
Using Agent Wills to Provide Fault-tolerance in Distributed Shared Memory
Systems

Antony Rowstron
Microsoft Research Ltd.

St. George House, 1 Guildhall Street
Cambridge, CB2 3NH, United Kingdom.

antr@microsoft.com

Abstract

In this paper we describe how we use mobile objects to
provide distributed programs coordinating through a per-
sistent distributed shared memory (DSM) with tolerance
to sudden agent failure, and use the increasingly popular
Linda-like tuple space languages as an example for imple-
mentation of the concept.

In programs coordinating and communicating through a
DSM a data structure is shared between multiple agents,
and the agents update the shared structure directly. How-
ever, if an agent should suddenly fail it is often hard for the
agents to make the data structures consistent with the new
application state. For example consider if a data structure
contains a list of active agents. In such a case, transactions
can be used when adding and removing agent names from
the list ensuring that that the data structure is consistent
and does not become corrupted should an agent fail. How-
ever, if failure of the agent occurs after the name has been
added, how does the application ensure the list is correct?

We argue that using mobile objects we can provide wills
for the agents to effectively enable them to ensure the shared
data structure is application consistent, even once they have
failed. We show how we have integrated the use of agent
wills into a Linda system and show that we have not in-
creased the complexity of program writing. The integration
is simple and general, does not alter the underlying seman-
tics of the operations performed in the will and the use of
mobility is transparent to the programmer.

1. Introduction

Using Distributed Shared Memory (DSM) as a commu-
nication and coordination mechanism for applications that
are executing over the Internet is become increasingly pop-
ular. The concept of using DSM in such a framework has

been explored in what could be called traditional DSM, in
systems such as PerDiS[7], which quite literally provide
a mechanism for moving and managing pages of shared
memory between multiple machines. As well as the tradi-
tional DSM architectures there has been considerable inter-
est in the last few years in the use of tuple space based co-
ordination languages, with many new languages being pro-
posed including WCL [13], PageSpace [5], TuSCon [11],
MARS [2], Jada [4], TSpaces [19], KLAIM [10], Lime [12]
and JavaSpaces [18]. These are all based around the original
ideas contained in Linda [8, 3], where the processes which
want to communicate and coordinate use a shared associa-
tive memory, or tuple space.

The domain we are interested in is systems that support
asynchronous Computer Supported Collaborative Working
(CSCW) applications, or in other words, systems where the
DSM is persistent, and contains state that can be used after
the agent that created the data has died. For the purposes of
this paper we will assume that an agent is an entity (appli-
cation, process, program or “agent”) that is using a shared
memory to communicate with other agents. The problem
we aim to address is the one of sudden agent failure result-
ing in data structures in the memory being consistent (no
dangling pointers etc.) but containing information that is
incorrect, and in Section 2 we will demonstrate this prob-
lem in detail.

Traditional methods for providing fault tolerance, such
as transactions, have been widely adopted in DSM systems,
for example in PerDiS, TSpaces, JavaSpaces. However,
with the current drive to use these infrastructures for highly
distributed CSCW applications new demands are made by
application programmers. These new demands include the
need for more styles of fault tolerance. In the paper we de-
scribe our approach to providing a different layer of fault
tolerance, which is used in conjunction with, not as a re-
placement for, traditional approaches.

The basic premise of the work is that if you can minimise

the distance between a piece of code and the data it is acting
upon then you can provide better fault tolerance. There is
nothing new per se in this, and in client-server based appli-
cations manage this by having the shared state managed by
a single server (or synchronised set of servers) which copes
with failure of agents and maintains the shared state, which
can only be access through the server interface. In DSM
systems the agents share and manipulate the data directly,
and there is often no server agent that has overall responsi-
bility for the system. Indeed, the server could well be con-
sidered as the run-time system that supports the DSM, and
it is a general infrastructure that supports a general-purpose
access interface. In a client-server world the server can
know what to do in the case of client failure, however, in
the peer-to-peer world of DSM, the general system man-
aging the shared memory has no notion of what should be
done upon agent failure.

In this paper we introduce the notion of an “agent will”
that simply is a piece of code that run-time managing the
DSM can execute if it detects a failure with an agent.

In the next section presence notification is described
which demonstrates the need for further fault-tolerance
mechanisms, and in Section 3 the concept of agent wills
is described in detail. Section 4 describes Linda, a com-
parison of this work with other work in the Linda field,
and shows how agent wills are incorporated into a working
Linda based system, showing the Java API used and briefly
discussing the implementation. Finally, Section 6 describes
future work and then we present our conclusions.

2. Presence notification

To demonstrate the general shortcoming with current
DSM systems we consider the problem of “presence notifi-
cation” [6] in a CSCW application. Presence notification is
characterised as the need for an agent to know that another
agent currently exists. For example, given a shared white-
board application and the assumption that at some point in
time there is more than one user sharing the same white-
board it is quite conceivable that the application should
maintain, on each user’s screen, a list of people who are
currently sharing that whiteboard. When someone starts the
application their name is added to the list, when they close
the application their name is removed. This list would be an
example of presence notification.

If writing such an application using a client-server
paradigm a server is written that manages the shared state,
and the server can detect when it thinks an agent has failed
and then remove the name from the list and propagate the
change. The server knows what to do when the agent has
been considered to fail, because the application program-
mer who created the server created the code to perform the
necessary operations on the data structure. However, when

using a DSM system the shared state would be stored by the
underlying infrastructure providing the DSM, and the appli-
cation writers create an agent that manipulates and monitors
this shared state accordingly.

In a DSM system, although it is possible for the under-
lying infrastructure to detect that an agent has stopped re-
sponding, it is not easy for the agents to decide that another
agent has failed. How this can be detected varies on the par-
ticular attributes of the DSM implementation. For example,
in most tuple space based DSMs this is difficult/impossible
to detect. This is compounded because multiple applica-
tions may share the same data structure, and then one appli-
cation may not understand what to do to the data structure
when another applications agent fails. This is especially
true as there may be only one agent executing when the
failure occurs, and therefore there are no other agents ac-
tive. This is possible because many DSM systems provide
persistence of data structures (all tuple space languages sup-
port persistence of tuple spaces) therefore; other agents will
use the shared data structures in the future.

The problem is that the infrastructure supporting the
DSM has no concept of what an application would like done
when an agent fails (becomes disconnected, dies or what-
ever). In the shared whiteboard application example there
is no real problem with the whiteboard. Whenever an up-
date to the whiteboard is performed the program uses some
fault tolerance mechanism (such as transactions) to update
the whiteboard. If failure occurs in the middle of the trans-
action then the transaction aborts and the whiteboard is left
in a consistent state. However, the presence notification data
structure needs to be updated to reflect the agent has died.
In other words, the shared data structure that contains the
name of the user needs to have the name removed. But if
the failure was unexpected how can the agent who died up-
date the shared state1?

In order to overcome this problem we have examined the
use of agent wills. The concept of agent wills is now de-
scribed.

3. Agent wills

In order to overcome this we propose using mobile ob-
jects and to allow an agent to pass to the run-time supporting
the DSM a piece of code that should be executedshould the
system think that the agent has failed. In this context, a mo-
bile object is considered to be the code and internal state of
the object, but not the execution point (in other words you
can not pass a thread to the run-time system). The run-time
stores the passed object, and this is called the “agent will”.
If the agent terminates normally then the will is discarded,

1The failure could have even occurred whilst the agent was trying to
remove the name from the data structure.

but if the run-time decides that the agent has failed it ex-
ecutes a method within the object. It should be noted that
the agent must decide when the agent has failed. The mech-
anism used to decide when failure has occurred will most
likely be network dependent, and communication method
specific. The object that is passed to the run-time system,
implements an interface. The Linda embedding that is de-
scribed in the next section is shown in Figure 1. The run-
time system calls the methodwill.

If the will is executed it is able to update any shared data
structures as though it was a normal agent. It can therefore,
remove a name from a shared data structure, or even insert
some state to indicate that the agent has disappeared rather
than terminated normally. The application programmer cre-
ating the agent that dies is free to choose what operations
are to be performed on the shared data structures.

The aim is that the application programmer should not
perceive that the mobile code is being used, and the se-
mantics of the operations performed in the will should be
the same as though the operations are performed within the
agent. Although the application programmer will hopefully
not perceive this they are providing “small servers” that slot
into the main server. The small server only provides one
service which is called automatically on failure.

1 interface AgentWillf
2 public void will(); g

Figure 1. The Java interface for a will object.

Having provided an overview of what an agent will is, let
us now consider the addition of agent wills to a Linda sys-
tem. Before describing the addition, we will provide a brief
overview of Linda, and some background work on Linda
systems.

4. Case study: Linda

Linda [8, 3] was the first tuple space based co-ordination
language. In the nomenclature of Linda a tuple space is
a mathematical bag (a multiset allowing for repetition of
members), a tuple is an ordered list of typed elements (ac-
tuals), and a template is an order list of formals and actuals.
Tuples are inserted and removed from a tuple space using an
associative matching process. A template matches a tuple if
they have the same number of fields, and all the actuals in
the template match the actuals in the tuple and the formals
in the template match the type of the corresponding actuals
in the tuple. Basic Linda provides three primitives to enable
access to a tuple space:

out(tuple) Insert a tuple into a tuple space.

in(template) If a tuple exists that matches the template
then remove the tuple and return it to the entity per-
forming thein. If no matching tuple is available then
the primitive blocks until a matching tuple is available.

rd(template) If a tuple exists that matches the template
then return a copy of the tuple to the entity that per-
formed therd. If there is no matching tuple then the
primitive blocks until a matching tuple is available.

It should be noted that if multiple tuples in a tuple space
match a template then the returned tuple is chosen non-
deterministically. Although the original implementation
only supported a single global tuple space, current tuple
space based coordination languages support multiple tuple
spaces in one form or another. In these implementations
normally tuple space handles can be passed between agents
in tuples. Also, the new generation, such as WCL, support a
wide variety of access primitives, and support concepts like
tuple streaming, event models, bulk movement of tuples and
so forth. However, the exact primitives that a language sup-
ports and the styles of interaction with a tuple space are of
no real consequence to the whether they can use the agent
will concept. Any access primitives or coordination patterns
that can be used by an agent can be used in the agent will.

Most of the new generation of coordination languages
use a variety of mechanisms to provide fault-tolerance not
found in the original Linda. Most languages that address
fault-tolerance (such as TSpaces and JavaSpaces) use a
transaction-based method of providing fault tolerance. The
transaction model adopted provides fault tolerance for up-
dating a data structure, where at the end of the transac-
tion the data structure within the tuple space will be con-
sistent. WCL uses the concept of mobility to provide the
fault-tolerant properties which transactions address in tradi-
tional tuple space languages [14], and this work described
in this paper is an extension of this work.

There are several other systems which look at the use
of mobility within Linda systems, such as KLAIM [10],
Lime [12], TuCSoN [11] and MARS [2]. Most of these sys-
tems attempt to expose the mobility of agents and to make
it a feature that the application programmer explicitly uses.
One of the main concepts of agent wills is that there is no
concept of location. The application programmer has no
notion of where or how an agent will is stored or executed.

There are two Linda based systems of particular interest
at this point, both of which use reactive tuple spaces: TuC-
SoN and MARS. Reactive tuple spaces were first introduced
in TuCSoN and they allowed sequences of non-blocking tu-
ple space operations to be inserted into a tuple space. These
sequences of operations are created using a logic language.
The reactions are first class and persistent, so can be in-
serted and removed. These reactions were fired whenever
a certain tuple operation in performed, such as tuple in-

sertion, tuple removal or the use of a particular primitive.
The operations which fire the reactions are all high level,
not as low as agents failing, joining and so on. MARS ex-
tends the concept further incorporating mobility of agents.
Agents can only access the tuple spacs which is physically
present at the same location as the agent and therefore the
agents migrate between one tuple space and the next in or-
der to access them. Location is therefore explicit in MARS.
The tuple spaces in MARS are reactive as well, and again
the reactions are attached to tuple space access events as in
TuCSoN. The reactions only refer to one tuple space, and in
MARS are Java based.

There are many similarities but also many differences be-
tween the work described here and MARS and TuCSoN. It
is guaranteed that an agent will is only ever executed once
which is when an agent is thought to have died, whereas in
MARS a reaction is persistent. MARS allows only admin-
istrator agents to add and remove (any) reactions, where as
any agent can have a will but only they can manipulate their
own will. The event that triggers a reaction is tuple space
accessing whereas no tuple space access affects a will. A
reaction in MARS could not be configured to fire when an
agent dies and a reaction could not remove itself which is
what would be required for the systems to provide an agent
will. Different agents will probably not use the same agent
will. Even, if “agent death” was added as an event it is
unclear that each agent could configure its own agent will,
because all reactions that reacted to “agent deaths” would
fire. Also, an agent will can refer to multiple tuple spaces
not just a single tuple space. There is no explicit notion of
location with the will and so the programmer has no notion
of where the will is being stored or managed. In the current
Java implementation a will is associated with a tuple space,
however, it can access any tuple space, and in future a new
mechanism for managing agent wills may be added which
is completely independent of the tuple spaces. Also, wills
are presented as a general-purpose solution to the problem
in DSM systems as a whole; Linda is used to demonstrate
the concept. Indeed, it should be feasible to implement this
on top of (as a service) many current Linda implementations
(although this has not been attempted) without altering the
underlying implementation at all.

5. Incorporating agent wills in Linda

5.1. Java API

In order to demonstrate the concept of agent wills we
have implemented the system using our Java embedding of
Linda. In order to demonstrate the concept of agent wills
the Java language is a natural choice as it supports object
serialisation and dynamic loading of class files which can
be easily extended to support loading of the object code and

current state across a network. The important point here is
the use of a Virtual Machine, which allows heterogeneous
machines to exchange executable code, and the ability to
dynamically load code.

One of the aims of the system was to make the mecha-
nisms providing the fault tolerance as transparent as possi-
ble. The application programmer should not need to worry
about how the fault tolerance is provided. Indeed, it should
be noted that in Linda the use of transactions alters the
meaning of some of the primitives performed within the
transaction. Mobile objects may also provide an alternative
to the use of transactions in Linda based systems [14].

In order to show the API and how it is incorporated into
the Java embedding of Linda consider the example code
shown in Figures 2 and 3. They show an application that
creates and uses an agent will and the object that acts as the
agent will respectively. It should be noted there is no ex-
plicit mention of location anywhere in the two fragments of
code.

In Figure 2 the classTupleSpace provides the interface
to a single tuple space managed by the run-time, providing
the methodsout,in, andrd as would be expected, and
also two extra methodscreateWill andcancelWill.
A new object has to be created for each tuple space that
is to be accessed, and the syntax of the constructor for the
TupleSpace class has been simplified slightly for clarity. In
the current implementation an agent can add a will to any
tuple space, therefore it is potentially possible for a single
agent to have multiple wills. This does not seem to be a
problem and in many ways provides a more natural way of
incorporating the concept into a Linda system. There is no
reason why there could not be a single will attached to no
particular tuple space.

A will is attached to a tuple space by calling thecre-
ateWill method of the object that is acting as the gate-
way for accessing the tuple space. Once an object has been
made a will any alterations to its internal state will not be
reflected in the will that the system stores. If the internal
state is updated then the object will have to be resubmitted
as the will for this to be reflected in the will the system is
storing. ThecreateWill method requires an object that
implements the AgentWill interface. TheAgentWill in-
terface is shown in Figure 1 and when the server wishes to
execute a will it calls the methodwill. If there is already
a will in place, currently, the will is cancelled and the new
will is made the will. It may make sense though to raise an
exception at this point and allow an agent to decide what
they wish to do.

In Figure 2 line 9, thecancelWill method is called
to remove the will. ThecancelWill method means that
an agent will can be put in place for short periods of time,
or for the duration of a program. The lines 5-8 in Figure 2
insert a tuple into the tuple space with a name in it, then

1 public class TestWill f
2 TupleSpace gts = new TupleSpace(‘‘localhost",8989);
3
4 public TestWill() f
5 MyWill theWill = new MyWill(gts,"Antony");
6 gts.createWill(TheWill);
7 gts.out(new Tuple("Antony"));
....... // do something
8 t = gts.rd(new Template("Antony"));
9 gts.cancelWill();
10 g

Figure 2. Example - TestWill Class.

does something and before terminating removes the tuple
containing the name. If run-time decides that the agent has
died somewhere in between inserting the tuple and remov-
ing the name tuple then the will is executed. It should be
noted that when thecreateWill method completes the
will is guaranteed to be in place and usable. It should also
be noted that although a will is notionally attached to a tuple
space the will can access any tuple space that it has access
to (the handles for the tuple spaces would have been passed
in prior to the object being made a will), and can perform
any of the Linda operations it wishes to.

For efficiency reasons we have also added a method
calledexecuteWill to theTupleSpace class. This causes
the will to be executed, and blocks the current thread of ex-
ecution until that has happened. This may seem a natural
enough extension, but the implications are large, as a new
style of programming becomes viable, which may or may
not want to be encouraged (the movement of computation
to the server may not want to be encouraged).

Figure 3 shows the will class. When it is instantiated
the parameters it requires are passed in which are a tuple
space handle and a string. All thewill method does is
to remove a tuple from the tuple space. The tuple it will
remove is the name tuple, and thereby, even if the agent
becomes disconnected before it can tidy the name state this
agent will performs the task for it.

There is a restriction made on the object that is migrated;
it cannot perform any I/O operations except through tuple
spaces (in other words it can insert tuples that other agents
read and then print or whatever but it can not perform I/O
operations itself). In the current implementation if the will
does perform I/O operations these are performed through
the console of the server. We used to place a restriction
that all instantiations of classes that are not in the standard
JDK must be madeprior to the object being passed as the
parameter to acreateWill method. This was because
obviously the remote server cannot go back to request the
class code when the agent is being executed. However, this
restriction has been removed. Whenever an object is to be

migrated, the class file is analysed and all potential class
files are detected and packed with the object.

Another issue is that the agent may not have failed, just
that the connection was transient. In this case, if the run-
time has been over pessimistic about when an agent has lost
connection and the agent attempts to perform more opera-
tions the current run-time implementation raises an excep-
tion in the agent. This means the agent can deal with it –
which usually means they create another will and change
back the state (in this example reinsert their name tuple).
In the example of the presence notification, the other users
will see the user disappear and then reappear. In the same
example, another approach is to have the will remove the
name tuple and insert another name tuple, but indicating in
the tuple that the user has disappeared. The application then
displays this information to the user, so a user knows when
someone has purposely left the system, and when a fault
has caused the user to leave the system. These are issues
that the application programmer can decide upon.

5.2. Implementation

The current implementation uses a centralised server to
provide support for the tuple spaces. A centralised server
means all the tuple spaces are managed within a single pro-
cess, but the agents can reside anywhere. Although many
of the current WAN targeted tuple space based coordination
languages use centralised servers some use distributed ker-
nels, for example WCL [17]. In this section we provide an
overview of how we implemented the current implementa-
tion. At the end of section we discuss how we intend to
extend this for a decentralised kernel.

The main server is written in Java. When a will is passed
to the server, the server creates an instance of the object
passed as the will, which must provide an interfaceAgen-
tWill. When the agent that sent it fails the will method of
this object is called. When the object acting as the will
is passed to the server, the server uses a new subclass of
ClassLoader that attempts to find the class files locally (ei-

1 class MyWill implements AgentWill, Serializable f
2 TupleSpace ts; String name;
3
4 public MyWill(TupleSpace ts, String name) f
5 this.ts = ts; this.name = name; g
6
7 public void will() f
8 ts.in(new Template(name));g
9 g

Figure 3. Example - The MyWill Class.

ther on disk or in a cache) and then remotely from the agent
who provided the will. This is relatively simple and is the
same method that is used in many Java based mobile object
systems. TheClassLoader has been extended to determine
which class files it may require in the future for a given
(set of) class files. And retrieves these from the agent if
required.

The wills are executed within a thread, with one thread
being created for each will. This means that the wills can
block whilst accessing a tuple space, without causing the
kernel to stop, or the processing of other wills to stop. In-
deed, in the current implementation a will could block for-
ever.

As a slight aside, from an optimisation point of view, the
TupleSpace objects detect whether it is running at the server
or whether it is running remotely2. If it is running remotely
then it opens up the necessary sockets to the server and if it
is running under the same JVM as the server then it detects
this, and is able to access the data structures used to store the
tuples directly. This is important, because the migration and
local execution of wills could increase the computational
load on the server. This in turn would lead to worse perfor-
mance of the server, and therefore of the system. However,
by accessing the data structure directly many of the over-
heads of accessing a tuple space are removed [16]. This
means that although running the will on the same JVM as
the server increases the computational load, the server load
is reduced so it appears roughly equivalent to performing
the tuple space accesses remotely.

Figure 4 demonstrates the architecture of the Linda sys-
tem used. The agent and the server process either run on the
same or on different machines to the agent processes (nor-
mally a different machine). The server process maintains
and manages all the tuple spaces; a cache of class files that
the agent wills can use; and the agent wills. Although, the
current implementation creates an active object as soon as
the will arrives, another approach would be to only create
the object when it was actually required. This means a will
that is added and then removed incurs less of an overhead.

2Exploiting transient data types in Java.

5.3. Server fault tolerance

We have described how we provide fault tolerance for
the application, but can this be implemented in a fault toler-
ance manner in the run-time system? Although not imple-
mented in the current implementation, providing fault toler-
ance for the run-time system should be possible in a cheap
and efficient manner. There is no need to check point the
running code on the server, and this is good because this
would require either modifications to the JVM being used
or transformations of the class files. The first option is not
acceptable and the second option would be time consuming
if performed on the fly.

Instead, the server will checkpoint the tuple spaces as
done in many Linda implementations [1] and the Class-
Loader should create a local copy (on a persistent store) of
all class files retrieved over the network and original stateof
the will should also be stored (on a persistent store). When
the will is executed all tuples consumed and produced by the
will should be stored and checkpointed as the tuple spaces
are. If a total failure of the server should occur, the tuple
spaces can be recreated; instances of all the wills can also
be re-instantiated in their initial state. And the will method
of the object called. When the will attempts to retrieve a tu-
ple the stored tuples are re-returned and the produced tuples
are discarded if they have already been produced. Once all
the stored tuples have been used then normal operation can
continue. Thismust be performed before any other opera-
tions on the tuple space are allowed in order to ensure that
this is semantically correct. This also assumes that the will,
given the same tuples in the same order, produces the same
tuples in the same order.

We have discussed a centralised run-time system in this
section. The implementation of this in a distributed kernel
such as the one described in Rowstron [17] is quite feasi-
ble. There is an underlying assumption that if a particular
server fails, then the sever will restart itself. We describe
here the approach we are taking. Figure 5 shows the archi-
tecture. Each server is responsible for one or more entire
tuple spaces.

In order to explain what happens lets us consider the

Server processAgent

Agent
Will

Tuplespace Store

Agent wills

Classfiles

one - send will

three - send classfiles
Classfiles

two - request classfiles

Agent
Will

Figure 4. Architecture of the centralised system.

Server 1

TS2

Server 2

TS3Agent Will

TS2.in(a)
TS1.out(b)
TS3.in(c)

Agent Will

TS2.in(a)
TS1.out(b)
TS3.in(c)

Server 2

Agent Will

TS2.in(a)
TS1.out(b)
TS3.in(c)

tw
o

one

[a]
[c]

in_set:TS2,[a]

in_set:TS2,[a]

TS1

[b]

Figure 5. Architecture of the distributed sys-
tem.

example in the figure. The agent will is attached to tuple
spaceTS2 initially. The agent will performs three opera-
tions: TS2.in(a); TS1.out(b); TS3.in(c);. The basic concept
is that each time an agent will accesses a tuple space that
does not reside on the local server, the agent will is moved
to the correct server. So, in the example, the first statement
of the agent will is executed, anin. The code is then moved
to the location ofTS1. The transfer of the state and classfiles
is achieved in a reliable manner, using logs on a persistent
store. However, the agent was in the middle of a method
when the mobility became necessary. In order to migrate
an executing code one would need to either augment the
classfile or alter the JVM. However, because agent wills
should be small we take an alternative approach. We create
anin set for the agent will and insert in thein set a record of
all the tuples consumed (and the order they were consumed)
and a counter of the number of tuples produced by the will.
When the agent will is moved, it is restarted, and the tu-
ples in thein set are returned as the results of thein and
rd primitives, until thein set is empty. The output tuples
are discarded until the number of tuples produced matches
the passed counter, which should incidently be when an op-
eration that is local to the current server is performed. Any
tuples consumed by the agent will are added to thein set (in
this case there are no tuples to be added as a tuple is inserted

into the tuple space). When the next operation is performed,
the agent will has to be migrated again, and this again trans-
fers the state, code and thein set. Again the agent will is
executed, and thein set is used to feed the agent will until
all the entries in thein set have been used once.

This approach provides a reliable, and fault tolerance ap-
proach to the problem, with low communication overhead.
The same approach can be used to implement mobile coor-
dination as described in Rowstron [15].

6. Future work

We are going implement the system using a distributed
run-time system for Linda, using the method described in
the last section. We also are currently considering two other
issues: how much computation we allow a will to perform
and how long, once it has been invoked, it should be al-
lowed to run. We do not want agents to make their wills too
computationally expensive. A will should, in general, per-
form a small number of accesses to the shared data structure
then terminate. Wills that calculate pi to millions of deci-
mal places are unacceptable, as they will degrade the per-
formance of the servers managing the tuple spaces. Also,
they can perform operations that block for example, await-
ing a tuple. How long should a Will be allowed to exist?
It is probable that the tuple garbage collection techniques
described in Menezes et al. [9] can be extended to sup-
port garbage collection wills associated with tuple spaces
as well.

7. Conclusions

We have identified and described a type of operation
(person notification) that is common in CSCW applications
that cannot easily be supported when using a DSM as the
communication medium between agents. This is because
the applications are written in a peer-to-peer style with the
agents interacting directly with shared data structures.

We have proposed the use of mobile objects that we call
agent wills that provide the ability for an agent to “tidy”

the shared data structures, should the agent become discon-
nected from the underlying infrastructure. The will object
has the ability to outlive the agent which created it.

We have shown that such as system has been imple-
mented on top of a Linda implementation, and that it works.
Also, it has been shown that this has been implemented in a
fashion that makes then underlying method used to provide
this transparent to the programmer. By making it transpar-
ent it does not increase the complexity of the program for
the programmer.

We finally conclude that the use of agent wills in dis-
tributed shared memory systems is novel and provides a
higher level of fault tolerance, and supports the use of a
peer-to-peer style of distributed program.

Acknowledgements

I would like to thank all those who have discussed the
ideas of agent wills, especially Stuart Wray. I would also
like to thank my colleagues at Microsoft Research for their
comments on the idea of mobile coordination and specific
comments on this paper, including Marc Shapiro and Cedric
Fournet.

References

[1] B. Anderson and D. Shasha. Persistent Linda: Linda +
Transactions + Query Processing. InResearch Directions in
High-Level Parallel Programming Languages, LNCS 574,
1991.

[2] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A pro-
grammable coordination architecture for mobile agents.To
appear IEEE Internet Computing, 0(0):0–0, 2000.

[3] N. Carriero and D. Gelernter. Linda in context.Communi-
cations of the ACM, 32(4):444–458, 1989.

[4] P. Ciancarini and D. Rossi. Coordinating Java agents over
the WWW. World Wide Web Journal, 1(2):87–99, 1998.

[5] P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and
A. Knoche. Coordinating multiagent applications on the
WWW: A reference architecture.IEEE Transactions on
Software Engineering, 24(5):362–366, 1998.

[6] M. Day. Presence and instant messaging via HTTP/1.0: A
coorindation perspective. In P. Ciancarini and A. Wolf, edi-
tors,Coordination Languages and Models: Coordination99,
volume 1594 ofLecture Notes in Computer Science, pages
417–418. Springer-Verlag, 1999.

[7] P. Ferreira, M. Shapiro, X. Blondel, O. Fambon, J. Gar-
cia, S. Kloosterman, N. Richer, M. Roberts, F. Sandakly,
G. Coulouris, J. Dollimore, P. Guedes, D. Hagimont, and
S. Krakowiak. Perdis: Design, implementation, and use of
a PERsistent DIstributed Store. Technical report, QMW TR
752, CSTB ILC/98-1392, INRIA RR 3525, INESC RT/5/98,
1998.

[8] D. Gelernter. Generative communication in linda.ACM
Transactions on Programming Languages and Systems,
7(1):80–112, 1985.

[9] R. Menezes and A. Wood. Garbage Collection in Open
Distributed Tuple Space Systems. InProceedings of 15th
Brazilian Computer Networks Symposi um - SBRC’97, 1997.

[10] R. D. Nicola, G. Ferrari, and R. Pugliese. KLAIM: A kernel
language for agents interaction and mobility.IEEE Trans-
actions on Software Engineering, 24(5):315–330, 1998.

[11] A. Omicini and F. Zambonelli. Coordination for internet
application development.Autonomous Agents and Multi-
agent Systems, 2(3):0–0, 1999. Special Issue on Coordina-
tion Mechanisms and Patterns for Web Agents.

[12] G. Picco, A. Murphy, and G.-C. Roman. Lime: Linda meets
mobility. Technical Report Technical report WUCS-98-21,
Washington University, Department of Computer Science,
St. Louis, Missouri, 1998.

[13] A. Rowstron. WCL: A web co-ordination language.World
Wide Web Journal, 1(3):167–179, 1998.

[14] A. Rowstron. Mobile co-ordination: Providing fault-
tolerance in tuple space based co-ordination languages.
In P. Ciancarini and A. Wolf, editors,Coordination Lan-
guages and Models: Coordination99, volume 1594 ofLec-
ture Notes in Computer Science, pages 196–210. Springer-
Verlag, 1999.

[15] A. Rowstron. Mobile co-ordination: Providing fault toler-
ance in tuple space based co-ordination languages. InTo
appear Coordination’99. Springer Verlag, 1999.

[16] A. Rowstron and A. Wood. BONITA: A set of tuple space
primitives for distributed coordination. InHICSS-30, vol-
ume 1, pages 379–388. IEEE CS Press, 1997.

[17] A. Rowstron and S. Wray. A run-time system for the web
co-ordination language. InIEEE Workshop on Internet Pro-
gramming Languages, 1998. Chicago, USA.

[18] Sun Microsystems. Javaspace specification, revision 0.4. Fi-
nal Specification., 1997.

[19] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford.
TSpaces.IBM Systems Journal, 37(3):454–474, 1998.

