
iStuff: A Scalable Architecture for Lightweight, Wireless
Devices for Ubicomp User Interfaces

Meredith Ringel, Joshua Tyler, Maureen Stone, Rafael Ballagas, Jan Borchers
Stanford University Department of Computer Science

{merrie, jtyler}@cs.stanford.edu, stone@stonesc.com,{ballagas, borchers}@stanford.edu

ABSTRACT
iStuff (“interactive stuff”) is an architecture for a toolkit of
lightweight, wireless, platform-independent, physical user
interface components. We present examples of several iS-
tuff devices we have developed, and discuss the software
infrastructure that supports them and allows for easy con-
figurability and extensibility.

Keywords
User interface, tangible interface, physical interface, tuple
space, interactive workspaces, wireless devices.

INTRODUCTION
iStuff is a toolbox of wireless, platform-independent, physi-
cal user interface components designed to leverage the tu-
ple-space-based software infrastructure of Stanford’s
iRoom, a technology-augmented room used as a testbed for
ubiquitous computing and user interface research[4]. Ap-
plication users can easily and dynamically configure iStuff
physical interface components to flexibly set up sensors and
actuators in a ubicomp environment without having to sol-
der components, run wires, or write device drivers. As a
prototyping toolkit, iStuff aims to facilitate research at the
crossroads of ubiquitous computing and HCI.

In the past, Ishii’s Tangible Bits project [3] introduced the
notion of bridging the world between “bits and atoms” in
user interfaces. More recently, Greenberg’s Phidgets [2]
provide physical widgets, designed for rapid development
of physical interfaces that expand Desktop GUIs. In con-
trast, our approach assumes an entire interactive room as its
environment. Consequently, our devices must be dynami-
cally retargetable to different applications and platforms.
Additionally, devices are lightweight because they can lev-
erage the existing interactive room infrastructure.

iSTUFF ARCHITECTURE
Several criteria guided our design of the iStuff architecture.
We wanted our devices to have completely autonomous
packaging and battery-powered operation, the ability to
communicate wirelessly with existing applications in the
iRoom, and simple, affordable circuitry. We found that we
were able to use several different hardware technologies to
create iStuff devices that fulfilled these criteria; so far we
have working iStuff made from custom-built RFID compo-
nents, from X10 components, and from standard FM radios
and transmitters. From these platforms we have built sev-
eral different types of devices (see Figure 1) including but-
tons, sliders, LED’s, buzzers, and speakers. Schematics for

some of these devices can be found at
http://www.stanford.edu/~borchers/istuff/. Additionally, we
have integrated commercial products as iStuff devices, such
as MIDI controllers for 2D input, and portable microphones
with voice recognition software for speech input.

Ultimately, the specific communications medium (RFID,
X10, Bluetooth, 802.11b, etc.) employed is irrelevant, be-
cause of the iRoom’s underlying software infrastructure.
This infrastructure is based on the Event Heap—an event-
based communication mechanism that connects all of the
platforms, applications, and devices in the room. To add a
new physical hardware iStuff platform (such as Bluetooth),
one merely needs to write a glue layer that translates hard-
ware input into an event or, conversely, translates events to
hardware output. Once the device driver is written for a
platform, each individual device can be uniquely mapped
and configured without modifying the driver.

Input devices (e.g., buttons, sliders) transmit device specific
data (e.g., device ID, position) via their wireless protocol to
a receiver which is connected to a proxy computer via a
parallel, serial, or USB port. This data is then packaged
into an event and placed on the Event Heap using a hard-
ware glue layer. Applications or devices can be controlled
by iStuff by adding a listener notification method for spe-
cific events, which can be done with a few lines of Java
code. Output devices (e.g., LEDs, buzzers, speakers) work
in a complementary manner, with software listeners con-
verting events with device-specific data to hardware output.

Device events can be translated to different application
events via a patch panel application that has user configur-
able, dynamic mappings. This allows the user to pick up an
iStuff device, go to a configuration webpage and change the
mapping of the device to control a running application on
any machine in the room in less than 30 seconds.

We are currently expanding the iStuff framework by includ-
ing new types of discrete and continuous input and output
devices, and by experimenting with new technologies for
wireless transmission such as Bluetooth.

DISCUSSION
By embodying most of the “smarts” of iStuff in a computer
proxy which sends and receives IDs and handles the posting
and retrieving of event tuples, we were able to make the
physical devices themselves very lightweight (Figure 2).
They merely need the capability to send or receive their
device-specific data.

Figure 1.Various iStuff. The iDog sends a button press event
when turned over. The iPen is an augmented SMARTBoard pen,
where the embedded button operates as a “right click” to the Win-
dows OS. The X10 buttons are standard X10 hardware. All other
devices work through a simple RF receiver that plugs into the
USB port of the Proxy PC.

Utilizing the tuple-based event model of the Event Heap
has allowed us to create configurable devices which are
platform-independent. This architecture provides great
flexibility and rapid prototyping of input devices [1]. It has
allowed us to turn several commercially available items like
X10 controllers into iStuff, in addition to our own custom-
built hardware. The “patch panel” software increases the
flexibility of our toolkit by allowing for dynamically con-
figuring mappings between events and devices, thus permit-
ting exploration of the ramifications of having input devices
that are not tied to a specific machine or display.

iStuff has proven its worth in our lab by allowing us to
quickly create experimental interfaces. For instance, we
have integrated iButtons into meeting capture software as a
way to provide customized annotations, and we have made
a videogame where iSliders can substitute for mouse input
(refer to our poster for more details on usage scenarios).

As technology continues to move beyond the desktop and
toward ubiquitous computing environments, we predict that
device architectures like iStuff will become increasingly
commonplace. By leveraging the infrastructure in its envi-
ronment, iStuff enables rapid prototyping and configuration
of new and creative user interfaces for ubicomp settings.

ACKNOWLEDGMENTS
We would like to thank Michael Champlin, Joyce Ho,
Robert Brydon, and Adam Rothschild for their contribu-
tions, and the NSF for graduate student fellowship support.

REFERENCES
1. Borchers, J., Ringel, M., Tyler, J., and Fox, A. Stanford

Interactive Workspaces: A Framework for Physical and
Graphical User Interface Prototyping. IEEE Wireless
Communications. Special Issue on Smart Homes, 2002
(in press).

2. Greenberg, S. and Fitchett, C. Phidgets: Easy Devel-
opment of Physical Interfaces Through Physical Wid-
gets. Proceedings of UIST 2001, 209-218.

3. Ishii, H. and Ullmer, B. Tangible Bits: Towards Seam-
less Interfaces Between People, Bits and Atoms. Pro-
ceedings of CHI 1997, 234-241.

4. Johanson, B., Fox A., and Winograd, T. The Interactive
Workspaces Project: Experiences with Ubiquitous
Computing Rooms. IEEE Pervasive Computing Maga-
zine, 1(2), April-June 2002.

Figure 2. The iStuff architecture – much of the functionality is handled by the computer proxy, allowing the actual physical
device to be quite simple and lightweight. The Event Heap mediates communication between disparate devices and applica-
tions – in the above diagram, the Application can receive events from the iSlider and send events to the iSpeaker via the Event
Heap; the slider and speaker could easily be replaced by other iStuff input and output devices.

PC
 proxy

actual
w

ireless
device

C
onceptual iStuff D

evice

Application

eheap.jar

Event Heap

eheap.jar

PC daemon

iSpeaker

Radio Transmitter

RF Receiver

iSlider

eheap.jar

