Using Agent Wills to Provide Fault-tolerance in Distributed Shared Memory
Systems

Antony Rowstron
Microsoft Research Ltd.
St. George House, 1 Guildhall Street
Cambridge, CB2 3NH, United Kingdom.
antr@microsoft.com

Abstract

In this paper we describe how we use mobile objects to
provide distributed programs coordinating through a per-
sistent distributed shared memory (DSM) with tolerance
to sudden agent failure, and use the increasingly popular
Linda-like tuple space languages as an example for imple-
mentation of the concept.

In programs coordinating and communicating through a
DSM a data structure is shared between multiple agents,
and the agents update the shared structure directly. How-
ever, if an agent should suddenly fail it is often hard for the
agents to make the data structures consistent with the new
application state. For example consider if a data structure
containsa list of active agents. In such a case, transactions
can be used when adding and removing agent names from
the list ensuring that that the data structure is consistent
and does not become corrupted should an agent fail. How-
ever, if failure of the agent occurs after the name has been
added, how does the application ensure the list is correct?

We argue that using mobile objects we can provide wills
for the agentsto effectively enablethemto ensurethe shared
data structure is application consistent, even oncethey have
failed. We show how we have integrated the use of agent
wills into a Linda system and show that we have not in-
creased the complexity of program writing. The integration
issimple and general, does not alter the underlying seman-
tics of the operations performed in the will and the use of
mobility is transparent to the programmer.

1. Introduction

been explored in what could be called traditional DSM, in
systems such as PerDiS[7], which quite literally provide
a mechanism for moving and managing pages of shared
memory between multiple machines. As well as the tradi-
tional DSM architectures there has been considerable inter
est in the last few years in the use of tuple space based co-
ordination languages, with many new languages being pro-
posed including WCL [13], PageSpace [5], TuSCon [11],
MARS [2], Jada [4], TSpaces [19], KLAIM [10], Lime [12]

and JavaSpaces [18]. These are all based around the original
ideas contained in Linda [8, 3], where the processes which
want to communicate and coordinate use a shared associa-
tive memory, or tuple space.

The domain we are interested in is systems that support
asynchronous Computer Supported Collaborative Working
(CSCW) applications, or in other words, systems where the
DSM is persistent, and contains state that can be used after
the agent that created the data has died. For the purposes of
this paper we will assume that an agent is an entity (appli-
cation, process, program or “agent”) that is using a shared
memory to communicate with other agents. The problem
we aim to address is the one of sudden agent failure result-
ing in data structures in the memory being consistent (no
dangling pointers etc.) but containing information that is
incorrect, and in Section 2 we will demonstrate this prob-
lem in detail.

Traditional methods for providing fault tolerance, such
as transactions, have been widely adopted in DSM systems,
for example in PerDiS, TSpaces, JavaSpaces. However,
with the current drive to use these infrastructures for high
distributed CSCW applications new demands are made by
application programmers. These new demands include the
need for more styles of fault tolerance. In the paper we de-

Using Distributed Shared Memory (DSM) as a commu- SCribe our approach to providing a different layer of fault
nication and coordination mechanism for applications that tolerance, which is used in conjunction with, not as a re-
are executing over the Internet is become increasingly pop-Placement for, traditional approaches.

ular. The concept of using DSM in such a framework has

The basic premise of the work is that if you can minimise

the distance between a piece of code and the data it is actingising a DSM system the shared state would be stored by the
upon then you can provide better fault tolerance. There isunderlying infrastructure providing the DSM, and the appli
nothing new per se in this, and in client-server based appli- cation writers create an agent that manipulates and manitor
cations manage this by having the shared state managed bthis shared state accordingly.

a single server (or synchronised set of servers) which copes In a DSM system, although it is possible for the under-
with failure of agents and maintains the shared state, whichlying infrastructure to detect that an agent has stopped re-
can only be access through the server interface. In DSMsponding, it is not easy for the agents to decide that another
systems the agents share and manipulate the data directhagent has failed. How this can be detected varies on the par-
and there is often no server agent that has overall responsiticular attributes of the DSM implementation. For example,
bility for the system. Indeed, the server could well be con- in most tuple space based DSMs this is difficult/impossible
sidered as the run-time system that supports the DSM, ando detect. This is compounded because multiple applica-
it is a general infrastructure that supports a general-psgp tions may share the same data structure, and then one appli-
access interface. In a client-server world the server cancation may not understand what to do to the data structure
know what to do in the case of client failure, however, in when another applications agent fails. This is especially
the peer-to-peer world of DSM, the general system man-true as there may be only one agent executing when the
aging the shared memory has no notion of what should befailure occurs, and therefore there are no other agents ac-
done upon agent failure. tive. This is possible because many DSM systems provide

In this paper we introduce the notion of an “agent will" persistence of data structures (all tuple space languages s
that simply is a piece of code that run-time managing the port persistence of tuple spaces) therefore; other agelits w
DSM can execute if it detects a failure with an agent. use the shared data structures in the future.

In the next section presence notification is described The problem is that the infrastructure supporting the
which demonstrates the need for further fault-tolerance DSM has no concept of what an application would like done
mechanisms, and in Section 3 the concept of agent willswhen an agent fails (becomes disconnected, dies or what-
is described in detail. Section 4 describes Linda, a com-ever). In the shared whiteboard application example there
parison of this work with other work in the Linda field, is no real problem with the whiteboard. Whenever an up-
and shows how agent wills are incorporated into a working date to the whiteboard is performed the program uses some
Linda based system, showing the Java API used and brieflyfault tolerance mechanism (such as transactions) to update
discussing the implementation. Finally, Section 6 dessib the whiteboard. If failure occurs in the middle of the trans-

future work and then we present our conclusions. action then the transaction aborts and the whiteboardtis lef
in a consistent state. However, the presence notificatitan da
2. Presence notification structure needs to be updated to reflect the agent has died.

In other words, the shared data structure that contains the
name of the user needs to have the name removed. But if

To demonstrate the general shortcoming with current the failure was unexpected how can the agent who died up-

DSM systems we consider the problem of “presence notifi-
cation” [6] in a CSCW application. Presence notification is date the shared sta@ . .
characterised as the need for an agent to know that another In orderto overcome this problem we havg ex'amlned the
agent currently exists. For example, given a shared white-Y5€ of agent wills. The concept of agent wills is now de-
board application and the assumption that at some point inscrlbed.

time there is more than one user sharing the same white-

board it is quite conceivable that the application should 3. Agent wills

maintain, on each user's screen, a list of people who are
currently sharing that whiteboard. When someone starts the

S 2 . . . In order to overcome this we propose using mobile ob-
application their name is added to the list, when they close.ects and to allow an agdent to pass to the run-time supportin
the application their name is removed. This list would be an J 9 P PP g

example of presence notification the DSM a piece of code that should be execstedid the
pie ot p S . . systemthink that the agent has failed. In this context, a mo-
If writing such an application using a client-server

. . i bile object is considered to be the code and internal state of
paradigm a server is written that manages the shared stat

o) e object, but not the execution point (in other words you
and the server can detect when it thinks an agent has faile an not pass a thread to the run-time system). The run-time
aR dnthen _Ir_imovzmrekr;a:lnve \]:\rlﬁnl tthe dhsf/vini E{)rr]opaga;f :]hestores the passed object, and this is called the “agent will”
change. The Server knows what 1o do when the agent hage o agent terminates normally then the will is discarded,
been considered to fail, because the application program-
mer who created the server created the code to perform the 1The failure could have even occurred whilst the agent waadrio

necessary operations on the data structure. However, whememove the name from the data structure.

but if the run-time decides that the agent has failed it ex- in(template) If a tuple exists that matches the template
ecutes a method within the object. It should be noted that then remove the tuple and return it to the entity per-
the agent must decide when the agent has failed. The mech- forming thei n. If no matching tuple is available then

anism used to decide when failure has occurred will most the primitive blocks until a matching tuple is available.

likely be network dependent, and communication method .
specific. The object that is passed to the run-time system,d(template) If a tuple exists that matches the template

implements an interface. The Linda embedding that is de- ~ then retumn a copy of the tuple to the entity that per-
scribed in the next section is shown in Figure 1. The run- formed ther d. If there is no matching tuple then the
time system calls the method | | . primitive blocks until a matching tuple is available.

If the will is executed it is able to update any shared data It should be noted that if multiple tuples in a tuple space

structures as though it was a normal agent. It can therefore,{natch a template then the returned tuple is chosen non-

remove a name from a shared data structure, or even inser S S .
- . deterministically. Although the original implementation

some state to indicate that the agent has disappeared rather .
: o only supported a single global tuple space, current tuple

than terminated normally. The application programmer cre- space based coordination lanauages support multiole tuple
ating the agent that dies is free to choose what operations P guag PP P P

spaces in one form or another. In these implementations
are to be performed on the shared data structures.
The aim is that th licati hould not normally tuple space handles can be passed between agents
€ am;] IS ha ebi\pp 'Cj‘ 1on tp:rqgrammgzr S 3“ h notin tuples. Also, the new generation, such as WCL, support a
perceive that the mobile code 1S being used, an the Seyyide variety of access primitives, and support concepts lik
mantics of the operations performed in the will should be

h houah th) of d within th tuple streaming, event models, bulk movement of tuples and
the same as though the operations are performed within theg, o 1, However, the exact primitives that a language sup-

agent. Although the application programmer will hopefully ports and the styles of interaction with a tuple space are of
pot perceivg this they are providing “small servers”'that Sl ho real consequence to the whether they can use the agent
Into .the main Server. The sma]l server oply provides one concept. Any access primitives or coordination patter
service which is called automatically on failure. that can be used by an agent can be used in the agent will.
Most of the new generation of coordination languages
{ use a variety of mechanisms to provide fault-tolerance not
): } found in the original Linda. Most languages that address
fault-tolerance (such as TSpaces and JavaSpaces) use a
transaction-based method of providing fault tolerances Th
transaction model adopted provides fault tolerance for up-
Having provided an overview of whatan agentwillis, let gating a data structure, where at the end of the transac-
us now consider the addition of agent wills to a Linda sys- tjon the data structure within the tuple space will be con-
tem. Before describing the addition, we will provide a brief gjstent. WCL uses the concept of mobility to provide the
overview of Linda, and some background work on Linda fayt-tolerant properties which transactions addressidit

1 interface Agent WI I
2 public void will(

Figure 1. The Java interface for a will object.

systems. tional tuple space languages [14], and this work described
in this paper is an extension of this work.
4. Case study: Linda There are several other systems which look at the use

of mobility within Linda systems, such as KLAIM [10],
Lime [12], TuCSoN [11] and MARS [2]. Most of these sys-
Linda [8, 3] was the first tuple space based co-ordination tems attempt to expose the mobility of agents and to make

language. In the nomenclature of Linda a tuple space isjt a feature that the application programmer explicitlysise
a mathematical bag (a multiset allowing for repetition of One of the main concepts of agent wills is that there is no
members), a tuple is an ordered list of typed elements (ac-concept of location. The application programmer has no
tuals), and a template is an order list of formals and actuals notion of where or how an agent will is stored or executed.
Tuples are inserted and removed from a tuple space using an There are two Linda based systems of particular interest
associative matching process. A template matches a tuple ifyt this point, both of which use reactive tuple spaces: TuC-
they have the same number of fields, and all the actuals ingoN and MARS. Reactive tuple spaces were first introduced
the template match the actuals in the tuple and the formaISin TuCSoN and they allowed sequences of non_b|ocking tu-
in the template match the type of the corresponding actualsp|e space operations to be inserted into a tuple space. These
inthe tuple. Basic Linda provides three primitives to eeabl sequences of operations are created using a logic language.
access to a tuple space: The reactions are first class and persistent, so can be in-

serted and removed. These reactions were fired whenever
out(tuple) Insert a tuple into a tuple space. a certain tuple operation in performed, such as tuple in-

sertion, tuple removal or the use of a particular primitive. current state across a network. The important point here is
The operations which fire the reactions are all high level, the use of a Virtual Machine, which allows heterogeneous
not as low as agents failing, joining and so on. MARS ex- machines to exchange executable code, and the ability to
tends the concept further incorporating mobility of agents dynamically load code.
Agents can only access the tuple spacs which is physically One of the aims of the system was to make the mecha-
present at the same location as the agent and therefore thgisms providing the fault tolerance as transparent as possi
agents migrate between one tuple space and the next in orple. The application programmer should not need to worry
der to access them. Location is therefore explicitin MARS. about how the fault tolerance is provided. Indeed, it should
The tuple spaces in MARS are reactive as well, and againpe noted that in Linda the use of transactions alters the
the reactions are attached to tuple space access events asjfleaning of some of the primitives performed within the
TuCSoN. The reactions only refer to one tuple space, and intransaction. Mobile objects may also provide an altereativ
MARS are Java based. to the use of transactions in Linda based systems [14].
There are many similarities but also many differencesbe- | order to show the APl and how it is incorporated into
tween the work described here and MARS and TUCSON. It {he Java embedding of Linda consider the example code
is guaranteed that an agent will is only ever executed onceshown in Figures 2 and 3. They show an application that
which is when an agent is thought to have died, whereas increates and uses an agent will and the object that acts as the
MARS a reaction is persistent. MARS allows only admin- ggent will respectively. It should be noted there is no ex-

istrator agents to add and remove (any) reactions, where agjicit mention of location anywhere in the two fragments of
any agent can have a will but only they can manipulate their ;qde.

own will. The event that triggers a reaction is tuple space

) ‘ In Figure 2 the clas3upleSpace provides the interface
accessing whereas no tuple space access affects a will.

2T ,) Ao a single tuple space managed by the run-time, providing
reaction in MARS could not be configured to fire when an the methodut ,i n, andr d as would be expected, and

agent dies and a reaction could not remove itself which is also two extra methodsr eat eW | | andcancel W 1 |
what would be required for the systems to provide an agenty new object has to be created for each tuple space that

will. Different agents will probably not use the same agent i v, pe accessed, and the syntax of the constructor for the

will. Even, if "agent death” was added as an event it is ,yeqnace class has been simplified slightly for clarity. In
unclear that each agent could configure its own agent will, o' rrent implementation an agent can add a will to any

pecause all reactions .that reacted to “ag.ent deaths” WOU|dtupIe space, therefore it is potentially possible for a king

f|re._ Also, an agent will can refer to .mult|ple tgple spaces agent to have multiple wills. This does not seem to be a
not jgst a §|ngle tuple space. There is no explicit notloq of problem and in many ways provides a more natural way of
location with the will and so the programmer has no notion incorporating the concept into a Linda system. There is no

of where Ithe will is being itpred or mangge_dh. In thelz current e 4s0n why there could not be a single will attached to no
Java implementation a will is associated with a tuple space, o, riclar tuple space.

however, it can access any tuple space, and in future a new - .
mechanism for managing agent wills may be added which A V.V'" Is attached to a tuple space by C.a”'”g thee-
at eW | | method of the object that is acting as the gate-

is completely independent of the tuple spaces. Also, wills .)
. way for accessing the tuple space. Once an object has been
are presented as a general-purpose solution to the problem

. o . made a will any alterations to its internal state will not be
in DSM systems as a whole; Linda is used to demonstrate . . .
X . : ._reflected in the will that the system stores. If the internal
the concept. Indeed, it should be feasible to implement this . : : .
: . ; .~ state is updated then the object will have to be resubmitted
on top of (as a service) many current Linda implementations

(although this has not been attempted) without altering theas the will for this to k.)e reflected in thg will the system IS
underlying implementation at all storing. Thecr eat eW | | method requires an object that

implements the AgentWill interface. Thigent W I | in-
terface is shown in Figure 1 and when the server wishes to

5. Incorporating agent wills in Linda execute a will it calls the methodill. If there is already
a will in place, currently, the will is cancelled and the new
5.1. Java API will is made the will. It may make sense though to raise an

exception at this point and allow an agent to decide what
In order to demonstrate the concept of agent wills we they wish to do.
have implemented the system using our Java embedding of In Figure 2 line 9, thecancel W11 method is called
Linda. In order to demonstrate the concept of agent wills to remove the will. Theeancel W11 method means that
the Java language is a natural choice as it supports objecéin agent will can be put in place for short periods of time,
serialisation and dynamic loading of class files which can or for the duration of a program. The lines 5-8 in Figure 2
be easily extended to support loading of the object code andnsert a tuple into the tuple space with a name in it, then

public class TestWII {
Tupl eSpace gts = new Tupl eSpace("' ‘| ocal host", 8989);

MWII theWll = new MYWII (gts,"Antony");
gts.createW !l | (TheWll);
gts. out (new Tupl e("Antony"));

....... /1 do sonething

1
2
3
4 public TestWII1() {
5
6
7

8 t = gts.rd(new Tenpl ate("Antony"));
9 gts.cancel WII ();
10 1}

Figure 2. Example - TestWill Class.

does something and before terminating removes the tuplemigrated, the class file is analysed and all potential class
containing the name. If run-time decides that the agent hadfiles are detected and packed with the object.
died somewhere in between inserting the tuple and remov- Another issue is that the agent may not have failed, just
ing the name tuple then the will is executed. It should be that the connection was transient. In this case, if the run-
noted that when ther eat eW | | method completes the time has been over pessimistic about when an agent has lost
will is guaranteed to be in place and usable. It should also connection and the agent attempts to perform more opera-
be noted that although a will is notionally attached to ag¢upl tions the current run-time implementation raises an excep-
space the will can access any tuple space that it has acced#on in the agent. This means the agent can deal with it —
to (the handles for the tuple spaces would have been passedhich usually means they create another will and change
in prior to the object being made a will), and can perform back the state (in this example reinsert their name tuple).
any of the Linda operations it wishes to. In the example of the presence notification, the other users

For efficiency reasons we have also added a methodwill see the user disappear and then reappear. In the same
calledexecut eW | | to theTupleSpaceclass. This causes example, another approach is to have the will remove the
the will to be executed, and blocks the current thread of ex- name tuple and insert another name tuple, but indicating in
ecution until that has happened. This may seem a naturakthe tuple that the user has disappeared. The application the
enough extension, but the implications are large, as a newdisplays this information to the user, so a user knows when
style of programming becomes viable, which may or may someone has purposely left the system, and when a fault
not want to be encouraged (the movement of computationhas caused the user to leave the system. These are issues
to the server may not want to be encouraged). that the application programmer can decide upon.

Figure 3 shows the will class. When it is instantiated
the parameters it requires are passed in which are a tupléb.2. Implementation
space handle and a string. All t¢ | | method does is
to remove a tuple from the tuple space. The tuple it will The current implementation uses a centralised server to
remove is the name tuple, and thereby, even if the agentprovide support for the tuple spaces. A centralised server
becomes disconnected before it can tidy the name state thigneans all the tuple spaces are managed within a single pro-
agent will performs the task for it. cess, but the agents can reside anywhere. Although many

There is a restriction made on the object that is migrated; of the current WAN targeted tuple space based coordination
it cannot perform any 1/0O operations except through tuple languages use centralised servers some use distributed ker
spaces (in other words it can insert tuples that other agentsels, for example WCL [17]. In this section we provide an
read and then print or whatever but it can not perform I/O overview of how we implemented the current implementa-
operations itself). In the current implementation if thélwi tion. At the end of section we discuss how we intend to
does perform I/O operations these are performed throughextend this for a decentralised kernel.
the console of the server. We used to place a restriction The main server is written in Java. When a will is passed
that all instantiations of classes that are not in the stahda to the server, the server creates an instance of the object
JDK must be maderior to the object being passed as the passed as the will, which must provide an interfagen-
parameter to &r eat eW | | method. This was because tWIl. When the agent that sent it fails the will method of
obviously the remote server cannot go back to request thethis object is called. When the object acting as the will
class code when the agent is being executed. However, thiss passed to the server, the server uses a new subclass of
restriction has been removed. Whenever an object is to beClassLoader that attempts to find the class files locally (ei-

1 class MYWII inplenents AgentWI I, Serializable {
2 Tupl eSpace ts; String nane;

3

4 public MyYWI I (Tupl eSpace ts, String nane) {

5 this.ts = ts; this.name = nanme; }

6

7 public void will() {

8 ts.in(new Tenpl ate(nane)); }

9}

Figure 3. Example - The MyWill Class.

ther on disk or in a cache) and then remotely from the agent5.3. Server fault tolerance

who provided the will. This is relatively simple and is the

same method that is used in many Java based mobile object We have described how we provide fault tolerance for
systems. Th€lassLoader has been extended to determine the application, but can this be implemented in a fault toler
which class files it may require in the future for a given ance manner in the run-time system? Although not imple-
(set of) class files. And retrieves these from the agent if mented in the currentimplementation, providing fault tele
required. ance for the run-time system should be possible in a cheap

The wills are executed within a thread, with one thread and efficient manner. There is no need to check point the
being created for each will. This means that the wills can running code on the server, and this is good because this
block whilst accessing a tuple space, without causing thewould require either modifications to the JVM being used
kernel to stop, or the processing of other wills to stop. In- or transformations of the class files. The first option is not
deed, in the current implementation a will could block for- acceptable and the second option would be time consuming
ever. if performed on the fly.

As a slight aside, from an optimisation point of view, the Instead, the server will checkpoint the tuple spaces as
TupleSpace objects detect whether it is running at the server done in many Linda implementations [1] and the Class-
or whether it is running remotely If it is running remotely Loader should create a local copy (on a persistent store) of
then it opens up the necessary sockets to the server and if il class files retrieved over the network and original stdte
is running under the same JVM as the server then it detectg¢he will should also be stored (on a persistent store). When
this, and is able to access the data structures used tolséore t the will is executed all tuples consumed and produced by the
tuples directly. This is important, because the migratiosh a ~ will should be stored and checkpointed as the tuple spaces
local execution of wills could increase the computational are. If a total failure of the server should occur, the tuple
load on the server. This in turn would lead to worse perfor- spaces can be recreated; instances of all the wills can also
mance of the server, and therefore of the system. Howeverpe re-instantiated in their initial state. And the will meth
by accessing the data structure directly many of the over-of the object called. When the will attempts to retrieve a tu-
heads of accessing a tuple space are removed [16]. Thigle the stored tuples are re-returned and the producedstuple
means that although running the will on the same JVM as are discarded if they have already been produced. Once all
the server increases the computational load, the server loa the stored tuples have been used then normal operation can
is reduced so it appears roughly equivalent to performing continue. Thismust be performed before any other opera-
the tuple space accesses remotely. tions on the tuple space are allowed in order to ensure that

Figure 4 demonstrates the architecture of the Linda Sys_this is semantically correct. This also assumes that tHe wil
tem used. The agent and the server process either run on thgiven the same tuples in the same order, produces the same
same or on different machines to the agent processes (nortuples in the same order.
mally a different machine). The server process maintains ~We have discussed a centralised run-time system in this
and manages all the tuple spaces; a cache of class files thagection. The implementation of this in a distributed kernel
the agent wills can use; and the agent wills. Although, the such as the one described in Rowstron [17] is quite feasi-
current implementation creates an active object as soon a®le. There is an underlying assumption that if a particular
the will arrives, another approach would be to only create Server fails, then the sever will restart itself. We deserib
the object when it was actually required. This means a will here the approach we are taking. Figure 5 shows the archi-

that is added and then removed incurs less of an overhead.tecture. Each server is responsible for one or more entire
tuple spaces.

2Exploiting transient data types in Java. In order to explain what happens lets us consider the

uplespac&tore

\—_luplespacetore)
N—— ——
thregendlassfiles
Classfiles Classfiles

tweequestlassfiles ‘

Agent Serveprocess Tuplespacstore
e

o Agensills @
~

(Agent
Will

~_

one - send will

into the tuple space). When the next operation is performed,
53 the agent will has to be migrated again, and this again trans-
fers the state, code and threset. Again the agent will is
executed, and thim_set is used to feed the agent will until
all the entries in thén_set have been used once.
This approach provides a reliable, and fault tolerance ap-
proach to the problem, with low communication overhead.

The same approach can be used to implement mobile coor-
dination as described in Rowstron [15].

6. Future work

TS2.in(a)
TS1.out(b)

TS2.in(a)
TS1.out(b)

TS2.in(a)
TS1.out(b)

Figure 5. Architecture of the distributed sys-

tem. We are going implement the system using a distributed
run-time system for Linda, using the method described in
the last section. We also are currently considering tworothe

example in the figure. The agent will is attached to tuple [SSues: how much computation we allow a will to perform

spaceTS2 initially. The agent will performs three opera- and how long, once it has been invoked, it should be al-
tions: TS2.in(a); TSL.out(b); TS3.in(c):. The basic concept lowed to run. We do not want agents to make their wills too
is that each time an agent will accesses a tuple space thatPMputationally expensive. A will should, in general, per-
does not reside on the local server, the agent will is movedform asmall number of accesses to the shared data structure

to the correct server. So, in the example, the first statement€n terminate. Wills that calculate pi to millions of deci-
of the agent will is executed, dn. The code is then moved ~M&! places are unacceptable, as they will degrade the per-

to the location offSL. The transfer of the state and classfiles formance of the servers managing the tuple spaces. Also,
is achieved in a reliable manner, using logs on a persistent€Y can perform operations that block for example, await-

store. However, the agent was in the middle of a method "9 & tuple. How long should a Will be allowed to exist?
when the mobility became necessary. In order to migrate It is probable that the tuple garbage collection techniques

an executing code one would need to either augment thedescribed in Menezes et al. [9] can be extended to sup-
classfile or alter the JVM. However, because agent wills port garbage collection wills associated with tuple spaces
should be small we take an alternative approach. We creaté®S Well-

anin_set for the agent will and insert in the_set a record of

all the tuples consumed (and the order they were consumedy . Conclusions

and a counter of the number of tuples produced by the will.

When the agent will is moved, it is restarted, and the tu- We have identified and described a type of operation
ples in thein_set are returned as the results of tha and (person natification) that is common in CSCW applications
r d primitives, until thein_set is empty. The output tuples that cannot easily be supported when using a DSM as the
are discarded until the number of tuples produced matchescommunication medium between agents. This is because
the passed counter, which should incidently be when an op-the applications are written in a peer-to-peer style with th
eration that is local to the current server is performed. Any agents interacting directly with shared data structures.
tuples consumed by the agent will are added tanhset (in We have proposed the use of mobile objects that we call
this case there are no tuples to be added as a tuple is inserteggent wills that provide the ability for an agent to “tidy”

the shared data structures, should the agent become discon-[9] R. Menezes and A. Wood. Garbage Collection in Open
nected from the underlying infrastructure. The will object
has the ability to outlive the agent which created it.

We have shown that such as system has been imple-[lo]

mented on top of a Linda implementation, and that it works.

Also, it has been shown that this has been implemented in a,
fashion that makes then underlying method used to provide
this transparent to the programmer. By making it transpar-
ent it does not increase the complexity of the program for

the programmer.
We finally conclude that the use of agent wills in dis-

tributed shared memory systems is novel and provides a
higher level of fault tolerance, and supports the use of a

peer-to-peer style of distributed program.

Acknowledgements

| would like to thank all those who have discussed the
ideas of agent wills, especially Stuart Wray. | would also
like to thank my colleagues at Microsoft Research for their

comments on the idea of mobile coordination and specific
comments on this paper, including Marc Shapiro and Cedric

Fournet.

References

(1]

(2]

(3]
(4]
(5]

(6]

(7]

(8]

B. Anderson and D. Shasha. Persistent Linda: Linda +
Transactions + Query Processing.Research Directionsin
High-Level Parallel Programming Languages, LNCS 574,
1991.

G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A pro-
grammable coordination architecture for mobile agerits.
appear |EEE Internet Computing, 0(0):0-0, 2000.

N. Carriero and D. Gelernter. Linda in contextommuni-
cations of the ACM, 32(4):444-458, 1989.

P. Ciancarini and D. Rossi. Coordinating Java agents ove
the WWW. World Wide Web Journal, 1(2):87-99, 1998.

P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and
A. Knoche. Coordinating multiagent applications on the
WWW: A reference architecture.lEEE Transactions on
Software Engineering, 24(5):362—-366, 1998.

M. Day. Presence and instant messaging via HTTP/1.0: A
coorindation perspective. In P. Ciancarini and A. Wolf-edi
tors, Coordination Languages and Models: Coordination99,
volume 1594 oflLecture Notes in Computer Science, pages
417-418. Springer-Verlag, 1999.

P. Ferreira, M. Shapiro, X. Blondel, O. Fambon, J. Gar-
cia, S. Kloosterman, N. Richer, M. Roberts, F. Sandakly,
G. Coulouris, J. Dollimore, P. Guedes, D. Hagimont, and
S. Krakowiak. Perdis: Design, implementation, and use of
a PERsistent Distributed Store. Technical report, QMW TR
752, CSTBILC/98-1392, INRIA RR 3525, INESC RT/5/98,
1998.

D. Gelernter. Generative communication in lind&ACM
Transactions on Programming Languages and Systems,
7(1):80-112, 1985.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Distributed Tuple Space Systems. Pnoceedings of 15th
Brazlian Computer Networks Symposi um- SBRC' 97, 1997.

R. D. Nicola, G. Ferrari, and R. Pugliese. KLAIM: A keine
language for agents interaction and mobilitfEEE Trans-
actions on Software Engineering, 24(5):315-330, 1998.

A. Omicini and F. Zambonelli. Coordination for intetne
application development.Autonomous Agents and Multi-
agent Systems, 2(3):0-0, 1999. Special Issue on Coordina-
tion Mechanisms and Patterns for Web Agents.

G. Picco, A. Murphy, and G.-C. Roman. Lime: Linda meets
mobility. Technical Report Technical report WUCS-98-21,
Washington University, Department of Computer Science,
St. Louis, Missouri, 1998.

A. Rowstron. WCL: A web co-ordination languag@brid
Wide Web Journal, 1(3):167-179, 1998.

A. Rowstron. Mobile co-ordination: Providing fault-
tolerance in tuple space based co-ordination languages.
In P. Ciancarini and A. Wolf, editorsCoordination Lan-
guages and Models: Coordination99, volume 1594 olec-
ture Notes in Computer Science, pages 196-210. Springer-
Verlag, 1999.

A. Rowstron. Mobile co-ordination: Providing faultlés-
ance in tuple space based co-ordination languagesTo In
appear Coordination’99. Springer Verlag, 1999.

A. Rowstron and A. Wood. BNITA: A set of tuple space
primitives for distributed coordination. 18ICSS30, vol-
ume 1, pages 379-388. IEEE CS Press, 1997.

A. Rowstron and S. Wray. A run-time system for the web
co-ordination language. IEEE Workshop on Internet Pro-
gramming Languages, 1998. Chicago, USA.

Sun Microsystems. Javaspace specification, revisibnFi-

nal Specification., 1997.

P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford.
TSpaces!BM Systems Journal, 37(3):454-474, 1998.

