process requestsa tuple using an in, the matched tuple is marked as \ghosted" and tagged withthe identity tag of the process that removed the tuple and with the current valueof the primitive counter associated with the process. Any other process can thenperform a rd and have this tuple as the result. However, whenever the tuple ismatched the system compares on-the-
y the current primitive counter associatedwith the GUID attached to the tuple with the primitive counter attached to thetuple. If the primitive counters di�er or if the process has terminated then thetuple is discarded, and not used as a result for the rd.All communication between the processes must occur through the sharedtuple space. Hidden communication between the processes would allow the pro-cesses to determine that one had read a tuple after it had been destructively re-moved by another. Process termination is an example of hidden communication(where, for example, one process is started after another process terminates).The starting process can deduce that any tuples removed by the terminatedprocess should not exist. Therefore, accounting for termination is important.The rules that the kernel uses are described in detail in Section 3.1.3 PerformanceTable 1 shows some experimental results which demonstrate the advantages ofusing tuple ghosting using the example of a list stored in a tuple space. Weuse the scenario that the list is accessed by two reader processes that read thecounter 20 times, and a writer processes that appends 40 elements to the end ofthe list (update the counter and add a new element).The experimental run-time was written in Java, with the reader and writerprocesses running as Java threads. The results were gathered on a Pentium II400 MHz PC. The results shown in Table 1 are the average times of 20 execu-tions with tuple ghosting both enabled and disabled. The execution times (withstandard deviations) are shown for the three processes. For the reader processes,the number of blocked and ghosted rd primitives are also shown. A ghosted rdis one that would have blocked if tuple ghosting was not enabled.The results show (as expected) that no rd primitive leads to blocking whentuple ghosting is enabled, but when ghosting is disabled we have that 70% ofthe rd primitives do lead to a block. Tuple ghosting has therefore increased thelevel of concurrency achieved in the system. In addition, the execution timesare reduced when the tuple ghosting is enabled. This is due to the overheadassociated with managing a rd that is blocked because no tuple is available.The rest of the paper is structured as follows. In the next section the struc-tural operational semantics for a traditional Linda implementation is outlined,then in Section 3 the optimisation is outlined in more detail, and the structuraloperational semantics for the optimised Linda implementation is presented. Theproof of correctness of the optimised version is then given in Section 4.

Ghosting disabled Ghosting enabledValue St. Dev. Value St. Dev.Reader 1 Time (ms) 4367 566 185 39No. of blocking rd 15.75 1.37 0 0No. of ghosted rd 0 0 9.75 0.64Reader 2 Time (ms) 4281 743 194 37No. of blocking rd 15.35 1.81 0 0No. of ghosted rd 0 0 9.9 0.85Writer Time (ms) 4886 670 590 71Table 1. Performance of the implementation with tuple ghosting enabled and disabled.2 Structural Operational Semantics for a Linda Kernel2.1 SyntaxThe three standard Linda tuple space primitives are the elementary actions thatprocesses can perform. Processes are constructed by using three compositionoperators: the null process nil is a process constant that denotes a terminatedprocess, the action pre�x operator a: is a unary operator that denotes a processthat �rst executes action a and then behaves as its process argument, and theparallel composition operator k is a binary operator that denotes the con-current execution of its two arguments. Processes can also consist of evaluatedtuples (they are a separate syntactic category), that represent tuples that havebeen added to the tuple space (as in [11]). An evaluated tuple is denoted byout(v) with v 2 V AL.We assume the existence of some prede�ned syntactic categories that pro-cesses can use. EXP , the category of value expressions, which is ranged over bye, contains a set of variable symbols, V AR, ranged over by x, y and z, and anon-empty countable set of value symbols, V AL, ranged over by v.To give a simpler presentation of our formal framework, we make a fewsymplifying assumptions. We assume that tuples and templates consists of justone �eld. The only di�erence between tuples and templates is that the formerscan only contain expressions (or values) while the latters can also contain formalparameters (i.e. variables to be assigned). A parameter x is denoted by x.By summarizing, the syntax of the language isP;Q ::= nil j a:P j P k Q j P k O j O k PO ::= out(v) j O1 k O2a ::= out(e) j rd(t) j in(t)t ::= e j xVariables which occur in formal parameters of a template t are bound byrd(t): and in(t): . If P is a process, we let bv(P) denote the set of boundvariables in P and fv(P) denote that of free variables in P . Sets bv() and fv()can be inductively de�ned as follows:

fv(nil) def= ; bv(nil) def= ;fv(a:P) def= fv(P) n bv(a) bv(a:P) def= bv(P) [bv(a)fv(P k Q) def= fv(P) [fv(Q) bv(P k Q) def= bv(P) [bv(Q)fv(P k O) def= fv(P) bv(P k O) def= bv(P)fv(O k P) def= fv(P) bv(O k P) def= bv(P)fv(out(e)) def= �feg if e 2 V AR; otherwise bv(out(e)) def= ;fv(in(t)) def= �ftg if t 2 V AR; otherwise bv(in(t)) def= �fxg if t = x; otherwisefv(rd(t)) def= �ftg if t 2 V AR; otherwise bv(rd(t)) def= �fxg if t = x; otherwiseAs usual, we write P [v=t] to denote the term obtained by substituting eachfree occurrence of t in P with v, whenever t 2 V AR, and to denote P , otherwise.2.2 Operational semanticsThe operational semantics assumes the existence of a function for evaluatingvalue expressions; [[�]] : EXP �! V AL. So, [[e]] will then denote the value ofexpression e, provided it does not contain variables.The operational semantics of the language is de�ned in the SOS style[12] by means of a Labelled Transition System (LTS). This LTS is the triple(P1;L1;�!1) where:{ P1, ranged over by P and Q, is the set of processes generated by the syntaxgiven in Section 2.1.{ L1 def= fout(v); rd(v); in(v)jv 2 V ALg is the set of labels (we shall use a torange over L1 and s over L�1).{ �!1� P1 � L1 � P1, called the transition relation, is the least relationinduced by the operational rules in Table 2 (to give a simpler presentationof the rules, we rely on a structural relation de�ned as the least equivalencerelation closed under parallel composition that satis�es the structural rulesin Table 2). We shall write P a��! Q instead of (P; a;Q) 2�!1.For s 2 L�1 and P;Q 2 P1, we shall write P s��! Q to denote that P = Q,if s = �, and that 9P1; : : : ; Pn�1 2 P1 : P a1��! P1 a2��! : : : Pn�1 an���! Q, ifs = a1a2 : : : an.Let us brie
y comment on the rules in Table 2. The structural laws simply saythat, as expected, parallel composition is commutative, associative and has nilas the identity element. The operational rules S1-S5 should be self-explanatory.Rule S4 says that a read operation can be performed only if there is a tuplematching the template used by the operation. To check pattern-matching, con-dition \[[t]] = v _ t 2 V AR" is used; it is satis�ed when either t is an expression

Structural RulesP k nil � P P k Q � Q k P P k (Q k R) � (P k Q) k ROperational RulesS1 a:P a��! PS2 P a��! P 0P k Q a��! P 0 k QS3 P out(e)�����! P 0 ^ [[e]] = vP out(v)�����! P 0 k out(v)S4 P rd(t)����! P 0 ^ ([[t]] = v _ t 2 V AR)P k out(v) rd(v)����! P 0[v=t] k out(v)S5 P in(t)����! P 0 ^ ([[t]] = v _ t 2 V AR)P k out(v) in(v)����! P 0[v=t]S6 P � Q ^ Q a��! Q0 ^ Q0 � P 0P a��! P 0Table 2. Linda Operational Semanticsthat evaluates to v (the value stored in the tuple) or t is a variable (a variablematches any value). Rule S5 di�ers from S4 just for the management of the ac-cessed tuple: indeed, in S5, the tuple is consumed, while, in S4, the tuple is leftuntouched. Finally, rule S6 ensures that the structural relation does not modifythe behaviour of processes.3 Structural Semantics for Optimised LindaHaving described the basic Linda structural semantics, we now consider thestructural semantics for the optimised Linda implementation that uses tupleghosting. In order to illustrate tuple ghosting in more detail, let us consider twovery simple processes that interact through the tuple space. Their actions areshown in Table 3.We shall use Petri Nets and their unfoldings as case graphs to describe thedi�erence between the \classical" and the \optimized" semantics. In a Petri netthe circles represent places, and the squares represent transitions. A transitioncan �re only when all the places that are preconditions for that transition contain

Process A Process BA1 out(a) B1 in(a)A2 rd(a) B2 out(b)A3 rd(b) B3 out(a)Table 3. Two simple example processes.tokens. When a transition �res it consumes the tokens in its preconditions andplaces a token in each of the output places that are linked to it by arcs.The Petri net and the case graph showing the parallel composition of ourtwo processes can be seen in Figure 1. If one ignores the dotted links in the�gure, then the Petri net and the case graph are those created according to thesemantics for the primitives as given in the previous section.
A2:rd(a)

A3:rd(b) B2:out(b)

B3:out(a)

A1:out(a)

B1:in(a)

A1:out(a)

A2: rd(a) B1:in(a)

B1: in(a) B2:out(b)

B2: out(b)

A3: rd(b)

B3:out(a)

B3: out(a)

A3: rd(b)

B3:out(a)

A2:rd(a)

A3: rd(b)

A2:
rd(a)

Fig. 1. A Petri Net and case graph for processes A and B.In Figure 1 the token starts in the initial place, and the only transition thatcan �re is A1:out(a).When this �res, a token is placed in the three output placesconnected to the transition. This means that either the transitions A2:rd(a) orB1:in(a) can �re. If B1:in(a) �res then the other cannot �re, because thetoken is removed from one of its preconditions. This token is replaced when thetransition B3:out(a) is �red. If A2:rd(a) �res, then the precondition tokensare consumed, but the transition is linked to one of its own preconditions. So, atoken is reinserted in that place. However, the same rule cannot re-�re becausethe other precondition does not contain a token any longer. This means that the

transition B1:in(a) is the only one that can �re, as it is the only transition thathas all precondition places �lled with a token. The case graph shown in the same�gure shows the di�erent ordering of the possible transition �rings (of course,the dotted arc has to be ignored).In Figure 1 the dotted arcs represent the tuple ghosting optimisation. Weallow the transition A2:rd(a) to �re after the transition B1:in(a) �res. Thismeans that the manipulation of a tuple has been suspended in the middle of theoperation; Process B has performed the in operation and has received the tupleand can continue, but the tuple is not actually removed whilst Process A cannotknow that process B has received the tuple. This only occurs when there is thepossibility of a synchronisation between the two processes, which happens usingthe tuple b, when Process B inserts it.From the global perspective, this appears to be incorrect; it allows the read-ing of a tuple that should have been removed. We will now present the formalsemantics of the optimised version, and then show the proof that the two se-mantics are equivalent.3.1 Optimized operational semanticsThe optimized operational semantics of the language is de�ned by means of an-other LTS. To this aim, we assume the existence of a set of process locations, Loc,ranged over by `, where the parallel components of processes can be allocated,and of a distinct location, � , where evaluated tuples are placed. We denote byLoc a disjoint set of ghost locations (where ghost tuples can be placed) which isin bijection with Loc via the operation �. Finally, we let LOC = Loc[Loc[f�g,ranged over by �, be the set of all locations. Locations shall be used to modelthe GUID given to processes in the implementation.The idea is that Linda processes are statically allocated, e.g. distributed overa net of processors, once and for all. The names of locations and the distributionof processes over locations can be arbitrarily chosen. Hence, for any given processP , its distribution is determined by the number of its parallel components, i.e. bythe number of occurrences of the parallel operator which are not guarded by anyaction. For instance, the process out(1) k out(2):(out(3) k out(4)) has initiallytwo parallel components (although, after the execution of the out(2) operation,it could be composed of three parallel processes) and can be allocated over,at most, two processors. This means that, as far as distribution is concerned,we have conceptually two di�erent parallel operators and it is convenient touse di�erent notations for them: we shall use j to denote the occurrences ofthe parallel operator that do not cause distribution of their components, e.g.those occurrences guarded by some action, and shall still use k for the otheroccurrences, e.g. (some of) the unguarded occurrences. Obviously, the semanticsof j is de�ned by rules analogues to S2 and to the structural ones.To manage locations we introduce two new operators: an allocator operator� :: P , that says that process P is allocated at location �, and a location removeroperator P n �, that says that location � (and the process located there) mustbe removed from P .

The optimized LTS is the triple (P2;L2;�!2) where:{ P2, ranged over by P and Q, is the set of processes generated by the syntaxgiven in Section 2.1 extended with the following productionsP;Q ::= : : : j P j Q j � :: P j P n �P2 also contains the distributed versions of processes from P1.{ L2 def= fout(v)@�; rd(v)@�; in(v)@�; stop@�jv 2 V AL; � 2 LOCg is the setof labels (we shall use �@� to range over L2 and � over L�2).{ �!2� P2 � L2 � P2, called the transition relation, is the least relationclosed under parallel composition that satis�es the operational rules in Ta-ble 4 (again, to give a simpler presentation of the rules, we rely on a struc-tural relation de�ned as the least equivalence relation closed under parallelcomposition that satis�es the structural rules in Table 4). We shall writeP �@�����! Q instead of (P; �@�;Q) 2�!2.For � 2 L�2 and P;Q 2 P2, we shall write P ���! Q to denote that P = Q, if� = �, and that 9P1; : : : ; Pn�1 2 P2 : P �1@�1�����! P1 �2@�2�����! : : : Pn�1 �n@�n������!Q, if � = �1@�1 � �2@�2 � : : : � �n@�n.Let us brie
y comment on the rules in Table 4. The additional structurallaws say that the location remover distributes with respect to parallel compo-sition and that the removal just concerns the location (and the process locatedthere) explicitely named by the operator. The operational rules should be quiteexplicative. The general idea is the following. Tuples are initially allocated atlocation � . When a tuple located at � is accessed by an in action performedby a process located at `, the tuple becomes a ghost tuple and is allocated atthe ghost location `. Whenever a process located at ` performs an action orterminates, removal of the ghost tuple that could have been allocated at ` takesplace. In particular, we let ` :: nil perform the action stop@` (rule OS2), and,in the presence of a stop@` action, we require the removal of ghost tuples at `(rule OS4). Rule OS5 deals with addition of tuples to the tuple space (locatedat �). Rule OS6 says that a rd operation can also access ghost tuples that arenot allocated at the location of the process that performs the operation. RuleOS7 says that an in operation can access just tuples stored in the tuple space(i.e., it cannot access ghost tuples). Location removal is actually performed intotwo steps: �rst, a location restriction is put and, then, when applying rule OS8,the removal actually takes place by means of the structural relation. The infor-mation stored in the transition labels always refer the location of the processthat performs the operation, apart for rule OS6 that, whenever a ghost tuple isaccessed, stores the location of such a tuple.The structural relation enjoys the following property (that will be used later).Proposition 1. For all P 2 P2 and `; `0 2 Loc, P n ` n `0 � P n `0 n `.Proof. By easy induction on the structure of P and transitivity.

Structural RulesP k nil � P P k Q � Q k PP k (Q k R) � (P k Q) k R (P k Q) n ` � P n ` k Q n `(` :: P) n ` � nil (� :: P) n ` � � :: P if � 6= `Operational RulesOS1 P a��! P 0` :: P a@`���! ` :: P 0OS2 ` :: nil stop@`�����! nilOS3 P �@`����! P 0P k Q �@`����! P 0 k QOS4 P stop@`�����! P 0P stop@`�����! P 0 n `OS5 P out(e)@`�������! P 0 ^ [[e]] = vP out(v)@`�������! P 0 n ` k � :: out(v)OS6 P rd(t)@`������! P 0 ^ ([[t]] = v _ t 2 V AR) ^ � 6= `P k � :: out(v) rd(v)@�0�������! P 0[v=t] n ` k � :: out(v) where �0 = � ` if � = �� otherwiseOS7 P in(t)@`������! P 0 ^ ([[t]] = v _ t 2 V AR)P k � :: out(v) in(v)@`������! P 0[v=t] n ` k ` :: out(v)OS8 P � Q ^ Q �@�����! Q0 ^ Q0 � P 0P �@�����! P 0Table 4. Optimized Linda Operational Semantics

4 Proof of correctnessIn this section, we prove the equivalence of the two semantics.The two main results can be informally stated as follows:{ each computation from a distributed version of a process P allowed by theoptimized semantics can be simulated by a computation from P within theoriginal semantics (Theorem 1);{ each computation from a process P allowed by the original semantics canbe simulated by a computation from a distributed version of P within theoptimized semantics (Theorem 2).First, it is convenient to �x the allocation function used to distribute theparallel components of processes. To this aim, we assume that fl; rg� � Loc; weshall use � to range over fl; rg�. Hence, strings of the form llr and rllrl are validlocations. Now, we de�ne an allocation function that, intuitively, for any processP 2 P1 returns its \maximal" distribution: each parallel component is allocatedover a di�erent location. Locations of the form fl; rg� are easily \duplicated":given a �, �l and �r are two new di�erent locations.De�nition 1. The allocation function L� : P1 �! P2 is de�ned as follows:L�(nil) def= � :: nil L�(a:P) def= � :: a:PL�(P j Q) def= � :: (P j Q) L�(P k Q) def= L�l(P) k L�r(Q)L�(P k O) def= L�(P) k T (O) L�(O k P) def= T (O) k L�(P)T (O1 k O2) def= T (O1) k T (O2) T (out(v)) def= � :: out(v)where function T separately allocates all evaluated tuples at location � .Function L� relates the states of P1 to those of P2 and satis�es the followingbasic property.Proposition 2. For all P 2 P1 and ` 2 Loc, L�(P) n ` � L�(P).Proof. It directly follows from De�nition 1 since ` 62 �(L�(P)).Correctness will be sketched in the case function L� (hence, maximal distri-bution) is used for allocating processes. The proof would proceed similarly alsoif a di�erent allocation function was used.We will also use an \inverse" function C that relates the states of P2 to thoseof P1.De�nition 2. The cleaning function C : P2 �! P1 is de�ned as follows:C(` :: P) def= P C(� :: out(v)) def= out(v)C(` :: P) def= nil C(P j Q) def= P j QC(P k Q) def= C(P) k C(Q)

With abuse of notation, given a label �@� 2 L2 we write C(�@�) to denote theaction part � whenever � 2 L1, and the empty action � otherwise (i.e. whenever� = stop). A similar notation shall be used for sequences of labels from L�2.The following property says that C is the inverse function of L�.Proposition 3. For all P 2 P1, C(L�(P)) = P .Proof. By easy induction on the structure of P .Given Po, we shall use �(Po) to denote the set of locations occurring in P0.Formally, function � : P2 �! LOC is de�ned inductively as follows:�(nil) = �(a:P) = �(out(v)) = �(P j Q) = ;, �(Po k Qo) = �(Po) [�(Qo),�(� :: P) = f�g, �(P n �) = �(P) n f�g.As a matter of notation, given Po, we shall use Po[`0=`] to denote the termobtained by substituting each occurrence of ` in Po with `0. Finally, we use thenotation �`i2L`i :: out(vi) as a shorthand for `1 :: out(v1) k : : : k `n :: out(vn)(the order in which the operands `i :: out(vi) are arranged is unimportant, as kis associative and commutative in both the two operational semantics consideredin the paper); and when n = 0, this term will by convention indicate nil.Let us start proving that the original semantics can simulate the optimizedone. To this aim, let us introduce the following preorder, �, over L�2.De�nition 3. Let � the least preorder relation over L�2 induced by the twofollowing laws:tp1 �0 � rd(v)@� � in(v)@` � � � �0 � in(v)@` � rd(v)@` � �tp2 �0 � �@� � in(v)@` � � � �0 � in(v)@` � �@� � � if � 6= `; `The intuition behind the preorder � is that if P ���! Q and �0 � � thenit also holds that P �0��! Q. Law tp1 permits exchanging the execution orderof two operations accessing the same evaluated tuple in order to avoid access-ing ghost tuples. Law tp2 permits exchanging the execution order of opera-tions that are not causally related (its simple presentation relies on the obser-vation that there cannot be two ghost tuples at the same location, hence ifL�(P) ���! in(v)@`������! �@`����! Q then it should be � = rd(v) and we would fall inthe case dealt with by law tp1).Let us now introduce some useful notations. We shall write a 62 s to denotethat there are not s1; s2 such that s = s1as2 (�@� 62 � has a similar meaning).Moreover, we write g(�) to denote the number of occurrences in � of locationsof Loc (`g' stands for `ghost'). Intuitively, sequences of labels � 2 L�2 such thatg(�) > 0 are singled out from sequences of operations that make use of ghosttuples and, hence, cannot be mimicked in the original semantics. However, wewill show that for each � with g(�) > 0 it is possible to �nd a �0 such thatg(�0) = 0, hence �0 is singled out from a sequence of operations that can also beperformed according to the original semantics, and �0 � �, hence �0 simulates �according to the optimized semantics.

The following basic property relates a@`-labelled transitions to a-labelledtransitions and can be considered the inverse of Proposition 13.Proposition 4. For all P;Q 2 P2, t template and ` 2 Loc, P a@`���! Q wherea 2 fin(t); rd(t); out(e)g implies that there are P 0; Q0 2 P1 such that P 0 a��! Q0.Moreover, either P = ` :: P 0 and Q = ` :: Q0, or there is R 2 P2 such thatP = (` :: P 0) k R, Q = (` :: Q0) k R and t 62 fv(R).Proof. By induction on the length of the proof of transition P a@`���! Q.Basic step. The proof has length 1. Then rule OS1 has been used and thereare P 0; Q0 2 P1 such that P = ` :: P 0, Q = ` :: Q0 and P 0 a��! Q0.Inductive step. The proof has length n > 1, hence the last applied rule isOS3. This means that there are P1; Q1; R1 2 P2 such that P = P1 k R1,Q = Q1 k R1 and P1 a@`���! Q1. Since P is closed then t 62 fv(R1). Byinductive hypothesis, we have that there are P 0; Q0 2 P1 such that P 0 a��! Q0and either P1 � ` :: P 0 and Q1 � ` :: Q0, or there is R0 2 P2 such thatP1 � (` :: P 0) k R0, Q1 � (` :: Q0) k R0 and t 62 fv(R0). The thesis follows bytaking R = R1 in the former case and R = R0 k R1 in the latter.The following property is similar to the previous one but takes into accountstop@`-labelled transitions.Proposition 5. For all P;Q 2 P2 and ` 2 Loc, P stop@`�����! Q implies thateither P = ` :: nil and Q = nil, or there is R 2 P2 such that P = (` :: nil) k Rand Q = nil k R.Proof. By induction on the length of the proof of transition P stop@`�����! Q.Basic step. The proof has length 1. Then rule OS2 has been applied and thethesis obviously follows.Inductive step. The proof has length n > 1, hence the last applied rule isOS3. This means that there are P1; Q1; R1 2 P2 such that P = P1 k R1,Q = Q1 k R1 and P1 stop@`�����! Q1. By inductive hypothesis, we have thateither P1 � ` :: nil and Q1 = nil, or there is R2 2 P2 such that P1 � (` ::nil) k R2, Q1 � nil k R2. Then, the thesis follows by taking R = R1 in theformer case and R = R1 k R2 in the latter.Now, we can prove soundness of laws TP1 and TP2.Proposition 6. For all P 2 P1, Q1; Q2; R 2 P2, � 2 fl; rg�, � 2 L�2, v 2 V ALand ` 2 Loc, L�(P) ���! Q1 in(v)@`������! Q2 rd(v)@`������! R implies that there areQ3 2 P2 and `0 2 Loc such that L�(P) ���! Q1 rd(v)@`0������! Q3 in(v)@`������! R.

Proof. Transition Q1 in(v)@`������! Q2 must have been deduced by applying ruleOS7 (and, possibly, OS8). Hence, there are P1; P2 2 P2 and a template t suchthat Q1 � P1 k � :: out(v), P1 in(t)@`������! P2, Q2 � P2[v=t] n ` k ` :: out(v),and [[t]] = v or t 2 V AR. By Proposition 4, P1 in(t)@`������! P2 implies that thereare P 0; P 01 2 P1 and P 001 2 P2 such that P 0 in(t)����! P 01, P1 � (` :: P 0) k P 001 ,P2 � (` :: P 01) k P 001 and t 62 fv(P 001). In the same way, transition Q2 rd(v)@`������! Rmust have been deduced by applying OS6 with � = ` (and, possibly, OS8).Hence, there are R0; R00 2 P2, a template t0 and `0 2 Loc with `0 6= ` (because� = ` and the premisis of ruleOS6 requires that � 6= `0) such that P2[v=t]n` � R0,R0 rd(t0)@`0�������! R00, R � R00[v=t0] n `0 k l :: out(v), and [[t0]] = v or t0 2 V AR.By Proposition 4, R0 rd(t0)@`0�������! R00 implies that there are P 00; P 02 2 P1 andP 002 2 P2 such that P 00 rd(t0)�����! P 02, P2[v=t] n ` � R0 � (`0 :: P 00) k P 002 , R00 �(`0 :: P 02) k P 002 and t0 62 fv(P 002). Now, by transitivity, from P2[v=t] n ` � ((` ::P 01) k P 001)[v=t] n ` � ` :: P 01[v=t] k P 001 n ` and P2[v=t] n ` � (`0 :: P 00) k P 002 itfollows that ` :: P 01[v=t] k P 001 n ` � (`0 :: P 00) k P 002 from which we get that thereis P3 2 P2 such that P 001 � (`0 :: P 00) k P3 and P 002 � ` :: P 01[v=t] k (P3 n `).Therefore, we have that Q1 � P1 k � :: out(v) � ` :: P 0 k P 001 k � :: out(v) �` :: P 0 k `0 :: P 00 k P3 k � :: out(v) � `0 :: P 00 k ` :: P 0 k P3 k � :: out(v)and that R � R0[v=t0] n `0 k ` :: out(v) � (`0 :: P 02 k P 002)[v=t0] n `0 k ` ::out(v) � `0 :: P 02[v=t0] k P 002 n `0 k ` :: out(v) � `0 :: P 02[v=t0] k (` :: P 01[v=t] kP3 n `) n `0 k ` :: out(v) � `0 :: P 02[v=t0] k ` :: P 01[v=t] k P3 n ` n `0 k ` :: out(v) �` :: P 01[v=t] k `0 :: P 02[v=t0] k P3 n `0 n ` k ` :: out(v) (where we have also usedProposition 1). Now, take Q3 = ` :: P 0 k `0 :: P 02[v=t0] k P3 n `0 k � :: out(v).Since P 00 rd(t0)�����! P 02, by applying rules OS1 and OS3, we get `0 :: P 00 k ` :: P 0 kP3 rd(t0)@`0�������! `0 :: P 02 k ` :: P 0 k P3, and, by applying rules OS6 and OS8, weget Q1 rd(v)@`0������! Q3. Moreover, since P 0 in(t)����! P 01, by applying rules OS1 andOS3, we get ` :: P 0 k `0 :: P 02[v=t0] k P3n`0 in(t)@`������! ` :: P 01 k `0 :: P 02[v=t0] k P3n`0,and, by applying rules OS7 and OS8, we get Q3 in(v)@`������! R, that concludesthe proof.Proposition 7. For all P 2 P1, Q1; Q2; R 2 P2, � 2 fl; rg�, � 2 L�2, v 2 V AL,` 2 Loc, � 2 LOC and �@� 2 L2, L�(P) ���! Q1 in(v)@`������! Q2 �@�����! Rand � 6= `; ` imply that there is Q3 2 P2 such that L�(P) ���! Q1 �@�����!Q3 in(v)@`������! R.Proof. Transition Q1 in(v)@`������! Q2 must have been deduced by applying ruleOS7 (and, possibly, OS8). Hence, there are P1; P2 2 P2 and a template t suchthat Q1 � P1 k � :: out(v), P1 in(t)@`������! P2, Q2 � P2[v=t] n ` k ` :: out(v),

and [[t]] = v or t 2 V AR. By Proposition 4, P1 in(t)@`������! P2 implies that thereare P 0; P 01 2 P1 and P 001 2 P2 such that P 0 in(t)����! P 01, P1 � (` :: P 0) k P 001 ,P2 � (` :: P 01) k P 001 and t 62 fv(P 001). Now, we have that Q1 � P1 k � :: out(v) �` :: P 0 k P 001 k � :: out(v) and, since t 62 fv(P 001), that Q2 � P2[v=t] n ` k ` ::out(v) � ((` :: P 01) k P 001)[v=t] n ` k ` :: out(v) � ` :: P 01[v=t] k P 001 n ` k ` :: out(v)and we can proceed by case analysis on action �@�.�@� = stop@`0, for some `0 2 Loc. Then rule OS4 (and, possibly, OS8) has been used toderive transition Q2 �@�����! R. Hence, there are R0; R00 2 P2 such thatR0 stop@`0������! R00, Q2 � R0 and R � R00n`. By Proposition 5, R0 stop@`0������! R00implies that there is R1 2 P2 such that R0 � (`0 :: nil) k R1 and R00 � nil kR1. Now, by transitivity, from Q2 � ` :: P 01[v=t] k P 001 n ` k ` :: out(v)and Q2 � R0 � (`0 :: nil) k R1 it follows that ` :: P 01[v=t] k P 001 n ` k ` ::out(v) � (`0 :: nil) k R1 from which we get that there is P3 2 P2 suchthat P 001 � (`0 :: nil) k P3 and R1 � ` :: P 01[v=t] k (P3 n `) k ` :: out(v).Therefore, we have that Q1 � ` :: P 0 k P 001 k � :: out(v) � ` :: P 0 k `0 ::nil k P3 k � :: out(v) � `0 :: nil k ` :: P 0 k P3 k � :: out(v) and thatR � R00 n `0 � (nil k R1) n `0 � (` :: P 01[v=t] k P3 n ` k ` :: out(v)) n `0 � ` ::P 01[v=t] k P3n`n`0 k ` :: out(v) � ` :: P 01[v=t] k P3n`0n` k ` :: out(v) (where wehave also used Proposition 1). Now, take Q3 = ` :: P 0 k P3 n `0 k � :: out(v).Since, by rule OS2, `0 :: nil stop@`0������! nil, then, by applying rule OS3, weget `0 :: nil k ` :: P 0 k P3 k � :: out(v) stop@`0������! nil k ` :: P 0 k P3 k� :: out(v) and, by applying rules OS4 and OS8, we get Q1 stop@`0������! Q3.Moreover, since P 0 in(t)����! P 01, by applying rules OS1 and OS3, we get` :: P 0 k P3 n `0 in(t)@`������! ` :: P 01 k P3 n `0 and, by applying rules OS7 andOS8, we get Q3 in(v)@`������! R (recall that ` 6= `0 and that t 62 fv(P3) becauset 62 fv(P 001)), that concludes the proof for this case.�@� = out(v0)@`0, for some `0 2 Loc and v0 2 V AL. Then rule OS5 (and, possibly, OS8) hasbeen used to derive transitionQ2 �@�����! R. Hence, there areR0; R00 2 P2 ande0 2 EXP such that R0 out(e0)@`0�������! R00, Q2 � R0, R � R00 n `0 k � :: out(v0)and [[e0]] = v0. By Proposition 4, R0 out(e0)@`0�������! R00 implies that there areP 00; P 02 2 P1 and P 002 2 P2 such that P 00 out(e0)�����! P 02, R0 � (`0 :: P 00) k P 002 ,R00 � (`0 :: P 02) k P 002 and e0 62 fv(P 002). Now, by transitivity, from Q2 � ` ::P 01[v=t] k P 001 n ` k ` :: out(v) and Q2 � R0 � (`0 :: P 00) k P 002 it follows that` :: P 01[v=t] k P 001 n ` k ` :: out(v) � (`0 :: P 00) k P 002 from which we get thatthere is P3 2 P2 such that P 001 � (`0 :: P 00) k P3 and P 002 � ` :: P 01[v=t] k(P3n`) k ` :: out(v). Therefore, we have that Q1 � ` :: P 0 k P 001 k � :: out(v) �` :: P 0 k `0 :: P 00 k P3 k � :: out(v) � `0 :: P 00 k ` :: P 0 k P3 k � :: out(v) andthat R � R0 n `0 k � :: out(v0) � (`0 :: P 02 k P 002) n `0 k � :: out(v0) � `0 :: P 02 k(` :: P 01[v=t] k P3 n ` k ` :: out(v)) n `0 k � :: out(v0) � `0 :: P 02 k ` :: P 01[v=t] k

P3 n `0 n ` k ` :: out(v) k � :: out(v0) (where we have also used Proposition 1).Now, take Q3 = ` :: P 0 k `0 :: P 02 k P3 n `0 k � :: out(v0) k � :: out(v). SinceP 00 out(e0)�����! P 02, by applying rules OS1 and OS3, we get `0 :: P 00 k ` :: P 0 kP3 k � :: out(v) out(e0)@`0�������! `0 :: P 02 k ` :: P 0 k P3 k � :: out(v) and, byapplying rules OS5 and OS8, we get Q1 out(v0)@`0��������! Q3. Moreover, sinceP 0 in(t)����! P 01, by applying rules OS1 and OS3, we get ` :: P 0 k `0 :: P 02 kP3 n `0 k � :: out(v0) in(t)@`������! ` :: P 01 k `0 :: P 02 k P3 n `0 k � :: out(v0) and, byapplying rules OS7 and OS8, we get Q3 in(v)@`������! R (recall that ` 6= `0 andthat t 62 fv(P3) because t 62 fv(P 002)), that concludes the proof for this case.�@� = rd(v0)@`0, for some `0 2 Loc and v0 2 V AL. Then rule OS6 (and, possibly, OS8) hasbeen used to derive transition Q2 �@�����! R. Hence, there are R0; R00 2 P2and a template t0 such that R0 rd(t0)@`0�������! R00, Q2 � R0 k � :: out(v0),R � R00[v0=t0]n `0 k � :: out(v0) and [[t0]] = v0 or t0 2 V AR. By Proposition 4,R0 rd(t0)@`0�������! R00 implies that there are P 00; P 02 2 P1 and P 002 2 P2 such thatP 00 rd(t0)�����! P 02, R0 � (`0 :: P 00) k P 002 , R00 � (`0 :: P 02) k P 002 and t0 62 fv(P 002).Now, by transitivity, from Q2 � ` :: P 01[v=t] k P 001 n ` k ` :: out(v) andQ2 � R0 k � :: out(v0) � (`0 :: P 00) k P 002 k � :: out(v0) it follows that` :: P 01[v=t] k P 001 n ` k ` :: out(v) � (`0 :: P 00) k P 002 k � :: out(v0) from whichwe get that there is P3 2 P2 such that P 001 � (`0 :: P 00) k P3 k � :: out(v0)and P 002 � ` :: P 01[v=t] k (P3 n `) k ` :: out(v). Therefore, we have that Q1 �` :: P 0 k P 001 k � :: out(v) � ` :: P 0 k `0 :: P 00 k P3 k � :: out(v0) k � :: out(v)and, since t0 62 fv(P 002), that R � R00[v0=t0] n `0 k � :: out(v0) � ((`0 :: P 02) kP 002)[v0=t0] n `0 k � :: out(v0) � `0 :: P 02[v0=t0] k (P 002 n `0) k � :: out(v0) � `0 ::P 02[v0=t0] k (` :: P 01[v=t] k P3n` k ` :: out(v))n`0 k � :: out(v0) � `0 :: P 02[v0=t0] k` :: P 01[v=t] k P3 n `0 n ` k ` :: out(v) k � :: out(v0) (where we have also usedProposition 1). Now, take Q3 = `0 :: P 02[v0=t0] k ` :: P 0 k P3 n `0 k � :: out(v) k� :: out(v0). Since P 00 rd(t0)�����! P 02, by applying rules OS1 and OS3, we get`0 :: P 00 k ` :: P 0 k P3 k out(v) rd(t0)@`0�������! `0 :: P 02 k ` :: P 0 k P3 k out(v)and, by applying rules OS6 and OS8, we get Q1 rd(v0)@`0�������! Q3. Moreover,since P 0 in(t)����! P 01, by applying rules OS1 and OS3, we get ` :: P 0 k `0 ::P 02[v0=t0] k P3 n `0 k � :: out(v0) in(t)@`������! ` :: P 01 k `0 :: P 02[v0=t0] k P3 n `0 k� :: out(v0) and, by applying rules OS7 and OS8, we get Q3 in(v)@`������! R(recall that ` 6= `0 and that t 62 fv(P3) because t 62 fv(P 002)), that concludesthe proof for this case.�@� = in(v0)@`0, for some `0 2 Loc and v0 2 V AL. Then rule OS7 (and, possibly, OS8) hasbeen used to derive transition Q2 �@�����! R. Hence, there are R0; R00 2 P2and t0 2 EXP such that R0 in(t0)@`0�������! R00, Q2 � R0 k � :: out(v0), R �

R00[v0=t0] n `0 k `0 :: out(v0) and [[t0]] = v0 or t0 2 V AR. By Proposition 4,R0 in(t0)@`0�������! R00 implies that there are P 00; P 02 2 P1 and P 002 2 P2 such thatP 00 in(t0)����! P 02, R0 � (`0 :: P 00) k P 002 , R00 � (`0 :: P 02) k P 002 and t0 62 fv(P 002).Now, by transitivity, from Q2 � ` :: P 01[v=t] k P 001 n ` k ` :: out(v) andQ2 � R0 k � :: out(v0) � (`0 :: P 00) k P 002 k � :: out(v0) it follows that` :: P 01[v=t] k P 001 n ` k ` :: out(v) � (`0 :: P 00) k P 002 k � :: out(v0) from whichwe get that there is P3 2 P2 such that P 001 � (`0 :: P 00) k P3 k � :: out(v0)and P 002 � ` :: P 01[v=t] k (P3 n `) k ` :: out(v). Therefore, we have that Q1 �` :: P 0 k P 001 k � :: out(v) � ` :: P 0 k `0 :: P 00 k P3 k � :: out(v0) k � :: out(v)and, since t0 62 fv(P 002), that R � R00[v0=t0] n `0 k `0 :: out(v0) � ((`0 :: P 02) kP 002)[v0=t0] n `0 k `0 :: out(v0) � `0 :: P 02[v0=t0] k (P 002 n `0) k `0 :: out(v0) �`0 :: P 02[v0=t0] k (` :: P 01[v=t] k P3 n ` k ` :: out(v)) n `0 k `0 :: out(v0) � `0 ::P 02[v0=t0] k ` :: P 01[v=t] k P3 n `0 n ` k ` :: out(v) k `0 :: out(v0) (where wehave also used Proposition 1). Now, take Q3 = `0 :: P 02[v0=t0] k ` :: P 0 kP3 n `0 k � :: out(v) k `0 :: out(v0). Since P 00 in(t0)����! P 02, by applying rulesOS1 and OS3, we get `0 :: P 00 k ` :: P 0 k P3 k � :: out(v) in(t0)@`0�������! `0 ::P 02 k ` :: P 0 k P3 k � :: out(v) and, by applying rules OS7 and OS8, weget Q1 in(v0)@`0�������! Q3. Moreover, since P 0 in(t)����! P 01, by applying rules OS1and OS3, we get ` :: P 0 k `0 :: P 02[v0=t0] k P3 n `0 k `0 :: out(v0) in(t)@`������! ` ::P 01 k `0 :: P 02[v0=t0] k P3 n `0 k `0 :: out(v0) and, by applying rules OS7 andOS8, we get Q3 in(v)@`������! R (recall that ` 6= `0 and that t 62 fv(P3) becauset 62 fv(P 002)), that concludes the proof for this case.The following proposition shows how the laws of the trace preoder can beused to reduce the number of ghost tuples accessed during a computation.Proposition 8. For all P 2 P1, Q;R 2 P2, � 2 fl; rg�, � 2 L+2 , v 2 V AL and` 2 Loc, L�(P) ���! Q rd(v)@`������! R implies that there are �1; �2 2 L�2 such that� = �1 �in(v)@`��2. Moreover, if in(v)@` 62 �2 and for all �@� 2 �2 we have that� 6= `; `, then there is `0 2 Loc such that L�(P) �1��! �2��! rd(v)@`0������! in(v)@`������! R.Proof. Transition Q rd(v)@`������! R must have been deduced by applying OS6(and, possibly, OS8) with � = `. In particular, this means that there is Q0 2P2 such that Q � Q0 k ` :: out(v). Since, by de�nition, ` 62 �(L�(P)) thenrule OS7 must have been applied to give rise to the ghost tuple ` :: out(v).Therefore, label in(v)@` occurs in the sequence �, i.e. in(v)@` 2 �. Now, let�1; �2 2 L�2 be such that � = �1 � in(v)@` � �2 and in(v)@` 62 �2. By hypothesis,L�(P) �1��! in(v)@`������! �2��! rd(v)@`������! R. Hence, if �2 = � then the thesis directlyfollows from Proposition 6. Otherwise, by repeatedly applying Proposition 7,we get that L�(P) �1��! �2��! in(v)@`������! rd(v)@`������! R and, again, the thesis followsfrom Proposition 6.

We can now give a method for transforming a generic computation in anequivalent computation (i.e. with the same �nal state) that corresponds to asequence of operations that never access ghost tuples.Proposition 9. For all P 2 P1, Q 2 P2, � 2 fl; rg� and � 2 L�2, L�(P) ���! Qimplies that there is �0 � � such that L�(P) �0��! Q and g(�0) = 0.Proof. By induction on g(�). If g(�) = 0 then we can take �0 = �. Otherwise,let �1; �2; �3; �4 2 L�2 be such that � = �1 � rd(v)@` � �2, �1 = �3 � in(v)@` � �4,in(v)@` 62 �4 and � 6= `; `, for all �@� 2 �4. The sequence �4 does exist becauseg(�) > 0 and L�(P) ���! Q imply the following facts: for some ` 2 Loc andv 2 V AL, rd(v)@` 2 � (because g(�) > 0); hence, in(v)@` 2 � and there issome occurrence of label in(v)@` that is on the left of rd(v)@` within � (becauselabel in(v)@` is singled out when it is produced the ghost tuple ` :: out(v) thatis accessed when label rd(v)@` is singled out); �nally, the occurrences of labelsin(v)@` and rd(v)@` can be chosen in such a way that rd(v)@` is the �rst labelafter in(v)@` that accesses the ghost tuple at ` and no label with ` as locationoccurs in between (because, after in(v)@`, out(v) is the only ghost tuple at `untill it will be destroyed by the execution of any operation at `). Now, byProposition 8, there is `0 2 Loc such that L�(P) �3��! �4��! rd(v)@`0������! in(v)@`������!R, where R is such that L�(P) �1��! rd(v)@`������! R. Hence, by letting �5 = �3 ��4 � rd(v)@`0 � in(v)@` � �2, we have that L�(P) �5��! Q. The thesis follows byinduction since �5 � � and g(�5) = g(�)� 1.The following two propositions relate the transitions of the optimized seman-tics to the transitions of the original one.Proposition 10. For all P 2 P1, Q 2 P2, � 2 fl; rg�, a 2 L1, ` 2�(L�(P)) \ Loc, L � �(L�(P)) and vi 2 V AL (8i : `i 2 L), L�(P) k �`i2L`i ::out(vi) a@`���! Q implies that there are R 2 P1, �0 2 fl; rg� and L0 � �(L�0(R))such that P a��! R and Q � L�0(R) k �`i2L0`i :: out(vi).Proof. We proceed by case analysis on a.a = out(v), for some v 2 V AL. Then, for deriving transition L�(P) k �`i2L`i ::out(vi) a@`���! Q, rule OS5 (and, possibly, rule OS8) has been used, hencethere are a template t and P 0; Q0 2 P2 such that [[t]] = v, L�(P) k �`i2L`i ::out(vi) � P 0, P 0 out(e)@`�������! Q0 and Q � Q0 n ` k � :: out(v). Moreover,by Proposition 4, P 0 out(e)@`�������! Q0 implies that there are P1; P 01 2 P1 andP2 2 P2 such that P1 out(e)�����! P 01, P 0 � (` :: P1) k P2, Q0 � (` :: P 01) k P2and e 62 fv(P2). Now, L�(P) k �`i2L`i :: out(vi) � P 0 � (` :: P1) k P2implies that there are P3; P4 2 P1 such that P � P1 k P3, P4 � P 01 k P3and Q0 � (` :: P 01) k P2 � L�(P4) k �`i2L`i :: out(vi). Hence, we have thatQ � Q0 n ` k � :: out(v) � L�(P4) k �`i2Lnf`g`i :: out(vi) k � :: out(v).

Let �0 be such that � = �0 � u where u 2 fl; rg. We let L0 = L n f`g andR = P4 k out(v), if u = l, and R = out(v) k P4, if u = r. In both caseswe have L0 � �(L�0(R)) (namely, �(L�0(R)) = �(L�(P 0)) [f�g) and, sinceP1 out(e)�����! P 01, by applying rules S2, S3 and S6, we get P out(v)�����! R, andthe thesis is proven.a = rd(v), for some v 2 V AL. Then, for deriving transition L�(P) k �`i2L`i ::out(vi) a@`���! Q, rule OS6 (and, possibly, rule OS8) has been used, hencethere are a template t and P 0; Q0 2 P2 such that L�(P) k �`i2L`i ::out(vi) � P 0 k � :: out(v), P 0 rd(t)@`������! Q0, Q � Q0[v=t] n ` k � :: out(v)and [[t]] = v or t 2 V AR. Moreover, by Proposition 4, P 0 rd(t)@`������! Q0implies that there are P1; P 01 2 P1 and P2 2 P2 such that P1 rd(t)����! P 01,P 0 � (` :: P1) k P2, Q0 � (` :: P 01) k P2 and t 62 fv(P2). Now,L�(P) k �`i2L`i :: out(vi) � P 0 k � :: out(v) � (` :: P1) k P2 k � :: out(v)implies that there are P3; P4 2 P1 such that P � P1 k P3 k out(v),P4 � P 01[v=t] k P3 k out(v) and Q0[v=t] k � :: out(v) � (` :: P 01[v=t]) kP2 k � :: out(v) � L�(P4) k �`i2L`i :: out(vi). Hence, we have thatQ � Q0[v=t] n ` k � :: out(v) � L�(P4) k �`i2Lnf`g`i :: out(vi). Now, letR = P4 and L0 = L n f`g. Since P1 rd(t)����! P 01, by applying rule S2, we getP1 k P3 rd(t)����! P 01 k P3 and, by applying rules S4 (recall that t 62 fv(P2))and OS8, we get that P rd(v)����! R and the thesis is proven.a = in(v), for some v 2 V AL. Then, for deriving transition L�(P) k �`i2L`i ::out(vi) a@`���! Q, rule OS7 (and, possibly, rule OS8) has been used, hencethere are a template t and P 0; Q0 2 P2 such that L�(P) k �`i2L`i :: out(vi) �P 0 k � :: out(v), P 0 in(t)@`������! Q0, Q � Q0[v=t] n ` k ` :: out(v) and [[t]] = vor t 2 V AR. Moreover, by Proposition 4, P 0 in(t)@`������! Q0 implies that thereare P1; P 01 2 P1 and P2 2 P2 such that P1 in(t)����! P 01, P 0 � (` :: P1) k P2,Q0 � (` :: P 01) k P2 and t 62 fv(P2). Now, L�(P) k �`i2L`i :: out(vi) �P 0 k � :: out(v) � (` :: P1) k P2 k � :: out(v) implies that there areP3; P4 2 P1 such that P � P1 k P3 k out(v), P4 � P 01[v=t] k P3 andQ0[v=t] � (` :: P 01[v=t]) k P2 � L�l(P4) k �`i2L`i :: out(vi). Hence, we havethat Q � Q0[v=t] n ` k ` :: out(v) � L�l(P4) k �`i2Lnf`g`i :: out(vi) k ` ::out(v). Now, let R = P4, �0 = �l and L0 = L (with vi = v for `i = `). Wehave that L0 � �(L�l(P4)) (because �(L�(P)) = �(L�l(P4)) [f�g. SinceP1 in(t)����! P 01, by applying rule S2, we get P1 k P3 in(t)����! P 01 k P3 and, byapplying rules S4 (recall that t 62 fv(P2)) and OS8, we get that P in(v)����! Rand the thesis is proven.Proposition 11. For all P 2 P1, Q 2 P2, � 2 fl; rg�, ` 2 �(L�(P)), L ��(L�(P)) and vi 2 V AL (8i : `i 2 L), L�(P) k �`i2L`i :: out(vi) stop@`�����! Q

implies that there is R 2 P1 such that P � R and Q � L�(R) k �`i2Lnf`g`i ::out(vi).Proof. Let us take R = P . Obviously, we have P � R. We are left to show thatQ � L�(P) k �`i2Lnf`g`i :: out(vi). This can be easily proved by induction onthe length of derivation of transition L�(P) k �`i2L`i :: out(vi) stop@`�����! Q.Indeed, either rule OS4 has been the last rule applied, in which case we haveQ = L�(P) k �`i2Lnf`g`i :: out(vi), or rule OS8 has been the last rule applied,in which case, by induction, we can assume that there is Q0 2 P2 such thatQ0 � L�(P) k �`i2Lnf`g`i :: out(vi) and Q � Q0, and the thesis follows bytransitivity.We can now generalize the previous properties to sequences of transitions.Proposition 12. For all P 2 P1, Q 2 P2, � 2 fl; rg� and � 2 L�2, L�(P) ���! Qand g(�) = 0 imply that there are P 0 2 P1, �0 2 fl; rg�, L � �(L�0(P 0)) andvi 2 V AL (8i : `i 2 L) such that P C(�)����! P 0 and Q � L�0(P 0) k �`i2L`i ::out(vi).Proof. By induction on the length of �.Basic step. If � = � then Q = L�(P) and the thesis easily follows by takingP 0 = P , �0 = � and L = ;.Inductive step. Let � = �0 ��@` for some �0 2 L�2, � 2 L1[fstopg and ` 2 Loc.Hence, g(�0) = 0, g(�@`) = 0 (i.e. ` 2 Loc) and there is some R 2 P2 suchthat L�(P) �0��! R �@`����! Q. By induction, there are R0 2 P2, �1 2 fl; rg�,L0 � �(L�1(R0)) and vi 2 V AL (8i : `i 2 L) such that P C(�0)����! R0 andR � L�1(R0) k �`i2L0`i :: out(vi). By using rule OS8, from L�1(P) �0��! R,R �@`����! Q and R � L�1(R0) k �`i2L0`i :: out(vi) we get that L�1(P) �0��!L�(R0) k �`i2L0`i :: out(vi) and L�1 (R0) k �`i2L0`i :: out(vi) �@`����! Q. Nowthe thesis follows from Proposition 10, if � 2 L1, and from Proposition 11otherwise (i.e. � = stop).Finally, we have that the original semantics can simulate the optimized one.Theorem 1. For all P 2 P1, Q 2 P2, � 2 fl; rg� and � 2 L�2, L�(P) ���! Qimplies that there are �0 � � and P 0 2 P1 such that P C(�0)����! P 0 and C(Q) � P 0.Proof. Directly follows from Propositions 9 and 12.We now prove that the optimized semantics can simulate the original one(Theorem 2). The following basic property relates a-labelled transitions to a@`-labelled transitions.

Proposition 13. For all P;Q 2 P1 and a 2 L1, P a��! Q implies that there is` 2 �(L�(P)) such that L�(P) a@`���! L�(Q). Moreover, either L�(P) = ` :: Pand L�(Q) = ` :: Q, or there are P 0; Q0 2 P1 and R 2 P2 such that P 0 a��! Q0,L�(P) = (` :: P 0) k R and L�(Q) = (` :: Q0) k R.Proof. By induction on the length of the proof of transition P a��! Q.Basic step. The proof has length 1. Then rule S1 has been used and there is P1such that: P = a:P1 and Q = P1. By de�nition, we have L�(P) = � :: a:P1and L�(Q) = � :: P1 (because P1 cannot be of the form P 01 k P 001). The thesisfollows by applying rule OS1 and taking ` = �, P 0 = a:P1 and Q0 = P1.Inductive step. The proof has length n > 1, hence the last applied rule isS2 or its analogous for the operator j. In the case S2 is the last appliedrule, there are P1; P2; Q1 2 P1 such that P = P1 k P2, P1 a��! Q1 andQ = Q1 k P2. By de�nition, we have that L�(P) = L�l(P1) k L�r(P2) andL�(Q) = L�l(Q1) k L�r(P2). By inductive hypothesis, we have that there is`0 2 �(L�l(P1)), such that L�l(P1) a@`0����! L�l(Q1) and either L�l(P1) = `0 ::P1 and L�l(Q1) = ` :: Q1 or there are P 01; Q01 2 P1 and R0 2 P2 such thatP 01 a��! Q01, L�l(P1) = (`0 :: P 01) k R0 and L�l(Q1) = (`0 :: Q01) k R0. Hence,by applying OS3, we get the transition L�(P) = L�l(P1) k L�r(P2) a@`0����!L�l(Q1) k L�r(P2) = L�(Q). Now, `0 2 �(L�(P)) because �(L�(P)) =�(L�l(P1))[�(L�r(P2)). Then, the thesis follows by taking ` = `0 and eitherR = L�r(P2) or R = R0 k L�r(P2). In the case the analogous of S2 for theoperator j is the last applied rule, then there are P1; P2; Q1 2 P1 such thatP = P1 j P2, P1 a��! Q1 and Q = Q1 j P2. Now, by de�nition, we haveL�(P) = � :: P1 j P2 and L�(Q) = � :: Q1 j P2. Hence, from P1 a��! Q1we get P1 j P2 a��! Q1 j P2 (by the analogous of S2), from which we get� :: P1 j P2 a@�����! � :: Q1 j P2 (by applying OS1). The thesis then followsby taking ` = �, P 0 = P1 j P2 and Q0 = Q1 j P2.The following four propositions formalize the idea that locations can be ar-bitrarily chosen and processes that only di�er for the names of their locationsbehave similarly. The main point is that the allocation function does not pre-serve structural equivalence. Indeed, when allocating two structurally equivalentprocesses, two new processes are obtained that are not structurally equivalent.However, by appropriately renaming the locations of one of the two processesby means of a one-to-one function it is possible to obtain a process which isstructurally equivalent to the other one.We will use the following notation: if P 2 P2, L � LOC and � : �(P) �! Lthen �(P) denotes the process obatined by replacing in P each occurrence ofany ` 2 �(P) with �(`). A similar notation is used for renaming locations withintransition labels. We use �0 � �00 to denote the composition of functions �0 and�00 so that �0 � �00(`) = �00(�0(`)).

Proposition 14. For all P 2 P1 and �; �0 2 fl; rg�, there is a one-to-one func-tion � : �(L�0 (P)) �! �(L�(P)) such that L�(P) � �(L�0 (P)).Proof. The proof proceeds by induction on the syntax of P .Basic step. The basic step is when P has one of the following forms: nil,a:P and Q j R. In any case, by de�nition of allocation function we haveL�(P) = � :: P and L�0(P) = �0 :: P , and the thesis follows by taking � suchthat � : f�0g �! f�g and �(�0) = �.Inductive step. We reason by case analisys on the top-level operator in P .{ Suppose that P = Q k R. Then, by de�nition, means that L�(P) =L�l(Q) k L�r(R) and L�0(P) = L�0l(Q) k (L�0r(R). By induc-tion, we can assume that there are two one-to-one functions �1 :�(L�0l(Q)) �! �(L�l(Q)) and �2 : �(L�0r(R)) �! �(L�r(R)) suchthat �1(L�0l(Q)) = L�l(Q) and �2(L�0r(R)) = L�r(R). Since dom(�1) \dom(�2) = range(�1)\range(�2) = ;, function composition �1 ��2 getsa one-to-one function and, by taking � = �1 � �2, the thesis follows.{ Suppose that P = Q k O (the symmetric case P = O k Q is dealtwith similarly). Then, by de�nition, means that L�(P) = L�(Q) k T (O)and L�0(P) = L�0 (Q) k T (O). By induction, we can assume that thereare is a one-to-one functions �0 : �(L�0(Q)) �! �(L�(Q)) such that�1(L�0 (Q)) = L�(Q). Now we have two cases to consider. Either � 2�(L�0 (Q)), then we take � = �0, or � 62 �(L�0(Q)), then we take � = �0��00where �00 : f�g �! f�g and �00(�) = � . In both cases, the thesis follows.Proposition 15. For all P; P 0 2 P1 and �; �0 2 fl; rg�, if P � P 0 can beproved without using the �rst structural law, then there is a one-to-one function� : �(L�0(P 0)) �! �(L�(P)) such that L�(P) � �(L�0 (P 0)).Proof. The proof proceeds by induction on the length of the proof of P � P 0.Basic step. Only one structural law has been applied to deduce that P � P 0.The proof for this case proceeds by case analisys on the structural law used.{ Suppose that the structural law applied is Q1 k Q2 � Q2 k Q1, whereP = Q1 k Q2 and P 0 = Q2 k Q1. This, by de�nition, means thatL�(P) = L�l(Q1) k L�r(Q2) and that L�0(P 0) = L�0l(Q2) k L�0r(Q1).Now, by Proposition 14, we have that there are two one-to-one functions�1 : �(L�0r(Q1)) �! �(L�l(Q1)) and �2 : �(L�0l(Q2)) �! �(L�l(Q2))such that �1(L�0r(Q1)) = L�l(Q1) and �2(L�0l(Q2)) = L�r(Q2). Sincedom(�1) \ dom(�2) = range(�1) \ range(�2) = ;, function composition�1 � �2 gets a one-to-one function and, by taking � = �1 � �2, the thesisfollows.If the structural law applied is Q1 j Q2 � Q2 j Q1, where P = Q1 j Q2and P 0 = Q2 j Q1, then, by de�nition, L�(P) = � :: (Q1 j Q2) andL�0 (P 0) = �0 :: (Q2 j Q1), and the thesis follows by taking � such that� : f�0g �! f�g and �(�0) = �.

{ Suppose that the structural law applied is Q1 k (Q2 k Q3) � (Q1 kQ2) k Q3, where P = Q1 k (Q2 k Q3) and P 0 = (Q1 k Q2) k Q3. This,by de�nition, means that L�(P) = L�l(Q1) k (L�rl(Q2) k L�rr(Q3))and that L�0 (P 0) = (L�0ll(Q1) k L�0lr(Q2)) k L�0r(Q3). Now, byProposition 14, we have that there are three one-to-one functions �1 :�(L�0ll(Q1)) �! �(L�l(Q1)), �2 : �(L�0lr(Q2)) �! �(L�rl(Q2)), and�3 : �(L�0r(Q3)) �! �(L�rr(Q3)) such that �1(L�0ll(Q1)) = L�l(Q1),�2(L�0lr(Q2)) = L�rl(Q2) and �3(L�0r(Q3)) = L�rr(Q3). Since de�ni-tion domains and ranges of these functions are pairwise disjoint, theircomposition is a one-to-one function too and, by taking � = �1 ��2 ��3,the thesis follows.If the structural law applied is Q1 j (Q2 j Q3) � (Q1 j Q2) j Q3, whereP = Q1 j (Q2 j Q3) and P 0 = (Q1 j Q2) j Q3, then, by de�nition,L�(P) = � :: Q1 j (Q2 j Q3) and L�0 (P 0) = �0 :: (Q1 j Q2) j Q3, and thethesis follows by taking � such that � : f�0g �! f�g and �(�0) = �.Inductive step. In this case the proof proceeds by case analisys on the laststructural law applied when proving that P � P 0. Suppose that P 00 2 P1is such that P � P 00 and P 00 � P 0 can be proved without using the �rststructural law and the last equivalence is proved by a single application ofone of the remaining structural laws. By induction, for any �00 2 fl; rg�,there is a one-to-one function �00 : �(L�00(P 00)) �! �(L�(P)) such thatL�(P) � �00(L�00 (P 00)). By reasoning as in the basic step, there is a one-to-onefunction �0 : �(L�0(P 0)) �! �(L�00(P 00)) such that L�00(P 00) � �0(L�0 (P 0)).Then, the thesis follows by taking � = �0 � �00.Proposition 16. For all P; P 0 2 P2, a 2 L1, ` 2 �(P), L � LOC and � :�(P) �! L one-to-one function, if P a@`���! P 0 then �(P) a@�(`)�����! �(P 0).Proof. By easy induction on the length of the proof of P a@`���! P 0.Proposition 17. For all P; P 0; Q0 2 P1, �; �0 2 fl; rg� and � : �(L�0 (P 0)) �!�(L�(P)) one-to-one function, if P � P 0 can be proved without using the �rststructural law, �(L�0 (P 0)) � L�(P) and �(L�0(P 0)) = �(L�0(Q0)) then there isQ 2 P1 such that Q � Q0 and �(L�0 (Q0)) � L�(Q).Proof. The proof relies on the following fact:if �(L�0(P 0)) = �(L�0(Q0)) then processes P 0 and Q0 have the samenumber of sequential components and the same structure with respectto parallel compositionthat can be proved by induction on the syntax of P 0. It is then possibile tode�ne a one-to-one function � from the sequential components of P 0 to thoseof Q0 so that �(P 0) = Q0. Since P � P 0 can be proved without using the�rst structural law, P and P 0 have the same sequential componets and onlydi�er for their composition. This implies that �(P) 2 P1, and that processes�(P) and Q0 have the same sequential components and only di�er for their

composition, hence, by using the structural rules it is possible to prove that�(P) � Q0. Now, take Q = �(P). Since function � commutes both with Land with �, from the hipothesis that �(L�0 (P 0)) � L�(P) that also impliesthat �(L�0 (P 0)) and L�(P) have the same sequential components, it follows that�(L�0 (Q0)) = �(L�0 (�(P 0))) = �(�(L�0 (P 0))) � �(L�(P)) = L�(�(P)) = L�(Q),and the thesis is proved.Now, by exploiting the previous properties, we are able to prove the relation-ship between the transitions of the original semantics and those of the optimizedone. Notice that the states of the optimized semantics can also consist of ghosttuples.Proposition 18. For all P;Q 2 P1, a 2 L1, � 2 fl; rg�, L � �(L�(P)) andvi 2 V AL (8i : `i 2 L), P a��! Q implies that there are R 2 P1, ` 2 �(L�(P))and L0 � �(L�(R)) such that R � Q and L�(P) k �`i2L`i :: out(vi) a@`���!L�(R) k �`i2L0`i :: out(vi).Proof. By induction on the length of the derivation of transition P a��! Q.Basic step. The transition has length 1 and one of rules S3, S4 or S5 is theonly rule used to infer the transition. We proceed by case analysis on theapplied rule.Rule S3: Then a = out(v) for some v 2 V AL and there are e 2 EXP and P 0 2 P1such that [[e]] = v, P out(e)�����! P 0 andQ = P 0 k out(v). By Proposition 13,we have that L�(P) out(e)@`�������! L�(P 0) for some ` 2 �(L�(P)). Hence,by applying rule OS3, we get that L�(P) k �`i2L`i :: out(vi) out(e)@`�������!L�(P 0) k �`i2L`i :: out(vi). Now, by applying rule OS5, we get thetransition L�(P) k �`i2L`i :: out(vi) out(v)@`�������! (L�(P 0) k �`i2L`i ::out(vi)) n ` k � :: out(v). By Proposition 2, we have that (L�(P 0) k�`i2L`i :: out(vi)) n ` k � :: out(v) � L�(P 0) k �`i2Lnf`g`i :: out(vi) k� :: out(v). By de�nition of allocation function, we have that L�(P 0) k�`i2Lnf`g`i :: out(vi) k � :: out(v) � L�(P 0 k out(v)) k �`i2Lnf`g`i ::out(vi) and the thesis follows by taking R = Q and L0 = L n f`g, and byapplying rule OS8.Rule S4: Then a = rd(v) for some v 2 V AL and there are a template t andP 0; P 00 2 P1 such that [[t]] = v or t 2 V AR, P = P 0 k out(v),P 0 rd(t)����! P 00 and Q = P 00[v=t] k out(v). By de�nition, L�(P) =L�(P 0) k � :: out(v), and, by Proposition 13, L�(P 0) rd(t)@`������! L�(P 00)for some ` 2 �(L�(P 0)). Hence, by applying rule OS3, we get thatL�(P 0) k �`i2L`i :: out(vi) rd(t)@`������! L�(P 00) k �`i2L`i :: out(vi). Then,by applying rulesOS6 andOS8, we get the transition L�(P) k �`i2L`i ::out(vi) rd(v)@`������! (L�(P 00) k �`i2L`i :: out(vi))[v=t] n ` k � :: out(v).Now, function L� and substitution [v=t] commute, hence (L�(P 00) k

�`i2L`i :: out(vi))[v=t] = L�(P 00[v=t]) k �`i2L`i :: out(vi). Moreover,since ` 62 �(L�(P 00[v=t])), by Proposition 2, we have that (L�(P 00[v=t]) k�`i2L`i :: out(vi)) n ` � L�(P 00[v=t]) k �`i2Lnf`g`i :: out(vi). Finally, byde�nition of allocation function, L�(P 00[v=t]) k �`i2Lnf`g`i :: out(vi) k� :: out(v) � L�(P 00[v=t] k out(v)) k �`i2Lnf`g`i :: out(vi). The thesisfollows by taking L0 = L n f`g and by applying rule OS8.Rule S5: Then a = in(v) for some v 2 V AL and there are a template t andP 0; P 00 2 P1 such that [[t]] = v or t 2 V AR, P = P 0 k out(v),P 0 in(t)����! P 00 and Q = P 00[v=t]. By de�nition, L�(P) = L�(P 0) k� :: out(v), and, by Proposition 13, L�(P 0) in(t)@`������! L�(P 00) for some` 2 �(L�(P)). Hence, by applying rule OS3, we get that L�(P 0) k�`i2L`i :: out(vi) in(t)@`������! L�(P 00) k �`i2L`i :: out(vi). Then, by ap-plying rules OS7 and OS8, we get the transition L�(P) k �`i2L`i ::out(vi) in(v)@`������! (L�(P 00) k �`i2L`i :: out(vi))[v=t] n ` k ` :: out(v).Now, function L� and substitution [v=t] commute, hence (L�(P 00) k�`i2L`i :: out(vi))[v=t] = L�(P 00[v=t]) k �`i2L`i :: out(vi). Moreover,since ` 62 �(L�(P 00[v=t])), by Proposition 2, we have that (L�(P 00[v=t]) k�`i2L`i :: out(vi)) n ` � L�(P 00[v=t]) k �`i2Lnf`g`i :: out(vi). The thesisfollows by taking L0 = L (with vi = v for `i = `) and by applying ruleOS8.Inductive step. The last applied rule is S6, hence there are P 0; Q0 2 P1 suchthat P � P 0, P 0 a��! Q0 and Q � Q0. Without loss of generality, we canassume that P � P 0 (and Q � Q0) is proved without using the �rst structurallaw, hence P and P 0 (resp. Q and Q0) have the same number of parallelcomponents. Indeed, it can be easily seen that, for R1; R01; R2 2 P1 anda0 2 L1, R1 k R2 a0��! R01 k R2 if and only if R1 k nil k R2 a0��! R01 knil k R2. By induction we have that for any given �0 2 fl; rg� and L1 ��(L�0(P 0)), there are R0 2 P2, `0 2 �(L�0(P 0)) and L2 � �(L�0(R0)) suchthat R0 � Q0 and L�0 (P 0) k �`i2L1`i :: out(vi) a@`0����! L�0(R0) k �`i2L2`i ::out(vi). Since P and P 0 have the same number of parallel components, byProposition 15, there is a one-to-one function � : �(L�0 (P 0)) �! �(L�(P))such that L�(P) � �(L�0 (P 0)) and, then, that L�(P) k �`i2L`i :: out(vi) ��(L�0 (P 0) k �`i2L1`i :: out(vi)). By Proposition 16, we have that �(L�0 (P 0) k�`i2L1`i :: out(vi) a@�(`0)������! �(L�0 (R0) k �`i2L2`i :: out(vi)). Finally, byProposition 17, we have that there is R 2 P1 such that R � R0 and L�(R) ��(L�0 (R0)). Then, by taking L0 = �(L2), we have that L�(R) k �`i2L0`i ::out(vi) � �(L�0 (R0) k �`i2L2`i :: out(vi)), from which, by applying ruleOS8, the thesis follows.The previous property is now generalized to nonempty sequences of transi-tions.

Proposition 19. For all P;Q 2 P1, � 2 fl; rg� and s 2 L+1 , P s��! Q impliesthat there are R 2 P1, � 2 L+2 , L � �(L�(R)) and vi 2 V AL (8i : `i 2 L) suchthat L�(P) ���! L�(R) k �`i2L`i :: out(vi), s = C(�) and R � Q.Proof. By induction on the length of the sequence s.Basic step. In this case s = a for some a 2 L1 and the thesis is an immediateconsequence of Proposition 18.Inductive step. Suppose now that s = s0a for some s0 2 L+1 and a 2 L1.Then there is P 0 2 P1 such that P s0��! P 0 a��! Q. By induction, there areR0 2 P1, �0 2 L+2 , L0 � �(L�(R0)) and v0i 2 V AL (8i : `i 2 L0) such thatL�(P) �0��! L�(R0) k �`i2L0`i :: out(v0i), s0 = C(�0) and R0 � P 0. Now, fromR0 � P 0 and from the hypothesis P 0 a��! Q, by applying S6, we get thatR0 a��! Q. Hence, from Proposition 18, there are R00 2 P1, � 2 fl; rg� andL00 � �(L�(R00)) such that R00 � Q and L�(R0) k �`i2L0`i :: out(v0i) a@`���!L�(R00) k �`i2L00`i :: out(v0i). This concludes the proof (just take � = �0 �a@`,R = R00 and L = L00).Finally, we can prove that the optimized semantics can simulate the originalone.Theorem 2. For all P;Q 2 P1, � 2 fl; rg� and s 2 L�1, P s��! Q implies thatthere are R 2 P2 and � 2 L�2 such that L�(P) ���! R, s = C(�) and C(R) � Q.Proof. If s = � then Q = P ; hence, taken � = � and R = L�(P), the thesisfollows from Proposition 3. Otherwise, from Proposition 19 it follows that thereare R0 2 P1, � 2 L+2 , L � �(L�(R0)) and vi 2 V AL (8i : `i 2 L) such thatL�(P) ���! L�(R0) k �`i2L`i :: out(vi), s = C(�) and R0 � Q. Now, takeR = L�(R0) k �`i2L`i :: out(vi). By de�nition of C, we have that C(L�(R0) k�`i2L`i :: out(vi)) = C(L�(R0)) k C(�`i2L`i :: out(vi)) � C(L�(R0)). Moreover,by Proposition 3, we have that C(L�(R0)) = R0 which implies the thesis.5 ConclusionWe have described a tuple ghosting optimisation that allows tuples to be stillused as the results of non-destructive tuple space accesses once they have beendestructively removed. The motivation for tuple ghosting has been brie
y out-lined, as have some practical results from a prototype system demonstrating theadvantage of the approach.The operational semantics of the original Linda and of the version with theoptimisation are illustrated. Using these operational semantics, we have pre-sented a the formal proof of the tuple ghosting optimisation, and shown that theoptimisation does not alter the semantics of the primitives from a programmers'perspective. This has been achieved by proving that the optimised semantics cansimulate the original semantics, and that a sequence of transitions from the opti-mised semantics can be mimicked by a sequence of transitions from the originalsemantics.

References1. A. Rowstron. Optimising the Linda in primitive: Understanding tuple-space run-times. In J. Carroll, E. Damiani, H. Haddad, and D. Oppenheim, editors, Proceed-ings of the 2000 ACM Symposium on Applied Computing, volume 1, pages 227{232.ACM Press, March 2000.2. Sun Microsystems. Javaspace speci�cation. available at: http://java.sun.com/,1999.3. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A kernel language for agentsinteraction and mobility. IEEE Transactions on Software Engineering, 24(5):315{330, 1998.4. N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,32(4):444{458, 1989.5. P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and A. Knoche. Coordinating mul-tiagent applications on the WWW: A reference architecture. IEEE Transactionson Software Engineering, 24(5):362{366, 1998.6. P. Wycko�, S. McLaughry, T. Lehman, and D. Ford. TSpaces. IBM SystemsJournal, 37(3):454{474, 1998.7. A. Omicini and F. Zambonelli. Coordination for internet application development.Autonomous Agents and Multi-agent Systems, 2(3):251{269, 1999. Special Issueon Coordination Mechanisms and Patterns for Web Agents.8. A. Rowstron. WCL: A web co-ordination language. World Wide Web Journal,1(3):167{179, 1998.9. J. Carreria, L. Silva, and J. Silva. On the design of Eilean: A Linda-like library forMPI. Technical report, Universidade de Coimbra, 1994.10. N. Carriero and D. Gelernter. Tuple analysis and partial evaluation strategiesin the Linda precompiler. In D. Gelernter, A. Nicolau, and D. Padua, editors,Languages and Compilers for Parallel Computing, Research Monographs in Paralleland Distributed Computing, pages 114{125. MIT Press, 1990.11. R. De Nicola and R. Pugliese. A process algebra based on linda. In P. Ciancariniand C. Hankin, editors, Proceedings of the First International Conference on Co-ordination Models and Languages (COORDINATION'96), volume 1061 of LectureNotes in Computer Science, pages 160{178. Springer, 1996.12. G.D. Plotkin. A structural approach to operational semantics. Technical ReportDAIMI FN-19, Dep. of Computer Science, Aarhus University, Denmark, 1981.

