
412

Generating Random Factored Numbers, Easily

Adam Kalai*

Our goal is to generate a random "pre-factored"
number, that is a uniformly random number between 1
and N, along with its prime factorization. Of course,
one could simply pick a random number and then
try to factor it, but there is no known polynomial-
time factoring algorithm [3]. In his dissertation, Bach
presents an efficient algorithm for generating such pre-
factored numbers [1, 2]. Here, we present a significantly
simpler algorithm and analysis for the same problem.
Our algorithm is, however, a log(N) factor less efficient.

A l g o r i t h m :

I n p u t : Integer N > 0.

Output: A uniformly random number 1 < m < N.

1. Pick random seq. N > sl > s2 _> . . . > st = 1 by
choosing sl E { 1 , 2 , . . . , N } and si+l e {1 ,2 , . . . , s i} .

2. Let r be the product of the p r i m e si's.

3. If r _< N, output r with probability r /N.

4. Otherwise, RESTAKT.

The key to understanding this algorithm is that
each prime p < N is included in the sequence indepen-
dently with probability 1]p. Intuitively, this is because
p occurs itf it is chosen before {1 , . . . , p - 1}, which hap-
pens with probability liP. As a result, the probability
of generating a factored number r = PlP2""pk is pro-
portional to l / p 1 . . . 1/p~ = 1Jr. Step 31 then makes
each number equally likely with rejection sampling.

We could have equivalently, but more slowly, gener-
ated the sequence in Step 1 by first choosing the num-
ber of occurrences of N, and then generating such a
sequence for N - 1. This follows from the fact that,
regardless of the number of occurrences of N, the first
number in the sequence less than N is equally likely
to be {1 , . . . , N - 1}. Clearly N occurs at least once
with probability 1IN and occurs exactly a times with
probability 1/Na(1 - I /N) . It follows, by induction on
N, that the probability of having a j occurrences of j is

~ T . (akalaiQmi~. edu}
t After Step 2, we have the nice distribution over the infinite set

of numbers whose factors axe no larger than N, with probability
of a particular r proportional to 1/r.

1/j ai (1 - l / j) , and that occurrences of different j are
independent.

The chance of having ap occurrences of each prime
p < N and generating the factored number r = [I pap
in Step 2 is, by independence,

= (l/r) H 1 - l i p .
p<N

Thus the probability of generating an r <_ N and
outputt ing it in Step 3 is (r/N}(1/r} l-Ip<N 1 - l iP =
(l/N) I-I 1 - l / p , which means that all r _<TV are equally
likely. So, with probability l-I 1 - 1/p we output a
uniformly random factored number, and otherwise we
restart. Consequently, the expected number of restarts
is 1 /F I1 - 1/p = 0(logN), by Merten's theorem [3].
On a run, we test s for primality with probability 1Is.
Thus, we expect to execute 1 + 1 / 2 + - . . + I / N = 0(log N)
prirnality tests, giving an expected 8(log 2 N) primality
tests before success. Bach's algorithm uses only an
expected O(log N) tests. For either algorithm, primality
tests can be implemented efficiently by a randomized
algorithm [3], or as shown in the following diagram:

© o
o

A c k n o w l e d g e m e n t s . I would like to thank Manuel
Blurn, Michael Rabin, and Doug Rohde for helpful com-
ments, mad an IBM Distinguished Graduate Fellowship
and NSF Postdoctoral Research Fellowship for funding.

References

[1] E. Bach, Analytic Methods in the Analysis and
Design of Number-Theoretic Algorithms, MIT Press,
Cambridge, 1985.

[2] E. Bach, How to Generate Factored Random Numbers,
SIAM J, Computing, 17 (1988), pp. 179-193.

[3] E. Bach mad J. Shallit, Algorithmic Number Theory,
MIT Press, Cambridge, 1996.

