## Approximability of subspace approximation

Amit Deshpande

Microsoft Research India

#### **Credits**

Based on joint work with Madhur Tulsiani and Nisheeth Vishnoi,

#### Credits

Based on joint work with Madhur Tulsiani and Nisheeth Vishnoi,

and disjoint (?) work of

- Varadarajan, Venkatesh, Ye, and Zhang (SICOMP, 2007)
- Kindler, Naor, and Schechtman (Math of OR, 2010)
- Guruswami, Raghavendra, Saket, and Wu (preprint)
- **...**
- the anonymous heroes who discovered eigenvalues, eigenvectors, gaussians etc.

#### Subspace approximation

Find a low-dimensional representation of high-dimensional data up to a small error.

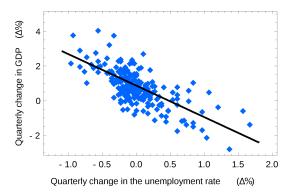
or for simplicity,

Given *n* points  $a_1, a_2, \ldots, a_n \in \mathbb{R}^d$ , find a *k*-dimensional linear subspace *V* that minimizes

$$\left(\sum_{i=1}^n d(a_i,V)^p\right)^{1/p}.$$

#### Special cases

p=2 (ordinary least squares) and  $p=\infty$  (radii of point sets).



http://en.wikipedia.org/wiki/File:Okuns\_law\_quarterly\_differences.svg

# Simplest case: dim(V) = d - 1 and p = 2

Subspace V is uniquely identified by its unit normal x.

$$\min_{\dim(V)=d-1} \left( \sum_{i=1}^{n} d(a_i, V)^2 \right)^{1/2} = \min_{\|x\|_2=1} \left( \sum_{i=1}^{n} \langle a_i, x \rangle^2 \right)^{1/2} 
= \min_{\|x\|_2=1} \|Ax\|_2.$$

So the optimal x is the smallest singular vector of  $A \in \mathbb{R}^{n \times d}$ , which has  $a_1, \ldots, a_n$  as its rows.

# Singular Value Decomposition (SVD)



http://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg

## Beyond SVD?

► Convex programs: minimize a convex function over a convex domain.

#### Beyond SVD?

- ► Convex programs: minimize a convex function over a convex domain.
- ▶ Minimizing  $||Ax||_p$  over  $||x||_2 \ge 1$  is not a convex program.

#### Beyond SVD?

- ► Convex programs: minimize a convex function over a convex domain.
- ▶ Minimizing  $||Ax||_p$  over  $||x||_2 \ge 1$  is not a convex program.
- ▶ Magic of SVD: But we can do this efficiently for p = 2 (Ref. Matrix Computations, Golub and Van Loan).

# Convex relaxation and randomized rounding

Using 
$$\langle a_i, x \rangle^p = (a_i^T x x^T a_i)^{p/2}$$
,

$$\min_{\|x\|_2=1} \left( \sum_{i=1}^n \left\langle a_i, x \right\rangle^p \right)^{1/p} \overset{\text{relax}}{\underset{X \text{ symmetric}}{\longrightarrow}} \min_{\substack{X \text{ : } X \succcurlyeq 0 \\ X \text{ symmetric} \\ \text{trace}(X)=1}} \left( \sum_{i=1}^n \left( a_i^T X a_i \right)^{p/2} \right)^{1/p}.$$

# Convex relaxation and randomized rounding

Using 
$$\langle a_i, x \rangle^p = (a_i^T x x^T a_i)^{p/2}$$
,

$$\min_{\|x\|_2 = 1} \left( \sum_{i=1}^n \left\langle a_i, x \right\rangle^p \right)^{1/p} \overset{\text{relax}}{\underset{X \text{ symmetric}}{\longrightarrow}} \min_{\substack{X : X \succcurlyeq 0 \\ X \text{ symmetric} \\ \text{trace}(X) = 1}} \left( \sum_{i=1}^n \left( a_i^T X a_i \right)^{p/2} \right)^{1/p}.$$

► X may not have rank one (and thus no expression as  $xx^T$ ); SVD gives  $X = V\Sigma V^T = \sum_{i=1}^n \sigma_i v_i v_i^T$ .

# Convex relaxation and randomized rounding

Using 
$$\langle a_i, x \rangle^p = (a_i^T x x^T a_i)^{p/2}$$
,

$$\min_{\|x\|_2 = 1} \left( \sum_{i=1}^n \left\langle a_i, x \right\rangle^p \right)^{1/p} \overset{\text{relax}}{\underset{X \text{ symmetric}}{\longrightarrow}} \min_{\substack{X : X \succcurlyeq 0 \\ X \text{ symmetric} \\ \text{trace}(X) = 1}} \left( \sum_{i=1}^n \left( a_i^T X a_i \right)^{p/2} \right)^{1/p}.$$

- ► X may not have rank one (and thus no expression as  $xx^T$ ); SVD gives  $X = V\Sigma V^T = \sum_{i=1}^n \sigma_i v_i v_i^T$ .
- ▶ Compute SVD of X to get its singular values  $\sigma_1, \ldots, \sigma_n$  and singular vectors  $v_1, \ldots, v_n$ . Output as vector x the (normalized) random linear combination

$$\sum_{i=1}^{n} r_i \sqrt{\sigma_i} v_i, \text{ where } r_i \text{'s are i.i.d. } N(0,1).$$

We show that

 $Relax \leq OPT \leq Round$ 

We show that

 $\mathsf{Relax} \leq \mathsf{OPT} \leq \mathsf{Round} \leq \gamma_{\textit{p}} \cdot \mathsf{Relax}$ 

We show that

$$Relax \leq OPT \leq Round \leq \gamma_p \cdot Relax \leq \gamma_p \cdot OPT$$

giving an approximation factor of  $\gamma_p = \mathrm{E} \left[ r^p \right]^{1/p} \approx \sqrt{p/e}$ , the *p*-th moment of N(0,1) random variable *r*.

#### We show that

$$\mathsf{Relax} \leq \mathsf{OPT} \leq \mathsf{Round} \leq \gamma_p \cdot \mathsf{Relax} \leq \gamma_p \cdot \mathsf{OPT},$$

giving an approximation factor of  $\gamma_p = \mathrm{E} \left[ r^p \right]^{1/p} \approx \sqrt{p/e}$ , the *p*-th moment of N(0,1) random variable r.

More generally, the convex relaxation and rounding (with tiny modifications) give an approximation factor of  $\sqrt{2}\gamma_p$  for k-dimensional subspace approximation, for any k and  $p \geq 2$ . For  $p = \infty$ , the approximation factor becomes  $O(\sqrt{\log n})$ .

# Continuous analog and integrality/rank gap

Continuous analog of subspace approximation

$$\min_{\|x\|_2 = 1} \sum_{i=1}^{n} \langle a_i, x \rangle^p \xrightarrow{\text{relax}} \min_{\substack{X : X \succcurlyeq 0 \\ X \text{ symmetric} \\ \text{trace}(X) = 1}} \sum_{i=1}^{n} \left( a_i^T X a_i \right)^{p/2}$$

# Continuous analog and integrality/rank gap

Continuous analog of subspace approximation

$$\min_{\|x\|_2 = 1} \sum_{i=1}^n \left\langle a_i, x \right\rangle^p \quad \xrightarrow{\text{relax}} \quad \min_{\substack{X \ \text{symmetric} \\ \text{trace}(X) = 1}} \sum_{i=1}^n \left( a_i^T X a_i \right)^{p/2} \\ \downarrow \text{continuous} \quad \downarrow \text{continuous} \\ \min_{\|x\|_2 = 1} \int_{\mathbb{R}^d} \left\langle g, x \right\rangle^p \mu(g) dg \quad \xrightarrow{\text{relax}} \quad \min_{\substack{X \ \text{symmetric} \\ \text{trace}(X) = 1}} \int_{\mathbb{R}^d} \left( g^T X g \right)^{p/2} \mu(g) dg$$

# Continuous analog and integrality/rank gap

Continuous analog of subspace approximation

$$\min_{\|x\|_2 = 1} \sum_{i=1}^n \langle a_i, x \rangle^p \xrightarrow{\text{relax}} \min_{\substack{X \;:\; X \succcurlyeq 0 \\ X \; \text{symmetric} \\ \text{trace}(X) = 1}} \sum_{i=1}^n \left( a_i^T X a_i \right)^{p/2}$$

$$\downarrow \text{continuous} \qquad \qquad \downarrow \text{continuous}$$

$$\min_{\|x\|_2 = 1} \int_{\mathbb{R}^d} \langle g, x \rangle^p \, \mu(g) dg \xrightarrow{\text{relax}} \min_{\substack{X \;:\; X \succcurlyeq 0 \\ X \; \text{symmetric} \\ \text{trace}(X) = 1}} \int_{\mathbb{R}^d} \left( g^T X g \right)^{p/2} \mu(g) dg$$

$$\mathsf{LHS} = \int_{\mathbb{R}} g_1^{\, p} \mathrm{e}^{-g_1^2/2} dg_1 \quad \mathsf{vs.} \quad \mathsf{RHS} \leq \frac{1}{d^{p/2}} \int_{\mathbb{R}^d} \|g\|^p \, \mathrm{e}^{-\|g\|^2/2} dg$$

## Dictatorship test

$$\mathsf{IsDictator}(\mathsf{x}) : \mathsf{x} \mapsto \mathsf{E}\left[\langle \mathsf{a}, \mathsf{x} \rangle^{\mathsf{p}}\right] = \frac{1}{2^{\mathsf{d}}} \sum_{\mathsf{a} \in \{-1, 1\}^{\mathsf{d}}} \langle \mathsf{a}, \mathsf{x} \rangle^{\mathsf{p}} \,.$$

#### Dictatorship test

$$\mathsf{IsDictator}(\mathsf{x}) : \mathsf{x} \mapsto \mathsf{E}\left[\langle \mathsf{a}, \mathsf{x} \rangle^{\mathsf{p}}\right] = \frac{1}{2^{\mathsf{d}}} \sum_{\mathsf{a} \in \{-1, 1\}^{\mathsf{d}}} \langle \mathsf{a}, \mathsf{x} \rangle^{\mathsf{p}} \,.$$

▶ Dictator: If x = (1, 0, ..., 0) then  $E[\langle a, x \rangle^p] = 1$ , for p even.

## Dictatorship test

$$\mathsf{IsDictator}(\mathsf{x}) : \mathsf{x} \mapsto \mathsf{E}\left[\langle \mathsf{a}, \mathsf{x} \rangle^{\mathsf{p}}\right] = \frac{1}{2^d} \sum_{\mathsf{a} \in \{-1, 1\}^d} \langle \mathsf{a}, \mathsf{x} \rangle^{\mathsf{p}} \,.$$

- ▶ Dictator: If x = (1, 0, ..., 0) then  $E[\langle a, x \rangle^p] = 1$ , for p even.
- ▶ Far-from-dictator: If all the coordinates of x are small, then

$$\begin{split} \mathsf{E}\left[\left\langle a,x\right\rangle ^{p}\right]&\approx\mathsf{E}\left[\left\langle g,x\right\rangle ^{p}\right] &\quad \text{by invariance principle}\\ &=\mathsf{E}\left[\left\langle g,\left(1,0,\ldots,0\right)\right\rangle ^{p}\right] &\quad \text{by spherical symmetry}\\ &=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}g_{1}^{p}e^{-g_{1}^{2}/2}dg_{1}=\gamma _{p}^{p}. \end{split}$$



Thank you. Any questions?