412

Generating Random Factored Numbers, Easily

Adam Kalai*

Our goal is to generate a random “pre-factored”
number, that is a uniformly random number between 1
and N, along with its prime factorization. Of course,
one could simply pick a random number and then
try to factor it, but there is no known polynomial-
time factoring algorithm [3]). In his dissertation, Bach
presents an efficient algorithm for generating such pre-
factored numbers [1, 2]. Here, we present a significantly
simpler algorithm and analysis for the same problem.
Our algorithm is, however, a log(/V) factor less efficient.

Algorithm:

Input: Integer N > 0.

Output: A uniformly random number 1 <m < N.
1. Pick random seq. N > 5, >8> ...>8 =1by
choosing 8; € {1,2,...,N} and 8541 € {1,2,...,s:}.
2. Let 7 be the product of the prime s;’s.

3. If r < N, output r with probability r/N.

4. Otherwise, RESTART.

The key to understanding this algorithm is that
each prime p € N is included in the sequence indepen-
dently with probability 1/p. Intuitively, this is because
p occurs iff it is chosen before {1,...,p—1}, which hap-
pens with probability 1/p. As a result, the probability
of generating a factored number r = pyps - - - pi is pro-
portional to 1/p;---1/p; = 1/r. Step 3! then makes
each number equally likely with rejection sampling.

We could have equivalently, but more slowly, gener-
ated the sequence in Step 1 by first choosing the num-
ber of occurrences of N, and then generating such a
sequence for N — 1. This follows from the fact that,
regardless of the number of occurrences of N, the first
number in the sequence less than N is equally likely
to be {1,...,N — 1}. Clearly N occurs at least once
with probability 1/N and occurs exactly a times with
probability 1/N*(1 — 1/N). It follows, by induction on
N, that the probability of having a; occurrences of j is

TTFMIT. (akalai€mit.edu)

L After Step 2, we have the nice distribution over the infinite set
of numbers whose factors are no larger than N, with probability
of a particular r proportional to 1/r.

1/7%(1 - 1/j), and that occurrences of different j are
independent.

The chance of having a, occurrences of each prime
p < N and generating the factored number » = [] por
in Step 2 is, by independence,

Pr [r; Hpa»] -

pP<N

[I a/s°»)@ ~1/p)

PSN

a/m [] 1-1p.

psN

Thus the probability of generating an r < N and
outputting it in Step 3 is (r/N)(1/7)[[,<n1-1/p =
(1/N)[11-1/p, which means that all r <'N are equally
likely. So, with probability [J1 - 1/p we output a
uniformly random factored number, and otherwise we
restart. Consequently, the expected number of restarts
is 1/[]1 - 1/p = 6(log N), by Merten’s theorem [3].
On a run, we test s for primality with probability 1/s.
Thus, we expect to execute 1+1/2+- - -+1/N = 6(log N)
primality tests, giving an expected 8(log? N) primality
tests before success. Bach’s algorithm uses only an
expected O(log N) tests. For either algorithm, primality
tests can be implemented efficiently by a randomized
algorithm (3], or as shown in the following diagram:

O O

(o]

>—— -

Acknowledgements. I would like to thank Manuel
Blum, Michael Rabin, and Doug Rohde for helpful com-
ments, and an IBM Distinguished Graduate Fellowship
and NSF Postdoctoral Research Fellowship for funding.

References

[1] E. Bach, Analytic Methods in the Analysis and
Design of Number-Theoretic Algorithms, MIT Press,
Cambridge, 1985.

[2) E.Bach, How to Generate Factored Random Numbers,
SIAM J. Computing, 17 (1988), pp. 179-193.

{3] E. Bach and J. Shallit, Algorithmic Number Theory,
MIT Press, Cambridge, 1996.



