Optimising the Linda in primitive: Understanding
tuple-space run-times

Antony Rowstron
Microsoft Research
1 Guildhall Street
Cambridge, CB2 3NH, UK

antr@microsoft.com

ABSTRACT

In this paper we examine tuple space systems from a dis-
tributed viewpoint. We show that current implementations
are pessimistic about the timing of removal of tuples from
a tuple space when an in is performed; this leads to agents
having to unnecessarily block and to lowering systems per-
formance. After providing evidence of the problem by exam-
ining distributed execution traces we then describe an im-
plementation strategy that is highly efficient and is more op-
timistic about tuple removal. We discuss also the generalisa-
tion of the approach to support other primitives, which have
been proposed as additions to Linda, such as the collect
and copy-collect primitives.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures, Patterns; C.2.4 [Computer-
Communication Networks]: Distributed Systems; C.5.5
[Computer System Implementation]: Servers

General Terms

Performance, Design, Languages

1. INTRODUCTION

There is currently a resurgence in interest in tuple space
based co-ordination languages, as in Linda [3]. Examples
of the new wave of languages are WCL [11], PageSpace [7],
TuCSoN [9], Jada [6], TSpaces [16], KLAIM [8], Lime [10]
and JavaSpaces [15]. A good review of the current trends is
presented in Ciancarini et al. [5].

Like many implementations, we are interested in the de-
velopment of centralised open servers to support large-scale
enterprise wide tuple space usage by distributed agents. It
was whilst working on optimisations for centralised servers
we began to question the traditional semantics of the Linda

Permission to make digital or hard copies of all or part o thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #rat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquires prior specific
permission and/or a fee.

SAC 2000 Villa Olmo, Como, ltaly

Copyright 2000 ACM 0-89791-88-6/97/0%5.00

in primitive. In this paper we present an interesting in-
terpretation of the semantics of the Linda in primitive, or
to generalise, of any blocking primitive that destructively
removes tuples from a tuple space.

Throughout the paper, we will refer to the components of
the system that communicate as agents, although this term
is used in its loosest possible definition, and therefore an
agent could either be a process, a “traditional” agent, or a
program. In addition, throughout most of the paper we will
just use the three standard Linda primitives:

out(tuple) Insert a tuple into a tuple space.
in(template) If a tuple exists that matches the template
then remove the tuple and return it to the agent. If no
matching tuple is available then the primitive blocks until a
matching tuple is available.

rd(template) If a tuple exists that matches the template
then return a copy of the tuple to the agent. If there is no
matching tuple then the primitive blocks until a matching
tuple is available.

The (informal) semantics of the in primitive leads imple-
menters to remove the tuple that is returned to the agent
from the tuple space as soon as the in primitive is com-
pleted. Our claim is that a tuple that has been destructively
removed using an in does not actually have to be removed
from the tuple space but it has to be made “partially visi-
ble”. By partially visible we mean that it can be used as a
valid result for a subset of the access primitives. When a set
of further conditions is met the tuple then becomes invisible
to all agents and has to be discarded.

In Linda programs, it is common to store data structures in
the tuple spaces. This means that when parts of the data
structure being held in the tuple space are being updated,
tuples are removed from the tuple space, updated by a client
and then re-inserted.

For example, consider a list stored in a tuple space, where
the items of the list are stored as tuples. Each tuple has a
unique number as the first field which represents its position
in the list. In the tuple space there is a single tuple that
contains a shared counter. In order to add an element to
the list, the shared counter is removed using an in and the
value of counter is incremented and the tuple re-inserted,
and then a new tuple is inserted containing the number of
the counter and the data.

This is a common operation and there have been proposals
for the addition of new primitives to help perform the up-
date of the shared counter, (see e.g. Eilean [2]) and when
using compile time analysis to convert the in followed by

the out into a single operation [4]. These proposals were
made because once the shared counter is removed, anyone
else attempting to read the counter could not. Therefore,
even if they wished to read the elements in the list they had
to wait until the counter tuple was reinserted. This tuple is
always acting as a bottleneck, which degrades performance.
The use of compile time analysis to transform the two op-
erations into a single operation relies on complex analysis,
and many cases cannot be captured. The addition of new
primitives at first appears attractive; a primitive that re-
moves a tuple of a certain pattern and then inserts a new
tuple of a defined pattern. However, specifying the contents
of the new tuple in a generic way is difficult. Most make it
a restriction that counter tuples be always of the same form
(e.g. they have the counter in the same position within the
tuple), and there are restrictions on the types that can be
used for the counter [2]. Given that Linda is computation
language independent it is difficult to see it being possible to
create a primitive that can provide the functionality to deal
with arbitrary tuples. It should also be noted that these
new primitives would be there to provide support for a very
specific case. Therefore, these types of primitives have never
been widely adopted.

Agents using tuple space access primitives should only block
if the required tuple is not available when the agent requests
it. However, within any practical Linda system an agent
could block even if the required tuples were available be-
cause of the overheads associated with finding the matching
tuple. The most noticeable delay is due to network latency.
However, for systems supporting tuple spaces over local area
networks (LANSs) network latency is relatively small, so the
time taken to remove a tuple, update it, and reinsert it is
relatively small. However, in a wide area network (WANs)
the latency will be relatively greater and the time taken to
remove, update and reinsert a tuple is larger. This means
maximising the time a tuple is present within a tuple space
provides better concurrency. (For more information on the
costs of performing tuple space accesses see Rowstron et al.
[13]).

All this means that if we can somehow leave a tuple visible
after it should have been removed, and not alter the seman-
tics of Linda, then we can potentially overcome some of the
time cost of moving data out of the tuple space, across a
network to an agent and then back. By doing this we can
increase the level of concurrency within the system by re-
ducing the effect of the tuple space acting as a bottleneck.
This has increased concurrency because agents that would
have blocked accessing a tuple space do not. Figure 1 shows
an example, where there are multiple readers and multi-
ple writers for a list stored in a tuple space; in the figure
the cloud represents the tuple space. Using a traditional
run-time system whenever the tuple [“COUNTER”,int] is
removed by agents A or B if any of the readers C, D, E, F
is started they will block when accessing that tuple. In a
run-time system using the technique described in this paper
they will not block, thereby increasing concurrency.
Another advantage of not blocking the primitive is that you
do not need to deal with the overhead of blocking the prim-
itive. This increases computational load in the server and
drops the performance, the number of operations per second
that it can perform.

In Section 2, we informally show, using histories why the tu-
ple can remain visible to some tuple space primitives. Sec-

Agent ‘A" - Writer Agent 'B' - Writer
while (true) while (true)
in("COUNTER", 2xint) in("COUNTER",2x:int)
OUL("COUNTER" x+1) OU("COUNTER" x+1)
out(x,"Entry "+string(n) out(x,"Entry “+string(n))
end end

Agent 'C' - Reader

rd("COUNTER",2xint)
fory=0toxdo
rd(y, ?t:string)
print(t);
end

['COUNTER1",3]

Agent D' - Reader
Agent ' - Reader

Agent 'E' - Reader rd("COUNTER", 2x:int)
fory =0tox do
rd(y,?t:string)
print(t);
end

rd("COUNTER", 2x:int)

fory=0toxdo rd("COUNTER",2x:int)
rd(y,tstring) fory=0toxdo
print(t); rd(y,?t:string)

end print(t);

end

Figure 1: Example of multiple reader, multiple writer to a
list data structure.

tion 4 presents a set of rules that describe when a tuple is
partially visible. Section 4 describes how a prototype imple-
mentation supports this optimisation. In the final section,
we expand our view to consider other primitives, and the
properties a set of primitives must have in order for the op-
timisation discussed in this paper to work.

2. HISTORIES

Sequences of primitive traces representing histories (traces)
of tuple space access can be constructed according to a
global observation, a tuple space observation or an agent
observation. The different observations are shown in Fig-
ure 2, where the points label observation A, create agent
traces, the point label observation B creates global traces,
and points labelled observation C, create tuple space based
traces. It should be noted that the “solid line” show the flow
of primitives when tuple space based or agent based traces
are being created, and the “dashed line” show the flow of
primitives when global traces are being created. For a global
observation the stream of all primitives is observed, for tu-
ple space observation the stream of primitives to and from a
particular tuple space is observed, and for agent observation
the stream of all primitives to and from a particular agent
is observed. It is assumed that there are no hidden commu-
nication channels between the two agents; the only way the
two agents can communicate is via a tuple space.

Agent A
Observer Al Observer A2

Run-time system

~
< ~
~ ~
~N -~
@4

Observer C2

Figure 2: The different observation points in a tuple space
system.

As Figure 2 implies if observer B is being used (global trace)
then all tuple space accesses are sequential. In this case, 0b-
server B must decide how to convert concurrent tuple space
requests into a sequential stream. If observers C are used
then the primitives to each tuple space are sequential. How-
ever, different tuple spaces can be accessed concurrently.
Within this paper, we assume that a primitive only appears
in the trace when the primitive is completed. Given the

basic informal semantics of Linda (and assuming all agents
terminate) it is possible to create a finite set of all possi-
ble traces for a set of agents. However, both these traces
enforce a sequential ordering on the primitives. In reality,
the primitives can occur in parallel and indeed many LAN
based implementations support parallel access to a single
tuple space. The observers A can capture this, by observing
the stream of operations into and out of single agents. Be-
fore considering these traces let us consider the global trace
(observer B) and tuple space trace (observer C) using an
example. In the example, let us consider two very simple
agents that interact through a single tuple space, and their
actions are represented by

Agent A Agent B
A; out(a) B: in(a)
A, rd(a) B, out(b)
As rd(b) Bs out(a)

The Petri Net and case graph for these two agents can be
seen in Figure 3. Initially, ignore the dotted links in the
figure, and this Petri Net and case graph are created ac-
cording to the semantics for the primitives as given in the
introduction. In a Petri Net the circles represent places, and
the squares represent transitions. A transition can fire only
when all the places that are preconditions for that transi-
tion contain tokens. When a transition fires it consumes the
tokens in its preconditions and places a token in each of the
output places that are linked to it by arcs.

Al:out(a)

AZd(a) Bl:in(a)

[

B2:out(b)

A3d(b) B3ut(a) A2:rd(a)
B3:0ut(a) A3d(b) A3t(b)

Figure 3: A Petri Net and case graph for Agents A and B.

In Figure 3 the token starts in the initial place, and the only
transition that can fire is Al:out (a). When this fires, a to-
ken is placed in the three output places connected to the
transition. This means that either the transitions A2:rd(a)
or Bl:in(a) can fire. If Bl1:in(a) fires then the other can
not fire, because the token is removed from one of its precon-
ditions. This token is replaced when the transition B3: out (a)
is fired. If A2:rd(a) fires, then the precondition tokens are
consumed, but the transition is linked to one of its own pre-
conditions. So a token is reinserted in that place. However,

the same rule cannot re-fire because the other precondition
no longer has a token in it. This means that the transi-
tion Bl:in(a) is the only one that can fire, as it is the only
transition that has all its’ precondition places filled with a
token. The case graph shown in the same figure, shows the
different ordering of the transition firings that are possible.
In Figure 3 the dotted arcs represent the optimisation that
we are proposing. We allow the transition A2:rd(a) to fire
after the transition Bl:in(a) fires or after the transition
B2:out (b) fires. This means that the manipulation of a tu-
ple has been suspended in the middle of the operation; agent
B has performed the in operation and has received the tu-
ple and can continue, but the tuple is not actually removed
whilst Agent A cannot know that Agent B has received the
tuple. This only occurs when there is a synchronisation
between the two agents, which happens using the tuple b.
From the global perspective, this appears to be incorrect;
it allows the reading of a tuple that should have been re-
moved. However, when a programmer is writing a program
they will assume that this can happen because of the non-
deterministic nature of Linda — if two agents perform an in
and a rd concurrently there is no way of excluding that the
rd will see the tuple and it is this property we are exploit-
ing. By looking at the agent observer traces, it is easier to
see why this is valid. The agent traces for Agent A will be:
{A1, As, [Bi, Bo] As}, and {Ay, [Bi, Bo, B3] As, [Bi, B
A3}, and the agent trace for Agent B it will be: {[A:] Bs,
Bs, Bs}.

The trace executions are relative to a specific agent and are
composed of the actions performed by an agent. The trace is
augmented to show the actions that need to have been com-
pleted by other agents in order for the agents’ current action
to complete, and these appear in the [| before the action
entry in the trace. It should be noted that an agent does not
know when the other agents’ primitives were performed in
relation to the primitive it has just performed, but it knows
that primitives must have been performed and completed
when the current primitive completes. It is assumed that
at any point in the trace an agent can deduce which opera-
tions it has performed (so this information is omitted). At
any point in the trace the union of the operations appear-
ing in [] before that point in the trace represents what an
agent can deduce about what other agents have done. If
there are more than two agents, then the information about
what other agents have completed (e.g. The [] entries) can
contain entries for each agent.

We believe that this representation is closer to the model
that the programmer has when working out the co-ordination
patterns of a program using tuple spaces. This trace allows
us to consider exactly what an agent (or correctly the au-
thor of an agent) can assume has occurred up to any stage.
Now let us concentrate on the operations numbered Ay and
B;. These are an rd and in operation on the same tuple,
respectively. What is interesting is that Agent B does not
know whether the operation A, is ever performed (the two
agents never exchange tuples after B; and therefore agent
B can not know what has or has not been executed). Also
Agent A only knows that operation B; has been performed
only when it observes that B2 or Bs has occurred. This is
either when A, completes or when Az completes, depending
on which trace is being generated. However, the program-
mer of the Agent A cannot assume which of the traces has
occurred so must write the code in such a way to assume

that B; has definitely occurred only when A3 completes.
This means that for the programmer of Agent A the op-
eration As is independent of operation B;. When As is
performed Agent A has to assume that it he does not know
whether the tuple has been removed. Therefore, even if the
tuple was destructively removed they have to assume that
this has not happened. Programmers are quite used to this
as part of the asynchronous and non-deterministic behaviour
of tuple space based co-ordination. Using this observation
we then say it is quite acceptable for a run-time system to
give the same tuple to both A, and B; regardless of whether
As or By is serviced first provided that B3 has not been per-
formed. Traditionally, one would say that if B; has been
serviced then A must block until B3 is performed. How-
ever, it should be noted once the in has been performed the
tuple must become read-only as there can only ever be one
copy of a tuple destructively removed from a tuple space.
If this were not the case, we would end up with potentially
multiple copies of the same tuple.

3. WHENSHOULDA TUPLE DISAPPEAR?

3.1 Lindaprimitives

Although we have shown why the tuple can reside in a tuple
space after it has been destructively removed, it is imprac-
tical in an efficient implementation to pass the agent traces
around with the tuples (they could become very large!).
However, by generalising the principle it is possible to create
a simple set of rules that can be easily implemented, with
little overhead.

What the traces show is that an agent can read a tuple that
has been removed, provided that agent has no way of know-
ing that the other agent has removed the tuple. Therefore,
when a tuple is matched by an in primitive it will remain
in the tuple space, but:

i. It can not be returned as a result of another in.

ii. The agent which performed the in that matched the
tuple cannot see the tuple anymore.

iii. When the agent which performed the in on the tuple
inserts any other tuple or terminates the tuple must be re-
moved'.

If these rules are followed, the traces describing the agents
activity remain the same and the semantics of the access
primitives are preserved.

It is rule three above that enables one not to keep informa-
tion about the primitives performed by other agents ([]
in the traces). The traces contained the [] information to
describe if an agent had directly or indirectly synchronized
with another agent, and therefore, whether we could not use
a tuple the other agent had consumed. By generalising the
rule to say that whenever a tuple is inserted the tuples which
the agent has consumed are no longer available as results, we
make the use of this technique in implementations feasible,
and this will be discussed in more detail in Section 4.

It should be noted there is no defined relationship between
the tuple removed by the in and the tuple inserted by the
next out. Indeed, multiple tuples could be destructively
read before an out is performed and they would all remain
visible until this out is performed.

!Termination, agent spawning and creation are examples
of potential hidden and these must cause the tuple to be
removed.

We have considered this so far in the restrictive case where
there are only three primitives. Most modern tuple space
based co-ordination languages have many more tuple space
access primitives. In the next section we generalise the work
to provide support for different types of primitives.

3.2 Extensionsof Linda

Many of the modern implementations use a form of transac-
tions to provide fault tolerance (although better alternatives
exist using mobile code [12]). The approach to how these
are implemented varies, but essentially, tuples that are de-
structively removed within a transaction are cached locally
and tuples inserted within a transaction are also cached and
not inserted. If the transaction aborts removed tuples are
reinserted and inserted tuples are discarded. If the trans-
action completes the inserted tuples are actually placed in
to the tuple space and the cached read tuples are discarded.
The optimisation described here works with transactions.
Inserted tuples are considered inserted at the end of the
transaction (when they become accessible to other agents)
and the destructively read tuples are partially visible un-
til this point. The rules as outlined in the previous section
apply.

The introduction of other primitives is commonplace, and
it is important that any realistic optimisation should work
with the current generation of tuple space languages. Each
language has its own particular set of tuple space access
primitives but it is possible to create a generic set of rules
that potentially cover all sets of possible tuple space access
primitives. In order to create them we need to consider
the information that these primitives add. As an example,
let us consider the inp and rdp primitives, although not
necessarily widely supported they represent a different class
of access primitive (non-blocking). Counsider the two agents,
sharing a tuple space with no other agents able to access
that tuple space:

Agent D Agent E
while (rdp(a)); | in(a)
out(b) in(b)

In this case Agent D uses the rdp primitive to poll the tuple
a. Whilst the tuple exists the tuple b will not be produced.
With the rules outlined in the previous section Agents D
and E would never terminate, because the tuple b would
not be produced, as the tuple a would remain visible. The
problem is caused because rdp is not a blocking primitive.
However, this can easily be solved, by adding another state-
ment to when the tuple should be removed:

iv. If a rdp is performed and the matched tuple has been
tagged as read-only then the tuple should not be used as the
result for the primitive. Furthermore, if there are no other
matching tuples available then the marked tuple should be
discarded. If another matching tuple is available as the re-
sult then the read-only tuple can be left.

At this point it now makes more sense to describe tuples
as being marked rather than read-only (as rdp is a non-
destructive primitive). Also, some implementations support
primitives beyond the basic Linda primitives and inp and
rdp. It is possible, to generalise the rule yet further:

iv. If any primitive is performed which does not block the
user thread of execution until a matching tuple is found,
and a tuple which is to be the result (or part of the result)
of that primitive is a marked tuple then the marked tuple

should not be used as the result or part of the result. If the
marked tuple is the only available result or should be part
of the result it must be removed, otherwise it can remain.
This rule generalisation is slightly conservative, in that some-
times tuples will disappear before they need to, but ensures
that the rules should work with any set of access primitives.
Bellow all the rules are shown, rewritten in general terms to
provide a set of rules for when a tuple can be returned and
when a tuple should be discarded.

When a tuple is to be used as a result or part of a result for
a primitive and the tuple has been the result or part of a
result for a destructive primitive then the tuple can still be
used as a result to another primitive providing the following
are all true:

i. The primitive being performed is not destructive.

ii. The primitive is not being performed by the same agent
that performed the destructive primitive.

iii. The agent that performed the destructive primitive has
not inserted any tuple nor caused the insertion of any tuple
into any tuple space.

iv. The primitive being performed blocks the agents thread
of execution until a result is returned, where a result is either
a tuple or an indication of completion of some movement of
tuples?.

The system must subsequently discard this tuple when:

i. The agent that performed the primitive that removed the
tuple inserts any tuple into any tuple space or performs a
primitive that causes any tuple to be inserted into any tuple
space.

ii. The agent that performed the primitive that removed
the tuple terminates.

iii. The current non-destructive primitive does not block the
user thread of execution until a matched tuple(s) is found
or operation on a set of tuples is complete, and is forced to
use the tuple to provide the results correctly.

It is assumed that there are no hidden communication chan-
nels between the agents communicating. The only way to
agents can communicate is via a tuple space. The second
rule covers hidden communication, by an agent knowing
something has happened because of when it was created.

It should be noted that this optimisation does not inter-
fere with the asynchronous “event” style primitives added
in many new versions of Linda which propagate inserted tu-
ples to agents automatically. When a tuple is inserted, it can
be propagated provided the out is treated as an insertion of
a tuple for discarding tuples.

4. IMPLEMENTATION

We have implemented the scheme outlined in the last sec-
tion, and the implementation has proved simple and effi-
cient. A Java based kernel has been extended to use this
optimisation. It is a centralised kernel, as are most of the
kernels currently being used for the new set of co-ordination
languages. It supports the standard Linda primitives and
collect [1] and copy-collect [14]. The collect primi-
tive moves all tuples matching a given template from one
tuple space to another and returns a count of the number
of tuples moved (therefore, it is a blocking primitive). The

2Primitives such as rdp fail this rule, because they do not
block the thread of execution — it returns false if a tuple
is not available. However, a primitive like copy-collect
passes the rule because it copies tuples and then returns a
counter.

out in rd
Normal 0.193 | 0.122 | 0.271
Optimised | 0.194 | 0.122 | 0.146

Table 1: Tuple space access times (ms).

copy-collect primitive is the same except it copies rather
than moves the tuples. Therefore, it is based on the ex-
tended rule set given in the previous section.

Every agent using the run-time system has a Globally Unique
Identifier (GUID) created dynamically as it starts to exe-
cute. When the agent registers with the run-time system
the GUID is passed to the run-time server and it creates
a counter associated with the agent. Each time an agent
performs either an out or collect the counter associated
with the agent is incremented by one (before the primitive
is performed). When an agent requests a tuple using an in
or when a set of tuples are moved from one tuple space to
another tuple space using a collect the effected tuples are
marked as “special” and tagged with the identity tag of the
agent that removed or moved the tuple and with the cur-
rent value of the primitive count associated with the agent.
Any other agent can then perform a rd or copy-collect
and have this tuple as the result or part of the result. How-
ever, whenever the tuple is matched the system checks the
current primitive count associated with the GUID attached
to the tuple with the primitive count attached to the tuple.
If the primitive counts differ or if the agent has terminated
then the tuple is discarded, and not used as a result for the
rd or copy-collect.

Checking of the tuples is performed on the fly, and the data
structure is so organised that newest inserted tuple will be
found first therefore maximising the chances that the tuple
found as a result for a primitive is unmarked. If it is feared
that tagged tuples will remain in the system for some time
then some form of garbage collection can be added. This
garbage collection can be run as a background task, or per-
formed when the data structure becomes too large.

Table 1 show the performance results for the data struc-
tures used within the Java kernel. The kernel is written
in Java and is not written to be optimal and therefore the
performance is not very good. However, the relative speeds
demonstrate some interesting things about the implementa-
tion. The results were gathered on a 450MHz Pentium III
processor running Windows NT by timing individually the
insertion (out), then reading (rd) and then removal (in) of
10000 identical tuples. The average was worked out for each
task over 10 executions, and then the results were scaled
down from 10000 operations to individual tuple space ac-
cess times. The test program was embedded into the ker-
nel, so removing communication overheads and marshalling
costs. The row labelled Normal represents the results when
the optimisation is not used (and the code for providing
the optimisation is removed) and the row marked Optimised
represents the results when the optimisation is being used.
All timings are given in milliseconds.

As one would expect the time taken to insert and read the
tuples are the same regardless of whether the optimisation
is being used. This is because the overhead of accessing the
counter on insertion is negligible and the rd only has to per-
form an extra check to see if the tuple is ghosted (and in the
results shown in the table a tuple is never ghosted.). The

time taken to perform an in drops when the optimisation
is being used. This is because in the tuple is not removed
from the data structure; it is simply marked as ghosted. In a
more optimal kernel (written in C++) we would expect the
time taken to perform a rd and an in would be similar in
both the optimised and normal senarios. In the current ver-
sion there is an overhead of no more than 0.153 ms added
to a rd primitive for every ghosted tuple that it removes
from the data structure because it is no longer valid. So
if, a single tuple is being checked and removed in a rd it
takes 0.275 ms, which is the same as a in (we have passed
the expense of removing tuples from the data structure from
the in primitive to the rd primitive). We created two ver-
sions of the rd one that left the invalid ghosted tuples in
the data structure and one that removed them, and added
an explicit process that performed garbage collection on the
tuple structure. The ideal may be an adaptive data struc-
ture that adapts its use based on the way a set of tuples
is being accessed. Switching between dynamically garbage
collection of the data structure and waiting for periods of
low load and perform a static garbage collection.

We created a simple demonstration program based on the
example given in Figure 1, where the reader agents repeat-
edly read the counter and printed all elements in list. When
the technique described in this paper was enabled, none of
the readers blocked awaiting a tuple, and regularly a tu-
ple was returned when the primitive should have blocked.
When the technique described in this paper was disabled,
the readers blocked a significant number of times. However,
the number of times a single reader is blocked is highly de-
pendent on each experimental run, because of the impact
of network latency on the interleaving of when primitives
arrive.

5. CONCLUSIONS

We have described a method by which a run-time system
can transparently optimise when tuples should be removed
from a tuple space that does not alter the semantics of the
access primitives. We have described the algorithm using
the standard Linda primitives as an example and then gen-
eralised it to other primitives. We then described how the
algorithm is implemented, cheaply and efficiently and pre-
sented performance results to support our claim.

This optimisation increases the level of concurrency in the
system because primitives which would normally block no
longer block. It also reduces the load in the server by re-
ducing the number of primitives that need to be blocked.
The optimisation can be used with asynchronous notifica-
tion primitives and with transactions. It works with arbi-
trary tuples, and is not dependent on one particular coordi-
nation pattern (although one is used as the example in this
paper). The optimisation is performed on-the-fly and does
not require compile time analysis or the addition of other
primitives.

Tuples are left partially visible until a set of rules is no longer
satisfied and then they are discarded. It is not necessary that
a in is followed by a out for this optimisation to work.
Although the optimisation is clearly correct we are currently
working on a process algebra with formal proofs to show this
is indeed the case.

6. ACKNOWLEDGEMENTS

I would like to thank Cedric Fournet and Rocco de Nicola
for their detailed comments and corrections (and Rocco for
his Petri-net diagram and case graph).

7. REFERENCES

[1] P. Butcher, A. Wood, and M. Atkins. Global synchroni-
sation in Linda. Concurrency: Practice and Ezperience,
6(6):505 516, 1994.

[2] J. Carreria, L. Silva, and J. Silva. On the design of
Eilean: A Linda-like library for MPI. Technical report,
Universidade de Coimbra, 1994.

[3] N. Carriero and D. Gelernter. Linda in context. Com-
munications of the ACM, 32(4):444-458, 1989.

[4] N. Carriero and D. Gelernter. Tuple analysis and partial
evaluation strategies in the Linda precompiler. In Lan-
guages and Compilers for Parallel Computing, pages
114 125. MIT Press, 1990.

[5] P. Ciancarini, A. Omicini, and F. Zambonelli. Coordi-
nation technologies for internet agents. Nordic Journal
of Computing, 6(3):215-240, 1999.

[6] P. Ciancarini and D. Rossi. Coordinating Java agents
over the WWW. World Wide Web Journal, 1(2):87-99,
1998.

[7] P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and
A. Kunoche. Coordinating multiagent applications on
the WWW: A reference architecture. IEEE Trans. on
Soft. Eng., 24(5):362 366, 1998.

[8] R. D. Nicola, G. Ferrari, and R. Pugliese. KLAIM:
A kernel language for agents interaction and mobility.
IEEE Trans. on Soft. Eng., 24(5):315-330, 1998.

[9] A. Omicini and F. Zambonelli. Coordination for inter-
net application development. Autonomous Agents and

Multi-agent Systerns, 2(3):251 269, 1999.

[10] G. Picco, A. Murphy, and G.-C. Roman. Lime: Linda
meets mobility. Technical Report Technical report
WUCS-98-21, Washington University, Department of
Comp. Sci., St. Louis, Missouri, 1998.

[11] A. Rowstron. WCL: A web co-ordination language.
World Wide Web Journal, 1(3):167-179, 1998.

[12] A. Rowstron. Mobile co-ordination: Providing fault-
tolerance in tuple space based co-ordination languages.
In Coordination Languages and Models: Coordina-
tion99, volume 1594 of LNCS, pages 196-210. Springer-
Verlag, 1999.

[13] A. Rowstron and A. Wood. BONITA: A set of tu-
ple space primitives for distributed coordination. In
HICSS-30, volume 1, pages 379-388, 1997.

[14] A. Rowstron and A. Wood. Solving the linda multiple
rd problem using copy-collect. Science of Computer
Programming, 31(2-3), July 1998.

[15] Sun Microsystems. Javaspace specification, revision 0.4.
Final Specification., 1997.

[16] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford.
TSpaces. IBM Systems Journal, 37(3):454-474, 1998.

