
Optimising the Linda in primitive: Understanding
tuple-space run-times

Antony Rowstron
Microsoft Research
1 Guildhall Street

Cambridge, CB2 3NH, UK

antr@microsoft.com

ABSTRACTIn this paper we examine tuple space systems from a dis-tributed viewpoint. We show that current implementationsare pessimistic about the timing of removal of tuples froma tuple space when an in is performed; this leads to agentshaving to unnecessarily block and to lowering systems per-formance. After providing evidence of the problem by exam-ining distributed execution traces we then describe an im-plementation strategy that is highly e�cient and is more op-timistic about tuple removal. We discuss also the generalisa-tion of the approach to support other primitives, which havebeen proposed as additions to Linda, such as the collectand copy-collect primitives.
Categories and Subject DescriptorsD.2.11 [Software Engineering]: Software Architectures|Domain-speci�c architectures, Patterns; C.2.4 [Computer-Communication Networks]: Distributed Systems; C.5.5[Computer System Implementation]: Servers
General TermsPerformance, Design, Languages
1. INTRODUCTIONThere is currently a resurgence in interest in tuple spacebased co-ordination languages, as in Linda [3]. Examplesof the new wave of languages are WCL [11], PageSpace [7],TuCSoN [9], Jada [6], TSpaces [16], KLAIM [8], Lime [10]and JavaSpaces [15]. A good review of the current trends ispresented in Ciancarini et al. [5].Like many implementations, we are interested in the de-velopment of centralised open servers to support large-scaleenterprise wide tuple space usage by distributed agents. Itwas whilst working on optimisations for centralised serverswe began to question the traditional semantics of the Linda
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2000 Villa Olmo, Como, Italy
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

in primitive. In this paper we present an interesting in-terpretation of the semantics of the Linda in primitive, orto generalise, of any blocking primitive that destructivelyremoves tuples from a tuple space.Throughout the paper, we will refer to the components ofthe system that communicate as agents, although this termis used in its loosest possible de�nition, and therefore anagent could either be a process, a \traditional" agent, or aprogram. In addition, throughout most of the paper we willjust use the three standard Linda primitives:out(tuple) Insert a tuple into a tuple space.in(template) If a tuple exists that matches the templatethen remove the tuple and return it to the agent. If nomatching tuple is available then the primitive blocks until amatching tuple is available.rd(template) If a tuple exists that matches the templatethen return a copy of the tuple to the agent. If there is nomatching tuple then the primitive blocks until a matchingtuple is available.The (informal) semantics of the in primitive leads imple-menters to remove the tuple that is returned to the agentfrom the tuple space as soon as the in primitive is com-pleted. Our claim is that a tuple that has been destructivelyremoved using an in does not actually have to be removedfrom the tuple space but it has to be made \partially visi-ble". By partially visible we mean that it can be used as avalid result for a subset of the access primitives. When a setof further conditions is met the tuple then becomes invisibleto all agents and has to be discarded.In Linda programs, it is common to store data structures inthe tuple spaces. This means that when parts of the datastructure being held in the tuple space are being updated,tuples are removed from the tuple space, updated by a clientand then re-inserted.For example, consider a list stored in a tuple space, wherethe items of the list are stored as tuples. Each tuple has aunique number as the �rst �eld which represents its positionin the list. In the tuple space there is a single tuple thatcontains a shared counter. In order to add an element tothe list, the shared counter is removed using an in and thevalue of counter is incremented and the tuple re-inserted,and then a new tuple is inserted containing the number ofthe counter and the data.This is a common operation and there have been proposalsfor the addition of new primitives to help perform the up-date of the shared counter, (see e.g. Eilean [2]) and whenusing compile time analysis to convert the in followed by1

the out into a single operation [4]. These proposals weremade because once the shared counter is removed, anyoneelse attempting to read the counter could not. Therefore,even if they wished to read the elements in the list they hadto wait until the counter tuple was reinserted. This tuple isalways acting as a bottleneck, which degrades performance.The use of compile time analysis to transform the two op-erations into a single operation relies on complex analysis,and many cases cannot be captured. The addition of newprimitives at �rst appears attractive; a primitive that re-moves a tuple of a certain pattern and then inserts a newtuple of a de�ned pattern. However, specifying the contentsof the new tuple in a generic way is di�cult. Most make ita restriction that counter tuples be always of the same form(e.g. they have the counter in the same position within thetuple), and there are restrictions on the types that can beused for the counter [2]. Given that Linda is computationlanguage independent it is di�cult to see it being possible tocreate a primitive that can provide the functionality to dealwith arbitrary tuples. It should also be noted that thesenew primitives would be there to provide support for a veryspeci�c case. Therefore, these types of primitives have neverbeen widely adopted.Agents using tuple space access primitives should only blockif the required tuple is not available when the agent requestsit. However, within any practical Linda system an agentcould block even if the required tuples were available be-cause of the overheads associated with �nding the matchingtuple. The most noticeable delay is due to network latency.However, for systems supporting tuple spaces over local areanetworks (LANs) network latency is relatively small, so thetime taken to remove a tuple, update it, and reinsert it isrelatively small. However, in a wide area network (WANs)the latency will be relatively greater and the time taken toremove, update and reinsert a tuple is larger. This meansmaximising the time a tuple is present within a tuple spaceprovides better concurrency. (For more information on thecosts of performing tuple space accesses see Rowstron et al.[13]).All this means that if we can somehow leave a tuple visibleafter it should have been removed, and not alter the seman-tics of Linda, then we can potentially overcome some of thetime cost of moving data out of the tuple space, across anetwork to an agent and then back. By doing this we canincrease the level of concurrency within the system by re-ducing the e�ect of the tuple space acting as a bottleneck.This has increased concurrency because agents that wouldhave blocked accessing a tuple space do not. Figure 1 showsan example, where there are multiple readers and multi-ple writers for a list stored in a tuple space; in the �gurethe cloud represents the tuple space. Using a traditionalrun-time system whenever the tuple [\COUNTER",int] isremoved by agents A or B if any of the readers C, D, E, Fis started they will block when accessing that tuple. In arun-time system using the technique described in this paperthey will not block, thereby increasing concurrency.Another advantage of not blocking the primitive is that youdo not need to deal with the overhead of blocking the prim-itive. This increases computational load in the server anddrops the performance, the number of operations per secondthat it can perform.In Section 2, we informally show, using histories why the tu-ple can remain visible to some tuple space primitives. Sec-

["COUNTER1",3]

[1,"Second Entry"]

[2,"Third Entry"]

[0,"First Entry"]

Agent 'A' - Writer

while (true)

 in("COUNTER",?x:int)

 out("COUNTER",x+1)

 out(x,"Entry "+string(n))

end

Agent 'B' - Writer

while (true)

 in("COUNTER",?x:int)

 out("COUNTER",x+1)

 out(x,"Entry "+string(n))

end

Agent 'F' - Reader

rd("COUNTER",?x:int)

for y = 0 to x do

 rd(y,?t:string)

 print(t);

end

Agent 'E' - Reader

rd("COUNTER",?x:int)

for y = 0 to x do

 rd(y,?t:string)

 print(t);

end

Agent 'C' - Reader

rd("COUNTER",?x:int)

for y = 0 to x do

 rd(y,?t:string)

 print(t);

end

Agent 'D' - Reader

rd("COUNTER",?x:int)

for y = 0 to x do

 rd(y,?t:string)

 print(t);

end
Figure 1: Example of multiple reader, multiple writer to alist data structure.tion 4 presents a set of rules that describe when a tuple ispartially visible. Section 4 describes how a prototype imple-mentation supports this optimisation. In the �nal section,we expand our view to consider other primitives, and theproperties a set of primitives must have in order for the op-timisation discussed in this paper to work.

2. HISTORIESSequences of primitive traces representing histories (traces)of tuple space access can be constructed according to aglobal observation, a tuple space observation or an agentobservation. The di�erent observations are shown in Fig-ure 2, where the points label observation An create agenttraces, the point label observation B creates global traces,and points labelled observation Cn create tuple space basedtraces. It should be noted that the \solid line" show the
owof primitives when tuple space based or agent based tracesare being created, and the \dashed line" show the
ow ofprimitives when global traces are being created. For a globalobservation the stream of all primitives is observed, for tu-ple space observation the stream of primitives to and from aparticular tuple space is observed, and for agent observationthe stream of all primitives to and from a particular agentis observed. It is assumed that there are no hidden commu-nication channels between the two agents; the only way thetwo agents can communicate is via a tuple space.
Agent A
 Agent B

Observer A1
 Observer A2

TS2
TS1
 Observer B

Observer C1
 Observer C2

Run-time system

Figure 2: The di�erent observation points in a tuple spacesystem.As Figure 2 implies if observer B is being used (global trace)then all tuple space accesses are sequential. In this case, ob-server B must decide how to convert concurrent tuple spacerequests into a sequential stream. If observers C are usedthen the primitives to each tuple space are sequential. How-ever, di�erent tuple spaces can be accessed concurrently.Within this paper, we assume that a primitive only appearsin the trace when the primitive is completed. Given the2

basic informal semantics of Linda (and assuming all agentsterminate) it is possible to create a �nite set of all possi-ble traces for a set of agents. However, both these tracesenforce a sequential ordering on the primitives. In reality,the primitives can occur in parallel and indeed many LANbased implementations support parallel access to a singletuple space. The observers A can capture this, by observingthe stream of operations into and out of single agents. Be-fore considering these traces let us consider the global trace(observer B) and tuple space trace (observer C) using anexample. In the example, let us consider two very simpleagents that interact through a single tuple space, and theiractions are represented byAgent A Agent BA1 out(a) B1 in(a)A2 rd(a) B2 out(b)A3 rd(b) B3 out(a)The Petri Net and case graph for these two agents can beseen in Figure 3. Initially, ignore the dotted links in the�gure, and this Petri Net and case graph are created ac-cording to the semantics for the primitives as given in theintroduction. In a Petri Net the circles represent places, andthe squares represent transitions. A transition can �re onlywhen all the places that are preconditions for that transi-tion contain tokens. When a transition �res it consumes thetokens in its preconditions and places a token in each of theoutput places that are linked to it by arcs.
A2:rd(a)

A3:rd(b) B2:out(b)

B3:out(a)

A1:out(a)

B1:in(a)

A1:out(a)

A2: rd(a) B1:in(a)

B1: in(a) B2:out(b)

B2: out(b)

A3: rd(b)

B3:out(a)

B3: out(a)

A3: rd(b)

B3:out(a)

A2:rd(a)

A3: rd(b)

A2:
rd(a)

A2:
rd(a)

Figure 3: A Petri Net and case graph for Agents A and B.In Figure 3 the token starts in the initial place, and the onlytransition that can �re is A1:out(a). When this �res, a to-ken is placed in the three output places connected to thetransition. This means that either the transitions A2:rd(a)or B1:in(a) can �re. If B1:in(a) �res then the other cannot �re, because the token is removed from one of its precon-ditions. This token is replaced when the transition B3:out(a)is �red. If A2:rd(a) �res, then the precondition tokens areconsumed, but the transition is linked to one of its own pre-conditions. So a token is reinserted in that place. However,

the same rule cannot re-�re because the other preconditionno longer has a token in it. This means that the transi-tion B1:in(a) is the only one that can �re, as it is the onlytransition that has all its' precondition places �lled with atoken. The case graph shown in the same �gure, shows thedi�erent ordering of the transition �rings that are possible.In Figure 3 the dotted arcs represent the optimisation thatwe are proposing. We allow the transition A2:rd(a) to �reafter the transition B1:in(a) �res or after the transitionB2:out(b) �res. This means that the manipulation of a tu-ple has been suspended in the middle of the operation; agentB has performed the in operation and has received the tu-ple and can continue, but the tuple is not actually removedwhilst Agent A cannot know that Agent B has received thetuple. This only occurs when there is a synchronisationbetween the two agents, which happens using the tuple b.From the global perspective, this appears to be incorrect;it allows the reading of a tuple that should have been re-moved. However, when a programmer is writing a programthey will assume that this can happen because of the non-deterministic nature of Linda { if two agents perform an inand a rd concurrently there is no way of excluding that therd will see the tuple and it is this property we are exploit-ing. By looking at the agent observer traces, it is easier tosee why this is valid. The agent traces for Agent A will be:fA1, A2, [B1, B2] A3g, and fA1, [B1, B2, B3] A2, [B1, B2]A3g, and the agent trace for Agent B it will be: f[A1] B1,B2, B3g.The trace executions are relative to a speci�c agent and arecomposed of the actions performed by an agent. The trace isaugmented to show the actions that need to have been com-pleted by other agents in order for the agents' current actionto complete, and these appear in the [] before the actionentry in the trace. It should be noted that an agent does notknow when the other agents' primitives were performed inrelation to the primitive it has just performed, but it knowsthat primitives must have been performed and completedwhen the current primitive completes. It is assumed thatat any point in the trace an agent can deduce which opera-tions it has performed (so this information is omitted). Atany point in the trace the union of the operations appear-ing in [] before that point in the trace represents what anagent can deduce about what other agents have done. Ifthere are more than two agents, then the information aboutwhat other agents have completed (e.g. The [] entries) cancontain entries for each agent.We believe that this representation is closer to the modelthat the programmer has when working out the co-ordinationpatterns of a program using tuple spaces. This trace allowsus to consider exactly what an agent (or correctly the au-thor of an agent) can assume has occurred up to any stage.Now let us concentrate on the operations numbered A2 andB1. These are an rd and in operation on the same tuple,respectively. What is interesting is that Agent B does notknow whether the operation A2 is ever performed (the twoagents never exchange tuples after B1 and therefore agentB can not know what has or has not been executed). AlsoAgent A only knows that operation B1 has been performedonly when it observes that B2 or B3 has occurred. This iseither when A2 completes or when A3 completes, dependingon which trace is being generated. However, the program-mer of the Agent A cannot assume which of the traces hasoccurred so must write the code in such a way to assume3

that B1 has de�nitely occurred only when A3 completes.This means that for the programmer of Agent A the op-eration A2 is independent of operation B1. When A2 isperformed Agent A has to assume that it he does not knowwhether the tuple has been removed. Therefore, even if thetuple was destructively removed they have to assume thatthis has not happened. Programmers are quite used to thisas part of the asynchronous and non-deterministic behaviourof tuple space based co-ordination. Using this observationwe then say it is quite acceptable for a run-time system togive the same tuple to both A2 and B1 regardless of whetherA2 or B1 is serviced �rst provided that B3 has not been per-formed. Traditionally, one would say that if B1 has beenserviced then A2 must block until B3 is performed. How-ever, it should be noted once the in has been performed thetuple must become read-only as there can only ever be onecopy of a tuple destructively removed from a tuple space.If this were not the case, we would end up with potentiallymultiple copies of the same tuple.
3. WHEN SHOULD A TUPLE DISAPPEAR?

3.1 Linda primitivesAlthough we have shown why the tuple can reside in a tuplespace after it has been destructively removed, it is imprac-tical in an e�cient implementation to pass the agent tracesaround with the tuples (they could become very large!).However, by generalising the principle it is possible to createa simple set of rules that can be easily implemented, withlittle overhead.What the traces show is that an agent can read a tuple thathas been removed, provided that agent has no way of know-ing that the other agent has removed the tuple. Therefore,when a tuple is matched by an in primitive it will remainin the tuple space, but:i. It can not be returned as a result of another in.ii. The agent which performed the in that matched thetuple cannot see the tuple anymore.iii. When the agent which performed the in on the tupleinserts any other tuple or terminates the tuple must be re-moved1.If these rules are followed, the traces describing the agentsactivity remain the same and the semantics of the accessprimitives are preserved.It is rule three above that enables one not to keep informa-tion about the primitives performed by other agents ([]in the traces). The traces contained the [] information todescribe if an agent had directly or indirectly synchronizedwith another agent, and therefore, whether we could not usea tuple the other agent had consumed. By generalising therule to say that whenever a tuple is inserted the tuples whichthe agent has consumed are no longer available as results, wemake the use of this technique in implementations feasible,and this will be discussed in more detail in Section 4.It should be noted there is no de�ned relationship betweenthe tuple removed by the in and the tuple inserted by thenext out. Indeed, multiple tuples could be destructivelyread before an out is performed and they would all remainvisible until this out is performed.1Termination, agent spawning and creation are examplesof potential hidden and these must cause the tuple to beremoved.

We have considered this so far in the restrictive case wherethere are only three primitives. Most modern tuple spacebased co-ordination languages have many more tuple spaceaccess primitives. In the next section we generalise the workto provide support for di�erent types of primitives.
3.2 Extensions of LindaMany of the modern implementations use a form of transac-tions to provide fault tolerance (although better alternativesexist using mobile code [12]). The approach to how theseare implemented varies, but essentially, tuples that are de-structively removed within a transaction are cached locallyand tuples inserted within a transaction are also cached andnot inserted. If the transaction aborts removed tuples arereinserted and inserted tuples are discarded. If the trans-action completes the inserted tuples are actually placed into the tuple space and the cached read tuples are discarded.The optimisation described here works with transactions.Inserted tuples are considered inserted at the end of thetransaction (when they become accessible to other agents)and the destructively read tuples are partially visible un-til this point. The rules as outlined in the previous sectionapply.The introduction of other primitives is commonplace, andit is important that any realistic optimisation should workwith the current generation of tuple space languages. Eachlanguage has its own particular set of tuple space accessprimitives but it is possible to create a generic set of rulesthat potentially cover all sets of possible tuple space accessprimitives. In order to create them we need to considerthe information that these primitives add. As an example,let us consider the inp and rdp primitives, although notnecessarily widely supported they represent a di�erent classof access primitive (non-blocking). Consider the two agents,sharing a tuple space with no other agents able to accessthat tuple space:Agent D Agent Ewhile (rdp(a)); in(a)out(b) in(b)In this case Agent D uses the rdp primitive to poll the tuplea. Whilst the tuple exists the tuple b will not be produced.With the rules outlined in the previous section Agents Dand E would never terminate, because the tuple b wouldnot be produced, as the tuple a would remain visible. Theproblem is caused because rdp is not a blocking primitive.However, this can easily be solved, by adding another state-ment to when the tuple should be removed:iv. If a rdp is performed and the matched tuple has beentagged as read-only then the tuple should not be used as theresult for the primitive. Furthermore, if there are no othermatching tuples available then the marked tuple should bediscarded. If another matching tuple is available as the re-sult then the read-only tuple can be left.At this point it now makes more sense to describe tuplesas being marked rather than read-only (as rdp is a non-destructive primitive). Also, some implementations supportprimitives beyond the basic Linda primitives and inp andrdp. It is possible, to generalise the rule yet further:iv. If any primitive is performed which does not block theuser thread of execution until a matching tuple is found,and a tuple which is to be the result (or part of the result)of that primitive is a marked tuple then the marked tuple4

should not be used as the result or part of the result. If themarked tuple is the only available result or should be partof the result it must be removed, otherwise it can remain.This rule generalisation is slightly conservative, in that some-times tuples will disappear before they need to, but ensuresthat the rules should work with any set of access primitives.Bellow all the rules are shown, rewritten in general terms toprovide a set of rules for when a tuple can be returned andwhen a tuple should be discarded.When a tuple is to be used as a result or part of a result fora primitive and the tuple has been the result or part of aresult for a destructive primitive then the tuple can still beused as a result to another primitive providing the followingare all true:i. The primitive being performed is not destructive.ii. The primitive is not being performed by the same agentthat performed the destructive primitive.iii. The agent that performed the destructive primitive hasnot inserted any tuple nor caused the insertion of any tupleinto any tuple space.iv. The primitive being performed blocks the agents threadof execution until a result is returned, where a result is eithera tuple or an indication of completion of some movement oftuples2.The system must subsequently discard this tuple when:i. The agent that performed the primitive that removed thetuple inserts any tuple into any tuple space or performs aprimitive that causes any tuple to be inserted into any tuplespace.ii. The agent that performed the primitive that removedthe tuple terminates.iii. The current non-destructive primitive does not block theuser thread of execution until a matched tuple(s) is foundor operation on a set of tuples is complete, and is forced touse the tuple to provide the results correctly.It is assumed that there are no hidden communication chan-nels between the agents communicating. The only way toagents can communicate is via a tuple space. The secondrule covers hidden communication, by an agent knowingsomething has happened because of when it was created.It should be noted that this optimisation does not inter-fere with the asynchronous \event" style primitives addedin many new versions of Linda which propagate inserted tu-ples to agents automatically. When a tuple is inserted, it canbe propagated provided the out is treated as an insertion ofa tuple for discarding tuples.
4. IMPLEMENTATIONWe have implemented the scheme outlined in the last sec-tion, and the implementation has proved simple and e�-cient. A Java based kernel has been extended to use thisoptimisation. It is a centralised kernel, as are most of thekernels currently being used for the new set of co-ordinationlanguages. It supports the standard Linda primitives andcollect [1] and copy-collect [14]. The collect primi-tive moves all tuples matching a given template from onetuple space to another and returns a count of the numberof tuples moved (therefore, it is a blocking primitive). The2Primitives such as rdp fail this rule, because they do notblock the thread of execution { it returns false if a tupleis not available. However, a primitive like copy-collectpasses the rule because it copies tuples and then returns acounter.

out in rdNormal 0.193 0.122 0.271Optimised 0.194 0.122 0.146Table 1: Tuple space access times (ms).copy-collect primitive is the same except it copies ratherthan moves the tuples. Therefore, it is based on the ex-tended rule set given in the previous section.Every agent using the run-time system has a Globally UniqueIdenti�er (GUID) created dynamically as it starts to exe-cute. When the agent registers with the run-time systemthe GUID is passed to the run-time server and it createsa counter associated with the agent. Each time an agentperforms either an out or collect the counter associatedwith the agent is incremented by one (before the primitiveis performed). When an agent requests a tuple using an inor when a set of tuples are moved from one tuple space toanother tuple space using a collect the e�ected tuples aremarked as \special" and tagged with the identity tag of theagent that removed or moved the tuple and with the cur-rent value of the primitive count associated with the agent.Any other agent can then perform a rd or copy-collectand have this tuple as the result or part of the result. How-ever, whenever the tuple is matched the system checks thecurrent primitive count associated with the GUID attachedto the tuple with the primitive count attached to the tuple.If the primitive counts di�er or if the agent has terminatedthen the tuple is discarded, and not used as a result for therd or copy-collect.Checking of the tuples is performed on the
y, and the datastructure is so organised that newest inserted tuple will befound �rst therefore maximising the chances that the tuplefound as a result for a primitive is unmarked. If it is fearedthat tagged tuples will remain in the system for some timethen some form of garbage collection can be added. Thisgarbage collection can be run as a background task, or per-formed when the data structure becomes too large.Table 1 show the performance results for the data struc-tures used within the Java kernel. The kernel is writtenin Java and is not written to be optimal and therefore theperformance is not very good. However, the relative speedsdemonstrate some interesting things about the implementa-tion. The results were gathered on a 450MHz Pentium IIIprocessor running Windows NT by timing individually theinsertion (out), then reading (rd) and then removal (in) of10000 identical tuples. The average was worked out for eachtask over 10 executions, and then the results were scaleddown from 10000 operations to individual tuple space ac-cess times. The test program was embedded into the ker-nel, so removing communication overheads and marshallingcosts. The row labelled Normal represents the results whenthe optimisation is not used (and the code for providingthe optimisation is removed) and the row marked Optimisedrepresents the results when the optimisation is being used.All timings are given in milliseconds.As one would expect the time taken to insert and read thetuples are the same regardless of whether the optimisationis being used. This is because the overhead of accessing thecounter on insertion is negligible and the rd only has to per-form an extra check to see if the tuple is ghosted (and in theresults shown in the table a tuple is never ghosted.). The5

time taken to perform an in drops when the optimisationis being used. This is because in the tuple is not removedfrom the data structure; it is simply marked as ghosted. In amore optimal kernel (written in C++) we would expect thetime taken to perform a rd and an in would be similar inboth the optimised and normal senarios. In the current ver-sion there is an overhead of no more than 0.153 ms addedto a rd primitive for every ghosted tuple that it removesfrom the data structure because it is no longer valid. Soif, a single tuple is being checked and removed in a rd ittakes 0.275 ms, which is the same as a in (we have passedthe expense of removing tuples from the data structure fromthe in primitive to the rd primitive). We created two ver-sions of the rd one that left the invalid ghosted tuples inthe data structure and one that removed them, and addedan explicit process that performed garbage collection on thetuple structure. The ideal may be an adaptive data struc-ture that adapts its use based on the way a set of tuplesis being accessed. Switching between dynamically garbagecollection of the data structure and waiting for periods oflow load and perform a static garbage collection.We created a simple demonstration program based on theexample given in Figure 1, where the reader agents repeat-edly read the counter and printed all elements in list. Whenthe technique described in this paper was enabled, none ofthe readers blocked awaiting a tuple, and regularly a tu-ple was returned when the primitive should have blocked.When the technique described in this paper was disabled,the readers blocked a signi�cant number of times. However,the number of times a single reader is blocked is highly de-pendent on each experimental run, because of the impactof network latency on the interleaving of when primitivesarrive.
5. CONCLUSIONSWe have described a method by which a run-time systemcan transparently optimise when tuples should be removedfrom a tuple space that does not alter the semantics of theaccess primitives. We have described the algorithm usingthe standard Linda primitives as an example and then gen-eralised it to other primitives. We then described how thealgorithm is implemented, cheaply and e�ciently and pre-sented performance results to support our claim.This optimisation increases the level of concurrency in thesystem because primitives which would normally block nolonger block. It also reduces the load in the server by re-ducing the number of primitives that need to be blocked.The optimisation can be used with asynchronous noti�ca-tion primitives and with transactions. It works with arbi-trary tuples, and is not dependent on one particular coordi-nation pattern (although one is used as the example in thispaper). The optimisation is performed on-the-
y and doesnot require compile time analysis or the addition of otherprimitives.Tuples are left partially visible until a set of rules is no longersatis�ed and then they are discarded. It is not necessary thata in is followed by a out for this optimisation to work.Although the optimisation is clearly correct we are currentlyworking on a process algebra with formal proofs to show thisis indeed the case.
6. ACKNOWLEDGEMENTS

I would like to thank Cedric Fournet and Rocco de Nicolafor their detailed comments and corrections (and Rocco forhis Petri-net diagram and case graph).
7. REFERENCES[1] P. Butcher, A. Wood, and M. Atkins. Global synchroni-sation in Linda. Concurrency: Practice and Experience,6(6):505{516, 1994.[2] J. Carreria, L. Silva, and J. Silva. On the design ofEilean: A Linda-like library for MPI. Technical report,Universidade de Coimbra, 1994.[3] N. Carriero and D. Gelernter. Linda in context. Com-munications of the ACM, 32(4):444{458, 1989.[4] N. Carriero and D. Gelernter. Tuple analysis and partialevaluation strategies in the Linda precompiler. In Lan-guages and Compilers for Parallel Computing, pages114{125. MIT Press, 1990.[5] P. Ciancarini, A. Omicini, and F. Zambonelli. Coordi-nation technologies for internet agents. Nordic Journalof Computing, 6(3):215{240, 1999.[6] P. Ciancarini and D. Rossi. Coordinating Java agentsover the WWW.World Wide Web Journal, 1(2):87{99,1998.[7] P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, andA. Knoche. Coordinating multiagent applications onthe WWW: A reference architecture. IEEE Trans. onSoft. Eng., 24(5):362{366, 1998.[8] R. D. Nicola, G. Ferrari, and R. Pugliese. KLAIM:A kernel language for agents interaction and mobility.IEEE Trans. on Soft. Eng., 24(5):315{330, 1998.[9] A. Omicini and F. Zambonelli. Coordination for inter-net application development. Autonomous Agents andMulti-agent Systems, 2(3):251{269, 1999.[10] G. Picco, A. Murphy, and G.-C. Roman. Lime: Lindameets mobility. Technical Report Technical reportWUCS-98-21, Washington University, Department ofComp. Sci., St. Louis, Missouri, 1998.[11] A. Rowstron. WCL: A web co-ordination language.World Wide Web Journal, 1(3):167{179, 1998.[12] A. Rowstron. Mobile co-ordination: Providing fault-tolerance in tuple space based co-ordination languages.In Coordination Languages and Models: Coordina-tion99, volume 1594 of LNCS, pages 196{210. Springer-Verlag, 1999.[13] A. Rowstron and A. Wood. Bonita: A set of tu-ple space primitives for distributed coordination. InHICSS-30, volume 1, pages 379{388, 1997.[14] A. Rowstron and A. Wood. Solving the linda multiplerd problem using copy-collect. Science of ComputerProgramming, 31(2-3), July 1998.[15] Sun Microsystems. Javaspace speci�cation, revision 0.4.Final Speci�cation., 1997.[16] P. Wycko�, S. McLaughry, T. Lehman, and D. Ford.TSpaces. IBM Systems Journal, 37(3):454{474, 1998.6

