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Abstract
We introduce an unsupervised approach to efficiently dis-
cover the underlying features in a data set via crowdsourcing.
Our queries ask crowd members to articulate a feature com-
mon to two out of three displayed examples. In addition, we
ask the crowd to provide binary labels for these discovered
features on the remaining examples. The triples are chosen
adaptively based on the labels of the previously discovered
features on the data set. This approach is motivated by a for-
mal framework of feature elicitation that we introduce and
analyze in this paper. In two natural models of features, hi-
erarchical and independent, we show that a simple adaptive
algorithm recovers all features with less labor than any non-
adaptive algorithm. The savings are as a result of automat-
ically avoiding the elicitation of redundant features or syn-
onyms. Experimental results validate the theoretical findings
and the usefulness of this approach.

Introduction
Discovering features is essential to the success of machine

learning and statistics. Crowdsourcing can be used to dis-
cover these underlying features, in addition to merely label-
ing them on data at hand. This paper addresses the follow-
ing unsupervised learning problem: given a data set, using as
few crowd queries as possible, elicit a diverse set of salient
feature names along with their labels on that data set. For
example, on a data set of faces, salient features might corre-
spond to gender, the presence of glasses, facial expression,
among others. In this paper we focus on binary features,
each of which can be thought of as a function mapping data
to {0, 1}. The term feature name refers to a string describing
the feature (e.g., male or wearing glasses), and the label of
a feature on an example refers the {0, 1}-value of that fea-
ture on a that datum, as annotated by crowd workers. Fea-
tures are useful in exploratory analysis, for other machine
learning tasks, and for browsing data by filtering on vari-
ous facets. While the features we use are human-generated
and human-labeled, they could be combined with features
from machine learning, text analysis, or computer vision
algorithms. In some cases, features provide a significantly
more compact representation than other unsupervised rep-
resentations such as clustering, e.g., one would need expo-
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Which two are similar and why? “one handed”

Tags
signal, motion, 
balding, beard

Tags
man, goatee, 
sign language

Tags
man, gesture, 
hand movement

Figure 1: Comparing three examples yields a useful feature
(top) whereas tagging them separately yields nondiscrimi-
native, redundant features (bottom).

nentially many clusters (such as smiling white men with grey
hair wearing glasses) to represent a set of features.

A widely-used crowdsourcing technique for eliciting fea-
tures is to simply ask people to tag data with multiple words
or phrases. However, tagging individual examples fails to
capture the differences between multiple images in a data
set. To illustrate this problem, we asked 10 crowd workers
to tag 10 random signs from an online dictionary of Amer-
ican Sign Language, all depicted by the same bearded man
in a gray sweatshirt. As illustrated in Figure 1, the tags gen-
erally refer to his hair, clothes, or the general fact that he
is gesturing with his hands. Each of the 33 tags could ap-
ply equally well to any of the 10 video snips, so none of the
features could discriminate between the data.

Inspired by prior work (Patterson and Hays (2012); Heik-
inheimo and Ukkonen (2013); Tamuz et al. (2011)) and
the familiar kindergarten question, “which one does not
belong?”, we elicit feature names by presenting a crowd
worker with a triple of examples and asking them to name
a feature common to any two out of the three examples. We
refer to this as a “two-out-of-three” or, more succinctly, 2/3
query. These features are meant to differentiate yet be com-
mon as opposed to overly specific features that capture pecu-
liarities rather than meaningful distinctions. As illustrated in
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Figure 1, in contrast to tagging, the learned features partition
the data meaningfully.

How should one choose such triples? We find that, very
often, random triples redundantly elicit the same set of
salient features. For example, 60% of the responses on ran-
dom sign triples distinguish signs that use one vs. two hands.
To see why, suppose that there are two “obvious” compli-
mentary features, e.g., male and female, which split the data
into two equal-sized partitions and are more salient than any
other, i.e., people most often notice these features first. If the
data are balanced, then 75% of triples can be resolved by one
of these two features.

To address this inefficiency, once we’ve discovered a fea-
ture, e.g., one/two-handedness, we then ask crowd workers
to label the remaining data according to this feature. This
labeling is necessary eventually, since we require the data
to be annotated according to all discovered features. Once
we have labels for the data, we never perform a 2/3 query
on resolved triples, i.e., those for which we have a feature
whose labels are positive on exactly two out of the three ex-
amples. Random 2/3 queries often result in the one of these
salient features. Our adaptive algorithm, on the other hand,
after learning the features of, say, “male” and “female,” al-
ways presents three faces labeled by the same gender (as-
suming consistent labeling) and thereby avoids eliciting the
same feature again (or functionally equivalent features such
as “a man”).

The face data set also illustrates how some features are
hierarchical while others are orthogonal. For instance, the
feature “bearded” generally applies only to men, while the
feature “smiling” is common across genders. We analyze our
algorithm and show that it can yield large savings both in
the case of hierarchical and orthogonal features. Proposition
1 states that our algorithm finds all M features of a proper
binary hierarchical “feature tree” using M queries, whereas
Proposition 2 states that any non-adaptive algorithm requires
Ω(M3) queries. The lower bound also suggests that “gener-
alist” query responses are more challenging than “specifics,”
e.g., in comparing a goat, a kangaroo, and a car, the gener-
alist may say that the goat and kangaroo are both animals
rather while the specifist may distinguish them as both mam-
mals. We then present a more sophisticated algorithm that
recovers D-ary trees on M features and N examples using
Õ(N + MD2) queries, with high probability (see Proposi-
tion 3).

Finally, we show that in the case of M independent ran-
dom features, adaptivity can give an exponential improve-
ment provided that there is sufficient data (Lemmas 5.2 and
5.3). For example, in the case of M independent uniformly
random features, our algorithm finds all features using fewer
than 3M queries (in expectation) compared to a Ω(1.6M ) for
a random triple algorithm. In all analysis, we do not include
the cost of labeling the features on the data since this cost
must be incurred regardless of which approach is used for
feature elicitation. Moreover, the labeling cost is modest as
workers took less than one second, amortized, to label a fea-
ture per image when batched (prior work Patterson and Hays
(2012) reported batch labeling for approximately $0.001 per
image-feature label).

Interestingly, our theoretical findings imply that 2/3
queries are sufficient to learn in both our models of hierar-
chial and independent features, with sufficient data. We also
discuss 2/3 queries in comparison to other types, e.g., why
not ask a “1/3 query” for a feature that distinguishes one ex-
ample from two others? Note that 1/3 and 2/3 queries may
seem mathematically equivalent if the negation of a feature
is allowed (one could point out that two are “not wearing
green scarves”). However, research in psychology does not
find this to be the case for human responses, where simi-
larity is assumed to be based on the most common positive
features that examples share (see, e.g., the theory of simi-
lariteies in Tversky (1977)). Proposition 4 shows that there
are data sets where larger arbitrarily large query sizes are
necessary to elicit certain features.

The main contribution of this paper is introducing an
adaptive algorithm that uses 2/3 queries to elicit human fea-
tures from crowdworkers on an arbitrary data set. Our anal-
ysis and experiments show that the adaptivity saves labor by
preemptively avoiding duplicate or synonymous features by
interleaving steps of labeling data with feature elicitation.
The paper is organized as follows. After discussing related
work, we introduce the model for feature elicitation and our
adaptive triple algorithm. We then analyze the performance
of the adaptive algorithm (versus any non-adaptive algo-
rithm) in the settings of hierarchical features and indepen-
dent features. Finally, we discuss alternative types of queries
and present experimental results.

Related work
In machine learning and AI applications, as cited by

Parikh and Grauman (2011), relevant features are often
elicited from domain experts (Farhadi et al. (2009); Wang,
Markert, and Everingham (2009)) or from text mining (Berg,
Berg, and Shih (2010)). As mentioned, a common approach
for crowdsourcing named features is image tagging, see,
e.g., the ESP game (von Ahn and Dabbish (2004)). There is
much work on automatic representation learning and feature
selection from the data alone (see, e.g., Bengio, Courville,
and Vincent (2013)), but these literatures are too large to
cover here.

One work that inspired our project was that of Patterson
and Hays (2012), who crowdsourced nameable attributes
for the SUN Database of images using comparative queries.
They presented workers with random quadruples of images
from a data set separated vertically and elicited features by
asking what distinguishes the left pair from the right. Their
images were chosen randomly and hence without adapta-
tion. They repeated this task over 6,000 times. We discuss
such left-right queries in later in this paper.

For supervised learning, Parikh and Grauman (2011) ad-
dress multi-class classification by identifying features that
are both nameable and machine-approximable. They intro-
duce a novel computer vision algorithm to predict “nama-
bility” of various directions in high-dimensional space and
present users with images ordered by that direction. Like
ours, their algorithm adapts over time, though their under-
lying problem and approach are quite different. In indepen-
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dent work on crowdsourcing binary classification, Cheng
and Bernstein (2015) elicit features by showing workers a
random pair of positive and negative example. They cluster
the features using statistical text analysis which reduces re-
dundant labeling of similar features (which our algorithm
does through adaptation), but it does not solve the prob-
lem that a large number of random comparisons are required
in order to elicit fine-grained features. They also introduce
techniques to improve the feature terminology and clarify
feature definitions, which could be incorporated into our
work as well.

Finally, crowdsourced feature discovery is a human-in-
the-loop form of unsupervised dictionary learning (see, e.g.,
Lee et al. (2006)). Analogous to the various non-featural
representations of data, crowdsourcing other representations
has also been studied. For hierarchical clustering, a number
of algorithms have been proposed (see, e.g., Chilton et al.
(2013)). Also, Kernel-based similarity representations have
been crowdsourced adaptively by Tamuz et al. (2011).

Preliminaries and Definitions
We first assume that there is a given set X =

{x1, x2, . . . , xN} of examples (images, pieces of text or mu-
sic, etc.) and an unknown setF = {f1, f2, . . . fM} of binary
features fj : X → {0, 1} to be discovered. We say that fea-
ture fj is present in an example xi ∈ X if fj(x) = 1, absent
if fj(x) = 0, and we abuse notation and write xi,f ≡ f(xi)
and xi,j ≡ fj(xi). Hence, since there areM hidden features
and N examples, then there is an underlying latent N -by-
M feature allocation matrix A with binary entries. The ith
row of A corresponds to sample xi, and the jth column of A
corresponds to feature fj .

Our goal is to recover this entire matrix A, together with
names for the features, using minimal human effort.

Definition Given a feature f and an example xi, a labeling
query L(xi, f) returns f(xi).

As we will discuss, in practice labeling is performed more
efficiently in batches. A consideration for query design is
that we want each contrastive query to be as cognitively sim-
ple as possible for the human worker. Our analysis suggests
that comparisons of size three suffice, but for completeness
we define comparisons on pairs as well.

Definition A 2/3 query Q(x, y, z) either returns a feature
f ∈ F such that f(x)+f(y)+f(z) = 2 or it returns NONE
if no such feature exists.

A 1/2 query on Q(x, y) either returns a feature f ∈ F
such that f(x) + f(y) = 1 or returns NONE if x and y are
identical.

We also refer to 2/3 queries as triple queries and 1/2 queries
as pair queries. Note that we can simulate a pair query
Q(x, y) by two triple queries Q(x, x, y) and Q(x, y, y). We
say that a feature f distinguishes a set of examples S if∑
x∈S f(x) = |S| − 1, i.e., it holds for all but one example

in S.

Definition A query is resolved if there is a known distin-
guishing feature for the query, or it is known that NONE is

the outcome of the query, based on prior dicovered features
and their labels on the data.

Algorithm 1, the Adaptive Triple Algorithm, is the main
algorithm we use for experimentation and analysis. Adaptive
Triple can be run on any dataset to elicit features. It does not
assume any structure between the features. To understand its
theoretical properties, we analyze the performance of Adap-
tive Triples in two natural models: when features form a hi-
erarchy and when features are independent. Note that our
analysis is meant to yield insight – we do not believe that
either of our toy models holds in practice.

Algorithm 1 Adaptive Triple
Input: N examples X = {xi}.
Output: A set of features F = {f} and their corresponding

labels on all examples xi,f for i ≤ N, f ∈ F .
1: Randomly select a triple {x, y, z} from the set of all un-

resolved triple queries. Let f = Q(x, y, z).
2: If f 6=NONE: (a) add it to F , (b) run the labeling query
L(xi, f) for all xi ∈ X , and (c) update the set of unre-
solved queries.

3: If all all triples of examples can be resolved by one of
the discovered features, terminate and output F and the
labels. Otherwise, go to 1.

Hierarchical Feature Models
We now consider the setting where the features and ex-

amples form a tree, with each internal node (other than the
root) corresponding to a single feature and each leaf corre-
sponding to a single example. The features that are 1 for an
example are defined to be those on the path to the root, and
the others are 0. The root is not considered a feature. Hence,
if feature f is an ancestor of g, then g ≤ f in that whenever
g is 1, f must be 1 as well.

Definition A feature tree T is a rooted tree in which each
internal node (aside from the root) corresponds to a distinct
feature and each leaf corresponds to a distinct example. The
value of a feature on an example is 1 if the node correspond-
ing to that feature is on the the path to the root from the leaf
corresponding to the example, and 0 otherwise.

Note that our algorithms recover the features but not the tree
explicitly – reconstructing the corresponding feature tree is
straightforward if the data is consistent with one.

Binary feature trees
In this section, we consider the standard notion of proper

binary trees in which each internal node has exactly two
children. Figure 2 illustrates a proper binary feature tree.
Proposition 1. For a proper binary feature tree on M fea-
tures, the Adaptive Triple algorithm finds all features using
M queries.

Proof. To prove this proposition, we will show that: (a) we
never receive a NONE response in the Adaptive Triple Algo-
rithm, and (b) every feature has at least one triple for which
it is the unique distinguishing feature. Since a query in this
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Figure 2: A sample proper binary feature tree. When com-
paring the pen, flower, and tree, the distinguishing features
are natural and plant. A generalist would respond with nat-
ural.

algorithm cannot return an already discovered feature, and
since there are M features, this implies that there must be
exactly M queries.

For (a), let f be the least common ancestor of an example
triple {x, y, z}. Since T is proper, f must have exactly two
children. By the definition of least common ancestor, two
out of {x, y, z} must be beneath one child of f (call this
child g) while the other one is beneath the other child. Then
g is a distinguishing feature forQ(x, y, z). Hence, we should
never receive a NONE response.

For (b), observe that every internal node (other than the
root) has at least one triple for which it is the unique dis-
tinguishing feature. In particular, given any internal node, f ,
let l and r be its left and right children. Let x and y be ex-
amples under l and r (with possibly x = l or y = r if l or
r are leaves). Let s be the sibling of f (the other child of its
parent) and let z be any leaf under of s (again z = s if s
is a leaf). Then it is clear that f is the unique distinguishing
triple for x, y, and z. For example, in Figure 2, for the fea-
ture plant, a triple such as the flower, tree, and fish, would
uniquely be distinguished by plant.

Now consider different ways to answer queries: define a
generalist as an oracle forQ that responds to any query with
the shallowest distinguishing feature, i.e., the one closest to
the root. For example, given the pen, flower and tree of Fig-
ure 2, the generalist would point out that the flower and tree
are both natural rather than that they are both plants. Also,
say an algorithm is non-adaptive if it specifies its queries
in advance, i.e., the triples cannot depend on the answers to
previous queries but could be random. We also assume that
the data is anonymous which means that we can think of the
specific examples being randomly permuted in secret before
being given to the algorithm.

We now show that any general-purpose non-adaptive al-

gorithm that does not exploit any content information on the
examples requires at least Ω(M2) examples to find all M
features and at least Ω(M3) if all queries are answered by
generalists.

Proposition 2. If the examples correspond to a random per-
mutation of the leaves of a proper binary tree T with M
features, then any non-adaptive algorithm requires at least
M2/12 queries to recover all M features with probability
1/2. Furthermore, if queries are answered by generalists,
then any non-adaptive algorithm requires at least M3/24
queries to find all features with probability 1/2.

Figure 2 sheds light on this proposition – in order to dis-
cover the feature bird, we mush choose both birds in a triple.
If the queries are answered by a generalist, we would have
to choose the birds and fish. The probability of choosing
two specific examples is O(1/M2) while the probability of
choosing three specific examples is O(1/M3).

Proof. Let f be the deepest feature (or one of them if there
are more than one). Let f have children x and y which
must be leaves since f is a deepest internal node. Let s
be the sibling of f . By assumption x and y are leaves.
Now, in order to discover f , the triple must consist of x
and y and another node, which happens with probability
(N−2)/

(
N
3

)
= 6

N(N−1) < 6/M2 for a random triple (since
N = M + 2). By the union bound, if there are only M2/12
triples, it will fail to discover f with probability at least 1/2.

Now consider a generalist answering queries. Let S be the
set of leaves under s. Since f is the deepest feature, S must
be a set of size 1 or 2 depending on whether or not s is a
leaf. It is not difficult to see that the only triples that return f
(for a generalist) are x, y and an element of S. Hence there
are at most 2 triples that recover f . Since there are

(
N
3

)
>

M3/6 triples, if there are fewer thanM3/24 triples, then the
probability that any one of them is equal to one of the two
target triples is at most 1/2. The union bound completes the
proof.

Note that pairs are insufficient to recover internal nodes
in the case where a specifist answers queries. This moti-
vates the need for triples; moreover, Proposition 1 shows that
triple queries suffice to discover all the features in a binary
feature tree.

General feature trees
We now present a theoretical algorithm using triple

queries which allows us to efficiently learn general “D-ary
leafy feature trees,” which we define to be a feature tree
in which: (a) every internal node (i.e., feature) has at most
D internal nodes (but arbitrarily many leaves) as children,
and (b) no internal node has a single child which is an in-
ternal node. Condition (a) is simply a generalization of the
standard branching factor of a rooted tree, and condition (b)
rules out any “redundant” features, i.e., features which take
the same value for each example. This algorithm generalizes
the simpler Adaptive Triple algorithm.

Proposition 3 (Adaptive Hybrid, Upper Bound). Let T be
a D-ary leafy feature tree with N examples and M features.
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Algorithm 2 Adaptive Hybrid
Input: Examples X = {xi} and exploration parameter θ.
Output: The set of features F and labels for all examples

xi,f .
1: Query pairs of examples until we have, for each pair,

found a feature that distinguishes them, or determined
that they have identical features (by direct comparison
or transitivity).

2: Maintain a queue Q of features to explore, and a queue
of already discovered features F . Initialize Q = {r},
where r is a default root feature defined as: xir =
1, ∀i ∈ X . Initialize F = {}.

3: while Queue Q is not empty do
4: Pop a feature f from Q. Set off(f) = {fj s.t. 6

∃f ′ with fj < f ′ < f}. Represent each feature fj in
off(f) by a randomly selected example xj such that
xj,fj = 1.

5: Uniformly randomly select distinct examples
x, y, z ∈ off(f), and query {x, y, z}. If the query
returns a feature f ′, push f ′ to Q, run labeling
queries {x, f ′} for all x ∈ off(f) and update off(f).

6: If Step 5 returns θ consecutive NONEs, then add f to
F and go to Step 4 and pop the next feature from the
Q.

7: end while
8: return F and the labels xi,f .

The Adaptive Hybrid algorithm with exploration time θ =
3D2 log M

δ terminates afterO(N+MD2 log M
δ ) number of

triple queries and finds all features with probability≥ 1−δ.

The proof of Proposition 3 makes use of the following
Lemma.
Lemma 1. Let T be a non-star, D-ary leafy feature tree.
Then the Random Triple algorithm finds at least one feature
with probability ≥ 1− δ using 3D2 log 1

δ queries.
The proofs are deferred to the appendix.

Independent features
In this section we consider examples drawn from a distri-

bution in which different features are independent. Consider
a statistical model in which there is a product distribution D
over a large set of examples X . This model is used to repre-
sent features that are independent of one other. An example
of two independent features in the Faces data set might be
“Smiling” and “Wearing Glasses.” We assume that D is a
product distribution over M independent features. Thus D
can be described by a vector {pf , f ∈ F}, where for any
feature f ∈ F , pf = Prx∼D

[
f(x) = 1

]
. We also abuse

notation and write pi for pfi . We assume 0 < pi < 1.
In this model, there is a concern about how much data

is required to recover all the features. In fact, for certain
features there might not even be any triples among the data
which elicit them. To see this, consider a homogenous crowd
that all answers queries according to a fixed order on fea-
tures. Formally, if more than one feature distinguishes a

triple, suppose the feature that is given is always the distin-
guishing feature fi of smallest index i. Intuitively, this mod-
els a situation where features are represented in decreasing
salience, i.e., differences in the first feature (like gender) are
significantly more salient than any other feature, differences
in the second feature stand out more than any feature other
than the first, and so forth. Now, also suppose that all fea-
tures have probability 1/2 of being positive.

Lemma 2. If p1 = p2 = · · · = pM = 1/2, then with a
homogeneous crowd, N ≥ 1.1M examples are required to
find all features with probability 1/2 even if all triples are
queried.

Proof. Since pi = 1/2, the probability of any feature dis-
tinguishing a triple is 3/8. Therefore, a homogenous crowd
will only output the last, least salient feature if it the only dis-
tinguishing feature, which happens with exponentially small
probability (3/8)(5/8)M−1 for a random triple. Given N <
1.1M examples, there N3 < 1.13M triples. By the union
bound, with probability less than (3/8)(5/8)M−11.13M <
1/2 will any of them elicit the last feature.

On the other hand, we show that all features will be dis-
covered with a finite number of samples. In particular, say a
feature f is identifiable on a data set if there exists a triple
such that f is the unique distinguishing feature. If it is identi-
fiable, then of course the adaptive triple algorithm will even-
tually identify it. We now argue that, given sufficiently many
examples, all features will be identifiable with high proba-
bility.

Lemma 3 (Identifiability in the Independent Features
Model). Suppose N examples are drawn iid from the Inde-
pendent Features Model where feature f has frequency pf .
For any feature f , let:

τf = 3p2f (1− pf )
∏
g 6=f

(
1− p2g(1− pg)

)
.

Moreover, let τmin = minf τf . If N ≥
Ω(log(1/τmin)/τmin), then, with constant probability,
all features are identifiable by triple queries.

The above exponential upper and lower bounds are worst
case. In fact, it is not difficult to see that for a totally hetero-
geneous crowd, which outputs a random distinguishing fea-
ture, if all pi = 1/2, only N = O(logM) examples would
suffice to discover all features because one could query mul-
tiple different people about each triple until one discovered
all distinguishing features. Of course, in reality one would
not expect a crowd to be completely homogeneous nor com-
pletely heterogeneous (nor completely generalists nor com-
pletely specifists), and one would not expect features to be
completely independent or completely hierarchical. Instead,
we hope that our analysis of certain natural cases helps shed
light on why and when adaptivity can significantly help.

As we now turn to the analysis of adaptivity and the
number of queries, we make a “big data” assumption that
we have an unbounded supply of examples. This makes
the analysis simple in that the distribution over unresolved
triples takes a nice form. We show that the number of queries
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required by the adaptive algorithm is linear in the number of
features, while it grows exponentially with the number of
features for any non-adaptive algorithm.

We first provide an upper bound on the number of queries
of the Adaptive Triple algorithm in this model.
Lemma 4 (Adaptive Triple). Suppose for j = 1, . . . , k,
we have Mj independent features with frequency pj and in-
finitely many examples. Then the expected number of queries
used by Adaptive Triple to discover all the features is at most∑k
j=1

Mj

qj
, where qj = 3p2j (1 − pj). For the Adaptive Pair

algorithm, set qj = 2pj(1− pj).
We next provide lower bounds on the number of queries

of any non-adaptive algorithm under the independent feature
model.
Lemma 5 (non-adaptive triple). Suppose for j = 1, . . . , k,
we have Mj independent features with frequency pj and in-
finitely many examples. Let qj = 3p2j (1− pj). The expected
number of queries made by any non-adaptive triple algo-
rithm is at least:

1− qmax∏k
i=1(1− qi)Mi

,

where qmax = maxi qi.
To interpret these results, consider the simple setting

where all the features have the same probability: pj = p.
Then the random triple algorithm requires at least 1/(1 −
q)M−1 queries on average to find all the features. This is
exponential in the number of features, M . In contrast, the
adaptive algorithm at most M/q queries on average to find
all the features, which is only linear in the number of fea-
tures.

Other types of queries
Clearly 2/3 queries are not the only type of queries. For

example, an alternative approach would use 1/3 queries in
which one seeks a feature that distinguishes one of the ex-
amples from the other two. Such queries could result in fea-
tures that are very specific to one image and fail to elicit
higher-level salient features. Under the hierarchical feature
model, 1/3 queries alone are not guaranteed to discover all
the features.

A natural generalization of the left-vs-right queries in pre-
vious work Patterson and Hays (2012); Cheng and Bernstein
(2015) are queries with sets L and R of sizes |L| ≤ `, |R| ≤
r, where a valid answer is a feature common to all examples
in L and is in no examples in R. We refer to such a query as
an `− r query L− R. In fact, a 2/3 query on {x, y, z} may
be simulated by running the three L-R queries {x, y}−{z},
{y, z} − {x}, and {x, z} − {y}. (Note that this may result
in a tripling of cost, which is significant in many applica-
tions.) There exist data sets for which L-R queries can elicit
all features (for various values of `, r) while 2/3 queries may
fail.
Proposition 4. For any `, r ≥ 1, there exists a data set X
of size N = |X| = ` + r and a feature set F of size M =
|F| = 1 + ` + r such that ` − r queries can completely

recover all features while no `′−r′ query can guarantee the
recovery the first feature if `′ < ` or if r′ < r.

Proof. Let the examples be X = L ∪ R where L =
{x1, x2, . . . , x`} and R = {x′1, . . . , x′r}. Let F = {f} ∪
G ∪H where the feature f satisfies f(x) = 1 if x ∈ L and
f(x) = 0 if x ∈ R. Define the features g1, g2, . . . , g` ∈ G
to be gi(x) = 1 for all x ∈ L \ {xi} and gi(xi) = 0, oth-
erwise. Define H = {h1, . . . , hr} where hj(x) = 0 for all
x ∈ R \ {x′j} and hj(x) = 1, otherwise. It is clear that the
query L− R necessarily recovers f , the query ∅ − {xi} re-
covers gi, and the query {x′j} − ∅ recovers hj . Moreover,
for any query L′ − R′ with xi 6∈ |L′|, it is clear that gi is as
good an answer as f . Conversely, if x′j 6∈ R′, then clearly hj
is as good an answer as f . Hence, if the feature f is “least
salient” in that other features are always returned if possible,
no `′ − r′ query will recover f .

Experiments
We tested our algorithm on three datasets: 1) a set of 100

silent video snips of a sign-language speaker ASL; 2) a set
of 100 human face images used in a previous study Tamuz
et al. (2011); 3) a set of 100 images of ties, tiles and flags
from that same Tamuz et al. (2011) study. All the images
and videos were initially unlabeled. The goal was to auto-
matically elicit features that are relevant for each dataset and
to label all the items with these features. We implemented
our Adaptive Triple algorithm on the popular crowdsourc-
ing platform, Amazon Mechanical Turk, using two types of
crowdsourcing tasks. In a feature elicitation task, a worker
is shown three examples and is asked to specify a feature
that is common to two of the examples but is not present in
the third. In a labeling task, a worker is shown one feature
and all examples and is asked which examples have the fea-
ture. To reduce noise, we assigned each labeling task to five
different workers, assigning each label by majority.

To compare adaptivity to non-adaptivity, we implemented
a Random Triple algorithm that picks a set of random
triples and then queries them all. To compare triples to pairs,
we also implemented an Adaptive Pair algorithm, defined
in the analogous way to the random triple algorithm except
that it only does pair queries.

The Adaptive Triple algorithm automatically determines
which sets of examples to elicit features from and which
combination of example and feature to label. Figure 3 shows
the first five queries of the Adaptive Triple algorithm from
one representative run on the three datasets. For example,
on the face data, after having learned the broad gender fea-
tures male and female early on, the algorithm then chooses
all three female faces or all three male faces to avoid dupli-
cating the gender features and to learn additional features.

We compared the Adaptive Triple Algorithm to several
natural baselines: 1) a non-adaptive triple algorithm that ran-
domly selects sets of three examples to query; 2) the Adap-
tive Pairs algorithm; 3) the standard tagging approach where
the worker is shown one example to tag at a time and is asked
to return a feature that is relevant for the example. We used
two complementary metrics to evaluate the performance of
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Figure 3: The first five features obtained from a representative run of the Adaptive Triple algorithm on the signs (left), faces
(middle) and products (right) datasets. Each triple of images is shown in a row beside the proposed feature, and the two examples
declared to have that feature are shown on the left, while the remaining example is shown on the right.

signs faces products
adaptive triple 24.5 (3.8) 25.3 (0.3) 19 (1.4)
random triples 12.5 (0.4) 18.7 (2.7) 14 (1.4)
adaptive pairs 11.5 (1.1) 14.5 (1.8) 10.5 (0.4)
tagging 9 (0.4) 13 (0.71) 12 (0.4)

Table 1: Number of interesting and distinct features discov-
ered. Standard error shown in parenthesis.

these four algorithms: the number of interesting and distinct
features the algorithm discovers, and how efficiently can the
discovered features partition the dataset.

In many settings, we would like to generate as many dis-
tinct, relevant features as possible. On a given data set, we
measure the distance between two features by the fraction of
examples that they disagree on (i.e. the Hamming distance
divided by the number of examples). We say that a feature is
interesting if it differs from the all 0 feature (a feature that is
not present in any image) and from the all 1 feature (a fea-
tures that is ubiquitous in all images) in at least 10% of the
examples. A feature is distinct if it differs in at least 10% of
the examples from any other feature. If multiple features are
redundant, we represent them by the feature that was discov-
ered first.

Table 1 shows the number of interesting and distinct fea-
tures discovered by the four algorithms. On each dataset,
we terminate the algorithm after 35 feature elicitation
queries. Each experiment was done in two independent
replicates–different random seeds and Mechanical Turk ses-
sions. The Adaptive Triple algorithm discovered substan-
tially more distinct features than all other approaches in
all three datasets. The non-adaptive approaches (random
triples and tagging) were hampered by repeated discoveries
of a few obvious features–one/two-handed motions in signs,
male/female in faces and product categories in products.
Once Adaptive Triples learned these obvious features, it pur-
posely chose sets of examples that cannot be distinguished
by the obvious features in order to learn additional features.

Adaptive comparison of pairs of example performed poorly
not because of redundant features but because after it learned
a few good features, all pairs of examples can be distin-
guished and the algorithm ran out of useful queries to make.
This is in agreement with our analysis of hierarchical fea-
tures. Pairwise comparisons are only guaranteed to find the
base-level features of the hierarchy while triples can prov-
ably find all the features.

This experiment also highlights another advantage of
adaptive queries over non-adaptive queries–namely, adap-
tive queries reduce the amount of post-processing required
to cluster and collapse similar features. With non-adaptive
queries, we often discover multiple names for redundant or
similar features (e.g. male and man). Manual curation or
NLP is then needed to collapse these names into an unique
feature identifier. Once the Adaptive Triple discovers male,
it automatically selects for examples that can not be distin-
guished by man and other words of the same meaning. Thus,
adaptation preemptively reduces the need to collapse redun-
dant feature names.

To evaluate how efficiently the discovered features can
partition the dataset, we compute the average size of the
partitions induced by the first k discovered features. More
precisely, let ft be the tth discovered feature. Then features
f1, ..., fk induces a partition on the examples, P1, ..., PR,
such that examples xi, xj belong to the same partition
if they agree on all the features f1, ..., fk. The average
fraction of indistinguishable images is g({f1, ..., fk}) =∑
r |Pr|2/N2. Before any feature were discovered, g = 1.

If features perfectly distinguish every image, then g = 1/N .
In Figure 4, we plot the value of g for the adaptive triple

algorithm and the benchmarks as a function of number of
queries. The adaptive algorithms requires significantly fewer
queries to scatter the images compared to the non-adaptive
algorithms. On the sign data set, for example, the adap-
tive triple required 13 queries to achieve g = 0.05 (i.e. a
typical example is indistinguishable from 5% of examples),
while the random triples required 31 queries to achieve the
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Figure 4: Comparisons of the adaptive triple algorithm with
benchmarks.

same g = 0.05. Adaptive Triples and Adaptive Pairs both
achieved rapid decrease in g, indicating that both were dis-
covering good discriminatory features. However, as we saw
above, Adaptive Pairs terminated early because it no longer
had any unresolved pairs of examples to query, while Adap-
tive Triples continued to discover new features.

Discussion
We have introduced a formal framework for modeling fea-

ture discovery via comparison queries. Consistent with pre-
vious work by Patterson and Hays (2012), we demonstrated
that tagging can be inefficient for generating features that
are diverse and discriminatory. Our theoretical analysis sug-
gested that the Adaptive Triple algorithm can efficiently dis-
cover features, and our experiments on three data sets pro-
vided validation for the theoretical predictions. Moreover,
unlike previous non-adaptive feature elicitation algorithms
which had to detect redundant features (either using humans
or natural language processing), our algorithm is designed to
avoid generating these redundant features in the first place.

A key reason that our algorithm outperformed the non-
adaptive baseline is that in all three of our data sets there
were some features that were especially salient, namely gen-
der for faces, one or two hands for sign language, and prod-
uct type for products. A interesting direction of future work
would be to investigate the performance of adaptive algo-
rithms in other types of data.

Our analysis suggests that homogeneous crowds and
crowds of generalists should be most challenging for elic-
iting features. Modeling the salience of features and the di-
versity of the crowd are also interesting directions of future
work. In particular, our algorithm made no explicit attempt
to find the most salient features, e.g., one could imagine ag-
gregating multiple 2/3 responses to find the most commonly
mentioned features. In addition, one could leverage the fact
that different users find different features to be salient and
model the diversity of the crowd to extract even more fea-
tures.
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