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Generating Random Factored Numbers, Easily 

Adam Kalai* 

Our goal is to generate a random "pre-factored" 
number, that  is a uniformly random number between 1 
and N,  along with its prime factorization. Of course, 
one could simply pick a random number and then 
try to factor it, but  there is no known polynomial- 
time factoring algorithm [3]. In his dissertation, Bach 
presents an efficient algorithm for generating such pre- 
factored numbers [1, 2]. Here, we present a significantly 
simpler algorithm and analysis for the same problem. 
Our algorithm is, however, a log(N) factor less efficient. 

A l g o r i t h m :  

I n p u t :  Integer N > 0. 

Output: A uniformly random number 1 < m < N. 

1. Pick random seq. N > sl > s2 _> . . .  > st = 1 by 
choosing sl E { 1 , 2 , . . . , N }  and si+l e {1 ,2 , . . . , s i} .  

2. Let r be the product of the p r i m e  si's. 

3. If r _< N, output  r with probability r /N.  

4. Otherwise, RESTAKT. 

The key to understanding this algorithm is that  
each prime p < N is included in the sequence indepen- 
dently with probability 1 ]p. Intuitively, this is because 
p occurs itf it is chosen before {1 , . . .  , p -  1}, which hap- 
pens with probability liP. As a result, the probability 
of generating a factored number r = PlP2""pk is pro- 
portional to l / p 1 . . .  1/p~ = 1Jr. Step 31 then makes 
each number equally likely with rejection sampling. 

We could have equivalently, but  more slowly, gener- 
ated the sequence in Step 1 by first choosing the num- 
ber of occurrences of N, and then generating such a 
sequence for N - 1. This follows from the fact that,  
regardless of the number of occurrences of N, the first 
number in the sequence less than N is equally likely 
to be {1 , . . . ,  N - 1}. Clearly N occurs at least once 
with probability 1IN and occurs exactly a times with 
probability 1/Na(1 - I /N) .  It follows, by induction on 
N, that  the probability of having a j  occurrences of j is 

~ T .  (akalaiQmi~. edu} 
t After Step 2, we have the nice distribution over the infinite set 

of numbers whose factors axe no larger than N, with probability 
of a particular r proportional to 1/r. 

1/j ai (1 - l / j ) ,  and that  occurrences of different j are 
independent. 

The chance of having ap occurrences of each prime 
p < N and generating the factored number r = [ I  pap 
in Step 2 is, by independence, 

= (l/r) H 1 - l i p .  
p<N 

Thus the probability of generating an r <_ N and 
outputt ing it in Step 3 is (r/N}(1/r} l-Ip<N 1 - l iP  = 
(l/N) I-I 1 - l / p ,  which means that  all r _<TV are equally 
likely. So, with probability l-I 1 - 1/p we output  a 
uniformly random factored number, and otherwise we 
restart. Consequently, the expected number of restarts 
is 1 /F I1  - 1/p = 0(logN), by Merten's theorem [3]. 
On a run, we test s for primality with probability 1Is. 
Thus, we expect to execute 1 + 1 / 2 + - . . + I / N  = 0(log N) 
prirnality tests, giving an expected 8(log 2 N) primality 
tests before success. Bach's algorithm uses only an 
expected O(log N) tests. For either algorithm, primality 
tests can be implemented efficiently by a randomized 
algorithm [3], or as shown in the following diagram: 
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