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ABSTRACT 
We describe a slightly sub-exponential time algorithm for 
learning parity functions in the presence of random classi- 
fication noise. This results in a polynomial-time algorithm 
for the case of parity functions that depend on only the first 
O(log n log log n) bits of input. This is the first known in- 
stance of an efficient noise-tolerant algorithm for a concept 
class that is provably not learnable in the Statistical Query 
model of Kearns [7]. Thus, we demonstrate that the set of 
problems learnable in the statistical query model is a strict 
subset of those problems learnable in the presence of noise 
in the PAC model. 
In coding-theory terms, what we give is a poly(n)-time al- 
gorithm for decoding linear k × n codes in the presence of 
random noise for the case of k = clog n log log n for some 
c > 0. (The case of k --- O(log n) is trivial since one can 
just individually check each of the 2 k possible messages and 
choose the one that yields the closest codeword.) 
A natural extension of the statistical query model is to allow 
queries about statistical properties that involve t-tuples of 
examples (as opposed to single examples). The second result 
of this paper is to show that any class of functions learnable 
(strongly or weakly) with t-wise queries for t = O(log n) is 
also weakly learnable with standard unary queries. Hence 
this natural extension to the statistical query model does 
n o t  increase the set of weakly learnable functions. 

1. INTRODUCTION 
An important question in the study of machine learning is: 
"What kinds of functions can be learned efficiently from 
noisy, imperfect data?" The statistical query (SQ) frame- 
work of Kearns [7] was designed as a useful, elegant model 
for addressing this issue. The SQ model provides a restricted 
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interface between a learning algorithm and its data, and 
has the property that any algorithm for learning in the SQ 
model can automatically be converted to an algorithm for 
learning in the presence of r a n d o m  c las s i f i ca t ion  no i se  in 
the standard PAC model. (This result has been extended to 
more general forms of noise as well [5; 6].) The importance 
of the Statistical Query model is attested to by the fact 
that before its introduction, there were only a few prov- 
ably noise-tolerant learning algorithms, whereas now it is 
recognized that a large number of learning algorithms can 
be formulated as SQ algorithms, and hence can be made 
noise-tolerant. 

The importance of the SQ model has led to the open ques- 
tion of whether examples exist of problems learnable with 
random classification noise in the PAC model but not learn- 
able by statistical queries. This is especially interesting 
because one can characterize information-theoretically (i.e., 
without complexity assumptions) what kinds of problems 
can be learned in the SQ model [4]. For example, the class of 
parity functions, which can be learned efficiently from non-  
noisy data in the PAC model, provably cannot be learned 
efficiently in the SQ model under the tmiform distribution. 
Unfortunately, there is also no known efficient non-SQ al- 
gorithm for learning them in the presence of noise (this is 
closely related to the classic coding-theory problem of de- 
coding random linear codes). 

In this paper, we describe a polynomial-time algorithm for 
learning the class of parity functions that depend on only 
the first O(log n log log n) bits of input, in the presence of 
random classification noise. This class provably cannot be 
learned in the SQ model, and thus is the first known example 
of a concept class learnable with noise but not via statistical 
queries. 

An equivalent way of stating this result is that we are given a 
random k × n boolean matrix A, as well as an n-bit vector 0 
produced by multiplying A by an (unknown) k-bit message 
x, and then corrupting each bit of the resulting codeword 
y = x A  with probability r / <  1 /2 .  Our goal is to recover y 
in time poly(n). For this problem, the case of k = O(log n) 
is trivial because one could simply try each of the 2 k possi- 
ble messages and output the nearest codeword found. Our 
algorithm works for k = c log n log log n for some c > 0. The 
algorithm does not actually need A to be random, so long as 
the noise is random and there is no other codeword within 
distance o ( n )  from the true codeword y. 

Our algorithm can also be viewed as a slightly sub-exponentia 
time algorithm for learning arbitrary parity functions in the 
presence of noise. For this problem, the brute-force algo- 

435 



rithm would draw O(n) labeled examples, and then search 
through all 2'* parity functions to find the one of least em- 
pirical error. (A standard argument can be used to say that 
with high probability, the correct function will have the low- 
est empirical error.) In contrast, our algorithm runs in time 
2o(n/tog n), though it also requires 2 °(n/tog ~) labeled exam- 
ples. This improvement is small but nonetheless sufficient 
to achieve the desired separation result. 
The second result of this paper concerns a k-wise version 
of the Statistical Query model. In the standard version, al- 
gorithms may only ask about statistical properties of single 
examples. (E.g., what is the probability that a random ex- 
ample is labeled positive and has its first bit equal to 1?) 
In the k-wise version, algorithms may ask about properties 
of k-tuples of examples. (E.g., what is the probability that 
two random examples have an even dot-product and have 
the same label?) Given the first result of this paper, it is nat- 
ural to ask whether allowing k-wise queries, for some small 
value of k, might increase the set of SQ-learnable functions. 
What we show is that for k = O(logn),  any concept class 
learnable from k-wise queries is also (weakly) learnable from 
unary queries. Thus the seeming generalization of the SQ 
model to allow for O(log n)-wise queries does not close the 
gap we have demonstrated between what is efficiently learn- 
able in the SQ and noisy-PAC models. Note that this result 
is the best possible with respect to k because the results of 
[4] imply that for k = w(log n), there are concept classes 
learnable from k-wise queries but  not unary queries. On the 
other hand, w(log n)-wise queries are in a sense less inter- 
esting because it is not clear whether they can in general be 
simulated in the presence of noise. 

1.1 Main ideas 
The standard way to learn parity functions without noise is 
based on the fact that if an example can be written as a sum 
(mod 2) of previously-seen examples, then its label must be 
the sum (mod 2) of those examples' labels. So, once one has 
found a basis, one can use that to deduce the label of any 
new example (or, equivalently, use Gaussian elimination to 
produce the target function itself). 
In the presence of noise, this method breaks down. If the 
original data had noise rate 1/4, say, then the sum of s 
labels has noise rate 1/2 - (1/2) s+l. This means we can add 
together only O(log n) examples if we want the resulting 
sum to be correct with probability 1/2 + 1/poly(n). Thus, if 
we want to use this kind of approach, we need some way to 
write a new test example as a sum of only a small number 
of training examples. 
Let us now consider the case of parity functions that depend 
on only the first k = log n log log n bits of input. Equiva- 
lently, we can think of all examples as having the remaining 
n - k bits equal to 0. Gaussian elimination will in this case 
allow us to write our test example as a sum of k training ex- 
amples, which is too many. Our algorithm will instead write 
it as a sum of k / l o g k  = O(logn) examples, which gives us 
the desired noticeable bias (that can then be amplified). 
Notice that if we have seen poly(n) training examples (and, 
say, each one was chosen uniformly at random), we can ar- 
gue existentially that for k = log n log log n, one should be 
able to write any new example as a sum of just  O(log log n) 
training examples, since there a r e  n O(l°gt°g n) ) )  2 k subsets 
of this size (and the subsets are palrwise independent). So, 
while our algorithm is finding a smaller subset than Gaus- 

sian elimination, it is not doing best possible. If one could 
achieve, say, a constant-factor approximation to the problem 
"given a set of vectors, find the smallest subset that sums 
to a given target vector" then this would yield an algorithm 
to efficiently learn the class of parity functions that depend 
on the first k = O(log 2 n) bits of input. Equivalently, this 
would allow one to learn parity functions over n bits in time 
2 °(d-n-) , compared to the 2 °('~/t°g ~) time of our algorithm. 

2. DEFINITIONS AND PRELIMINARIES 
A concept is a boolean function on an input space, which in 
this paper will generally be {0, 1} n. A concept class is a set 
of concepts. We will be considering the problem of learning a 
target concept in the presence of random classification noise 
[1]. In this model, there is some fixed (known or unknown) 
noise rate r /<  1/2, a fixed (known or unknown) probability 
distribution 79 over {0, 1} n, and an unknown target concept 
c. The learning algorithm may repeatedly "press a button" 
to request a labeled example. When it does so, it receives 
a pair (x,g), where x is chosen from {0, 1} n according to 
79 and £ is the value c(x), but  "flipped" with probability r/. 
(I.e., ~ = c(x) with probability 1 - r/, and £ = 1 - c(x) with 
probability 0.) The goal of the learning algorithm is to find 
an e-approximation of c: that is, a hypothesis function h 
such that Pr,~.z~[h(x) = c(x)] > 1 - e. 
We say that a concept class C is efficiently learnable in 
the presence of random classification noise under distribu- 
tion i/9 if there exists an algorithm .4 such that for any 
e > 0,5 > 0, r/ < 1/2, and any target concept c E C, the 
algorithm ,4 with probabili ty at least 1 - 5 produces an e- 
approximation of c when given access to 79-random examples 
which have been labeled by c and corrupted by noise of rate 
r/. Furthermore, .A must run in time polynomial in n, l /e ,  
and 1/5.1 
A parity function c is defined by a corresponding vector 
c E {0, 1}n; the parity function is then given by the rule 
c(x) = x . c(mod 2). We say that c depends on only the 
first k bits of input if all nonzero components of c lie in 
its first k bits. So, in particular, there are 2 k distinct par- 
ity functions that depend on only the first k bits of input. 
Parity functions are especially interesting to consider under 
the uniform distribution 79, because under that distribution 
parity functions are pairwise uncorrelated. 

2.1 The Statistical Query model 
The Statistical Query (SQ) model can be viewed as pro- 
viding a restricted interface between the learning algorithm 
and the source of labeled examples. In this model, the learn- 
ing algorithm may only receive information about the target 
concept through statistical queries. A statistical query is a 
query about some property Q of labeled examples (e.g., that 
the first two bits are equal and the label is positive), along 
with a tolerance parameter r E [0, 1]. When the algorithm 
asks a statistical query (Q, r), it is asking for the probability 
that predicate Q holds true for a random correctly-labeled 
example, and it receives an approximation of this probability 
up to =t=r. In other words, the algorithm receives a response 

I Normally, one would also require polynomial dependence 
on 1/(1/2 - r / ) ' - -  in part  because normally this is easy 
to achieve (e.g., it is achieved by any statistical query al- 
gorithm). Our algorithms run in polynomial time for any 
fixed r/ < 1/2, but  have a super-polynomial dependence on 
1/(1/2 - 7). 
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PQ • [PQ - r, PQ + r], where PQ = Prz~-v[Q(x, c(x))]. We 
also require each query Q to be polynomially evaluable (that 
is, given (x, g), we can compute Q(x, g) in polynomial time). 
Notice that a statistical query can be simulated by drawing 
a large sample of data and computing an empirical average, 
where the size of the sample would be roughly O(1/~ "2) if 
we wanted to assure an accuracy of v with high probability. 
A concept class C is learnable from statistical queries with 
respect to distribution 7) if there is a learning algorithm .A 
such that for any c • C and any ¢ > 0, .A produces an e- 
approximation of c from statistical queries; furthermore, the 
running time, the number of queries asked, and the inverse 
of the smallest tolerance used must be polynomial in n and 

We will also want to talk about weak learning. An algorithm 
,4 weakly learns a concept class C if for any c • C and for 
some e < 1 /2 -1 /po ly  (n), J[ produces an e-approximation of 
c. That  is, an algorithm weakly learns if it can do noticeably 
better than guessing. 
The statistical query model is defined with respect to non- 
noisy data. However, statistical queries can be simulated 
from data corrupted by random classification noise [7]. Thus, 
any concept class learnable from statistical queries is also 
PAC-learnable in the presence of random classification noise. 
There are several variants to the formulation given above 
that improve the efficiency of the simulation [2; 3], but they 
are all polynomially related. 
One technical point: we have defined statistical query learn- 
ability in the "known distribution" setting (algorithm ¢4 
knows distribution /)); in the "unknown distribution" set- 
ting, .A is allowed to ask for random unlabeled examples 
from the distribution :D. This prevents certain trivial exclu- 
sions from what is learnable from statistical queries. 

2.2 An information-theoretic characterization 
BFJKMR [4] prove that any concept class containing more 
than polynomially many pairwise uncorrelated functions can- 
not be learned even weakly in the statistical query model. 
Specifically, they show the following. 

DEFINITION 1. (Def. 2 of  [4]) For concept class C and 
distribution I), the statistical query dimension SQ-DIM(C, l)) 
is the largest number d such that C contains d concepts 
c l , . . .  , ca that are nearly pairwise uncorrelated: specifically, 
for all i ~ j ,  

x P r [ c , ( x )  = - P r  # < 1/d 

THEOREM 1. (Thin. 12 of [4]) In order to learn C to er- 
ror less than 1/2 - 1/d 3 in the SQ model, where d = SQ- 
DIM(C, l)), either the number of queries or 1 / r  must be at 
least Ld 1/3 2~ 

Note that the class of parity functions over {0, 1}" that de- 
pend on only the first O(log n log log n) bits of input con- 
tains n °(l°g log ,) functions, all pairs of which are uncorre- 
lated with respect to the uniform distribution. Thus, this 
class cannot be learned (even weakly) in the SQ model with 
polynomially many queries of 1/poly(n) tolerance. But we 
will now show that there nevertheless exists a polynomial- 
time PAC-algorithm for learning this class in the presence 
of random classification noise. 

3. LEARNING PARITY WITH NOISE 

3.1 Learning over the uni form distribution 
For ease of notation, we use the "length-k parity problem" 
to denote the problem of learning a parity function over 
{0, 1} k, under the uniform distribution, in the presence of 
random classification noise of rate r/. 

THEOREM 2. The length-k parity problem, for noise rate 
rl equal to any constant less than 1/2, can be solved with 
number of samples and total computation-time 2 °(k/log k) 

Thus, in the presence of noise we can learn parity functions 
over {0, 1} n with in time and sample size 2 °(n/l°gn), and 
we can learn parity functions over {0, 1} n that only depend 
on the first k = O(log n log log n) bits of the input in time 
and sample size poly(n). 
We begin our proof of Theorem 2 with a simple lemma about 
how noise becomes amplified when examples are added to- 
gether. For convenience, if Xl and x2 are examples, we let 
xl + x2 denote the vector sum mod 2; similarly, if gl and g2 
are labels, we let gl + g2 denote their sum mod 2. 

LEMMA 3. Let (xl,  £1) . . . .  , (x~, gs) be examples labeled by 
c and corrupted by random noise of rate T 1. Then £1 +" • "+gs 
is the correct value of (xl + . . .  + x~) • c with probability 
1 + ½(1  - 

PROOF. Clearly true when s = 1. Now assume that the 
lemma is true for s - 1. Then the probability that ga + - "  + 
g8 = (Xl -~- • • • -~- x s ) .  e is  (1 - 7 ) (  1 --~ 1 ( 1  - 27 )  8 - 1 )  --~ ~./(1 _ 
} ( 1  - 2 . )  s - ' )  = i ~- + }(1 -- 2r/) 8. The lemma then follows by 
induction. [] 

The idea for the algorithm is that by drawing many more 
examples than the minimum needed to learn information- 
theoretically, we will be able to write basis vectors such as 
(1, 0, . . .  , 0) as the sum of a relatively small number of train- 
ing examples - -  substantially smaller than the number that 
would result from straightforward Gaussian elimination. In 
particular, for the length O(log n log log n) parity problem, 
we will be able to write ( 1 , 0 , . . . , 0 )  as the sum of only 
O(log n) examples. By Lemma 3, this means that, for any 
constant noise rate r /<  1/2, the corresponding sum of labels 
will be polynomially distinguishable from random. Hence, 
by repeating this process as needed to boost reliability, we 
may determine the correct label for (1,0, . . .  ,0), which is 
equivalently the first bit of the target vector c. This process 
can be further repeated to determine the remaining bits of 
c, allowing us to recover the entire target concept with high 
probability. 
To describe the algorithm for the length-k parity problem, 
it will be convenient to view each example as consisting of 
a blocks, each b bits long (so, k = ab) where a and b will be 
chosen later. We then introduce the following notation. 

DEFINITION 2. Let Vi be the subspace of {0, 1} ab consist- 
ing of those vectors whose last i blocks have all bits equal to 
zero. An/-sample of size s is a set o] s vectors independently 
and uniformly distributed over Vii. 

The goal of our algorithm will be to use labeled examples 
from {0, 1} ab (these form a 0-sample) to create an/-sample 
such that each vector in the/-sample can be written as a sum 
of at most 2 ~ of the original examples, for all i = 1, 2 , . . .  , a -  
1. We at tain this goal via the following lemma. 
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LEMMA 4. A s s u m e  we are given an i - sample  o f  size s. 
We can in t ime  O(s)  cons t ruc t  an (i + 1) -sample  of  size at 
least s - 2 b such that  each vector  in the (i + 1) -sample  is 
wr i t ten  as the sum o f  two vectors in the given i -sample .  

PROOF. Let t h e / - s a m p l e  be x x , . . .  ,xs .  In these vectors, 
blocks a - i - q - l , . . .  , a are all zero. Par t i t ion  x l , . . .  , x~ based 
on their  values in block a - i. This  results in a par t i t ion  
having at most  2 b classes. F rom each nonempty  class p, 
pick one vector xjp at r andom and add it to each of the 
o ther  vectors in its class; then  discard x j , . '  The  result  is a 

collection of vectors u l , . . .  , u~,, where s'  > s -  2 b (since we 
discard at  most  one vector  per  class). 
W h a t  can we say about  u l , . . .  , % , ?  First  of all, each uj  is 
formed by summing  two vectors in V/ which have identical  
components  throughout  block a - i ,  "zeroing out"  tha t  block. 
Therefore,  uj  is in Vi+l. Secondly, each uj  is formed by 
taking some xj~ and adding to it a random vector  in ~ ,  
subject  only to the condit ion tha t  the random vector  agrees 
wi th  xj~ on block a - i .  Therefore,  each uj  is an independent ,  
uni form-random member  of V~+I. The  vectors u l , . . .  ,us,  
thus form the desired (i + 1)-sample. []  

Using this lemma,  we can now prove our main theorem. 

PROOF OF THEOREM 2. Draw a2 b labeled examples.  Ob- 
serve that  these qualify as a 0-sample. Now apply L e m m a  4, 
a - 1 times, to const ruct  an (a - 1)-sample. This  (a - 1)- 
sample will have size at least 2 5 . Recall  tha t  the vectors 
in an (a - 1)-sample are d is t r ibuted independent ly  and uni- 
formly at random over Va-1, and notice tha t  Va-1 contains 
only 2 b distinct vectors,  one of which is (1, 0 , . . .  , 0). Hence 
there is an approximate ly  1 - 1/e  chance tha t  (1, 0 , . . .  , 0) 
appears  in our (a - 1)-sample. If this does not  occur, we 
repeat  the above process wi th  new labeled examples.  Note  
that  the expected  number  of repet i t ions is only constant .  
Now, unrolling our applications of L e m m a  4, observe tha t  
we have wr i t ten  the vector  (1, 0 , . . .  , 0) as the sum of 2 "-1 
of our labeled examples - -  and we have done so wi thout  
examining their  labels. Thus  the label noise is still random,  
and we can apply L e m m a  3. Hence the sum of the labels 
gives us the correct  value of (1, 0 , . . .  , 0) - e wi th  probabil i ty 
1 + - 2 0 )  " - 1  

This  means tha t  if we repea t  the above process using new 
ol "" ~ ,2" b" labeled examples each t ime for p Yttl---27-~) , ) t imes, we 

can determine (1, O, . . .  , 0) .  c wi th  probabil i ty of error expo- 
nentially small in ab. In o ther  words, we can determine  the 
first bit  of c wi th  very high probability. And  of course, by 
cyclically shifting all examples,  the same algori thm may be 
employed to find each bit  of c. Thus,  wi th  high probabil i ty 
we can determine  c using a number  of examples and total  
computa t ion- t ime  1 2" poly((l_-'-=~) , 2b). 

Plugging in a = ½ lg k and b = 2 k / l g  k yields the desired 

2o(~/log k) bound  for constant  noise ra te  rl. [ ]  

3.2 Extension to other distributions 
While the uniform dis t r ibut ion is in this case the most  in- 
teresting, we can ex tend  our a lgor i thm to work over any 
distribution. In fact,  it is perhaps  easiest to think of this 
extension as an online learning a lgor i thm tha t  is presented 
with  an arbi t rary  sequence of examples,  one at a time. Given 
a new test  example,  the a lgor i thm will ou tput  ei ther "I don ' t  

know",  or else will give a predict ion of the label. In the for- 
mer  case, the a lgor i thm is told the correct  label, flipped 
with probabil i ty r/. The  claim is tha t  the algori thm will, 
wi th  high probability, be  correct  in all its predictions, and 
fur thermore  will ou tpu t  "I don ' t  know" only a l imited num- 
ber  of times. In the  coding-theoret ic  view, this corresponds 
to producing a 1 - o(1) f ract ion of the desired codeword, 
where the remaining entries are left blank. This  allows us 
to recover the full codeword so long as no other  codeword is 
within relat ive dis tance o(1). 
The  a lgor i thm is essentially a form of Gaussian elimination, 
but  where each entry in the  ma t r ix  is an element of the 
vector  space F b r a the r  t han  an element  of the field F2. In 
part icular ,  instead of choosing a row tha t  begins wi th  a 1 
and subtract ing it  f rom all o ther  such rows, what  we do is 
choose one row for each initial b-bit block observed: we then 
use these (at most  2 b - 1) rows to zero out all the  others. 
We then  move on to the next  b-bit block. If we think of this 
as an online a lgor i thm,  then  each new example seen ei ther 
gets cap tured  as a new row in the  ma t r ix  (and there are at 
most  a(2 b - 1) of them)  or  else it passes all the  way through 
the mat r ix  and is given a prediction.  We then do this with 
mult iple matr ices  and take a ma jo r i ty  vote  to drive down 
the probabil i ty  of error.  
For concreteness,  let us take the case of n examples, each k 
bits long for k = l l g n ( l g l g n  - 2), and r / =  1/4. We view 
each example  as consist ing of (lg lg n - 2) blocks, where each 
block has width  ¼ lg n. We now create  a series of matrices 
M1, M2, • • • as follows. Initially, the matr ices  are all empty. 
Given a new example,  if i ts first block does not  match  the 
first block of any row in M1, we include it as a new row 
of M1 (and ou tpu t  "I don ' t  know") .  If the first block does 
match,  then  we subt rac t  tha t  row from it (zeroing out the 
first block of our  example)  and consider the second block. 
Again,  if the second block does not  ma tch  any row in M1 we 
include it as a new row (and ou tpu t  "I don ' t  know");  other- 
wise, we subt rac t  tha t  row and consider the third block and 
so on. Notice tha t  each example  will ei ther be "captured" 
into the mat r ix  MI or else gets completely  zeroed out  (i.e., 
wr i t ten  as a sum of rows of M1). In the la t te r  case, we have 
wr i t ten  the example  as a sum of at  most  21gig ~-2 = ¼ lg n 
previously-seen examples,  and therefore the sum of their  la- 
bels is correct  wi th  probabi l i ty  at least ½(1 + 1 / n l / 4 ) .  To 
amplify this probabili ty,  ins tead of making a predict ion we 
put  the example  into a new mat r ix  M2, and so on up to 
ma t r ix  M,~2/3. If an  example  passes th rough all matrices, 
we can then  s ta te  tha t  the  major i ty  vote is correct  with high 

probability. Since each ma t r ix  has at most  2 ¼ is n(lg lg n -  2) 
rows, the to ta l  number  of examples  on which we fail to make 
a predict ion is at  most  n 11112 l g l g n  = o(n) .  

3.3 Discussion 
Theorem 2 demons t ra tes  tha t  we can solve the length-n par- 
ity learning problem in t ime 2 °(n) . However,  it must  be 
emphasized tha t  we accomplish this by using 2 °(n/log n) la- 
beled examples.  For the  point  of view of coding theory, it 
would be useful to have an a lgor i thm which takes t ime 2 °('q 
and number  of examples  po ly(n)  or even O(n) .  We do not  
know if this can be  done. Also of interest  is the question of 
whether  our t ime-bound  can be improved from 2 °('~/l°s ~) 

to, for example,  2 °(~/-ff). 
It would also be desirable to reduce our a lgor i thm's  depen- 
dence on r/. This  dependence  comes from L e m m a  3, with 
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s = 2 ~-a . For instance, consider the problem of learning 
pari ty functions that  depend on the first k bits of input for 
k = O(lognloglogn) .  In this case, if we set a = [½1glgn] 
and b = O(log n), the running time is polynomial in n, with 
dependence on rl of (l_-~n) ~¢-hg'ff. This allows us to handle r/ 

as large as 1/2 - 2 - °'/l-Q-'; and still have polynomial running 
time. While this can be improved slightly, we do not know 
how to solve the length-O(log n log log n) pari ty problem in 
polynomial time for r/as large as 1 / 2 - 1 / n  or even 1 / 2 - 1 / n  ~ . 
What makes tiffs interesting is that  it is an open question 
(Kearns, personal communication) whether noise tolerance 
can in general be boosted; this example suggests why such 
a result may be nontrivial. 

4. LIMITS OF O(LOG N)-WISE QUERIES 
We return to the general problem of learning a target con- 
cept c over a space of examples with a fixed distribution l).  
A limitation of the statistical query model is that  it permits 
only what may be called unary queries. That  is, an SQ al- 
gorithm can access c only by requesting approximations of 
probabilities of form Pr~ [Q(x, c(x))], where x is :D-random 
and Q is a polynomially evaluable predicate. A natural  ques- 
tion is whether problems not learnable from such queries can 
be learned, for example, from binary queries: i.e., from prob- 
abilities of form Pr~x,x2 [Q(xl,  x2, C(Xl), c(x2))]. The follow- 
ing theorem demonstrates that  this is not possible, proving 
that O(log n)-wise queries are no bet ter  than unary queries, 
at least with respect to weak-learning. 
We assume in the discussion below that  all algorithms also 
have access to individual unlabeled examples from distribu- 
t i on / ) ,  as is usual in the SQ model. 

THEOREM 5. Let k = O(log n), and assume that there ex- 
ists a poly(n)-time algorithm using k-wise statistical queries 
which weakly learns a concept class C under distribution 
l). That is, this algorithm learns from approximations of 
Pre [Q(£, c(Z))], where Q is a polynomially evaluable pred- 
icate, and ~ is a k-tuple of examples. Then there exists a 
poly(n)-time algorithm which weakly learns the same class 
using only unary queries, under l). 

P r o o f  S k e t c h :  We are given a k-wise query Pre [Q(£-, c(£))]. 
The first thing our algorithm will do is use Q to construct 
several candidate weak hypotheses. It then tests whether 
each of these hypotheses is in fact noticeably correlated with 
the target using unary statistical queries. If none of them 
appear to be good, it uses this fact to estimate the value of 
the k-wise query. We prove that  for any k-wise query, with 
high probability we either succeed in finding a weak hypoth- 
esis or we output a good estimate of the k-wise query. 
For simplicity, let us assume that  Pr~ [c(x) = 1] = 1/2; i.e., 
a random example is equally likely to be positive or negative. 
(If Pr~ [c(x) = 1] is far from 1/2 then weak-learning is easy 
by just  predicting all examples are positive or all examples 
are negative.) This assumption implies that  if a hypothesis 
h satisfies [Pr~ [h(x) = 1 A c(x) = 1] -- ½Pr~ [h(x) = 1][ > e, 
then either h(x) or 1 - h(x) is a weak hypothesis. 
We now generate a set of candidate hypotheses by choosing 
one random k-tuple of unlabeled examples F. For each 1 < 
i < ]¢ and [ E  {0, 1} k, we hypothesize 

h e , , , i ( ~ )  = Q ( z , , . . .  , ~ _ ~ ,  ~ ,  ~, . . . .  , ~ ,  ~ ,  

and then use a unary statistical query to tell if he, j ( x  ) or 
1 - h e / i ( x )  is a weak hypothesis. As noted above, we will 
have found a weak hypothesis if 

1]- Prx 

1pr~ [Q(zl . . . .  ,Zi- l ,X,Z,+l . . . .  ,zk,g~]l >e.  

We repeat  this process for O(1/e) randomly chosen k-tuples 
~. We now consider two cases. 
Case  I: Suppose that  the i th label matters  to the k-wise 
query Q for some i and [ By this we mean there is at least 
an e chance of the above inequality holding for random F. 
Then with high probabili ty we will discover such a ~7 and 
thus weak learn. 
C a s e  II" Suppose, on the contrary, that  for no i or [does  the 
i th label matter ,  i.e. the probabili ty of a random z satisfying 
the above inequality is less than e. This means that  

Ee[Prx  [O(zl , . . .  ,Zi-l ,X, zi.{-1,... , Zk ,hAc(x )  : 1] -- 

1p  , . . .  ] 
r~ [Q(z, ,Zi--l,X, Zi~-l,... ,Zk,~] <: 2~. 

By bucketing the ~'s according to the values of C(Zl), . . . ,  
c (z i - t )  we see that  the above implies that  for all b l , . . .  , bi-1 
E {0,1}, 

IPr~ [Q(~,£-) A c ( z l ) =  bl A . . .  A c ( z , _ l ) =  b , - i  A c ( z , ) =  1] 

- 7  re O ( e , ~ A c ( z l ) = b l A  Ac(z i_ , )  hi-1 <2e.  

By a straightforward inductive argument on i, we conclude 
that for every g E {0, 1} k, 

Pre [Q(ff ,~ Ac(~) = b] - ~kPre  [Q(~,~]  < 4 e ( 1 -  2~- ). 

This fact now allows us to est imate our desired k-wise query 
Pr~ [Q(~, c(~))]. In particular,  

Pre  [Q(~7' c(~))] -- E Prz  [Q(~, £-) A c(~7) ---- lf~ . 
Z~{0,1}k 

We approximate each of the 2 k = poly(n)  terms corre- 
sponding to a different £by  using unlabeled data to estimate 

S ' r ,  term  us  ood 
estimate of Pre [Q(ff, c(~))] with high probability. 

4.1 Discussion 
In the above proof, we saw that  either the data  is statis- 
tically "homogeneous" in a way which allows us to simu- 
late the original learning algorithm with unary queries, or 
else we discover a "heterogeneous" region which we can ex- 
ploit with an alternative learning algorithm using only unary 
queries. Thus any concept class that  can be learned from 
O(log n)-wise queries can also be weakly learned from unary 
queries. Note that  Aslam and Decatur [2] have shown that  
weak-learning statistical query algorithms can be boosted 
to strong-learning algorithms, if they weak-learn over every 
distribution. Thus, any concept class which can be (weakly 
or strongly) learned from O(log n)-wise queries over every 
distribution can be strongly learned over every distribution 
from unary queries. 
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It is worth noting here that  k-wise queries can be used to 
solve the length-k pari ty problem. One simply asks, for each 
i E {1 , . . .  , k}, the query: "what is the probabili ty that  k 
random examples form a basis for {0, 1} k and, upon per- 
forming Gaussian elimination, yield a target concept whose 
i th bit is equal to 1?" Thus, k-wise queries cannot be re- 
duced to unary queries for k = w(log n). On the other hand, 
it is not at all clear how to simulate such queries in general 
from noisy examples. 

5. CONCLUSION 
In this paper  we have addressed the classic problem of learn- 
ing parity functions in the presence of random noise. We 
have shown that  pari ty functions over {0, 1} n can be learned 
in slightly sub-exponential time, but  only if many labeled 
examples are available. It is to be hoped that  future re- 
search may reduce both the t ime-bound and the number of 
examples required. 
Our result also applies to the study of statistical query learn- 
ing and PAC-learning. We have given the first known noise- 
tolerant PAC-learning algorithm which can learn a concept 
class not learnable by any SQ algorithm. The separation 
we have established between the two models is rather  small: 
we have shown that  a specific pari ty problem can be PAC- 
learned from noisy da ta  in time poly(n),  as compared to time 
nO(Log log ,,) for the best  SQ algorithm. This separation may 
well prove capable of improvement and worthy of further 
examination. Perhaps more importantly,  this suggests the 
possibility of interesting new noise-tolerant PAC-learning al- 
gorithms which go beyondothe SQ model. 
We have also examined an extension to the SQ model in 
terms of allowing queries of ari ty k. We have shown that  
for k = O(log n), a n y c o n c e p t  class learnable in the SQ 
model with k-wise queries is also (weakly) learnable with 
unary queries. On the other hand, the results of [4] im- 
ply this is not the case for k = w(log n). An interesting 
open question is whether every concept class learnable from 
O(log n log log n)-wise queries is also PAC-learnable in the 
presence of classification noise. If so, then this would be a 
generalization of the first result of this paper.  
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