
Stati
 Optimality and Dynami
 Sear
h-Optimality in Lists and TreesAvrim Blum� Shu
hi Chawlay Adam KalaizAbstra
tAdaptive data stru
tures form a
entral topi
 of on-line algorithms resear
h, beginning with the results ofSleator and Tarjan showing that splay trees a
hievestati
 optimality for sear
h trees, and that Move-to-Front is
onstant
ompetitive for the list update prob-lem [ST85a, ST85b℄. This paper is inspired by theobservation that one
an in fa
t a
hieve a 1 + � ra-tio against the best stati
 obje
t in hindsight for awide range of data stru
ture problems via \weightedexperts" te
hniques from Ma
hine Learning, if
ompu-tational de
ision-making
osts are not
onsidered.In this paper, we give two results. First, we showthat for the
ase of lists, we
an a
hieve a 1 + � ratiowith respe
t to the best stati
 list in hindsight, by asimple eÆ
ient algorithm. This algorithm
an thenbe
ombined with existing results to simultaneouslya
hieve good stati
 and dynami
 bounds. Se
ond, fortrees, we show a (
omputationally ineÆ
ient) algorithmthat a
hieves what we
all \dynami
 sear
h optimality":dynami
 optimality if we allow the online algorithmto make free rotations after ea
h request. We hopethis to be a step towards solving the longstanding openproblem of a
hieving true dynami
 optimality for trees.1 Introdu
tionAdaptive data stru
tures form one of the
entral topi
sof online algorithms resear
h, beginning with the resultsof Sleator and Tarjan that splay trees perform within a
onstant fa
tor of the best stati
 sear
h tree for anyrequest sequen
e, and that Move-to-Front is
onstant
ompetitive with respe
t to the best o�-line (adaptive)algorithm for lists [ST85a, ST85b℄. Online algorithmsfor lists have subsequently been well-studied, with upperand lower bounds of 1.6 and 1.5 respe
tively, on the
ompetitive ratio of randomized algorithms for thisproblem [AvW95, Tei93℄. The
ase of trees appearsmu
h harder: it is not known whether splay trees or�email: avrim�
s.
mu.edu, Computer S
ien
e Department,Carnegie Mellon University, Pittsburgh, PA15213yemail: shu
hi�
s.
mu.edu, Computer S
ien
e Department,Carnegie Mellon University, Pittsburgh, PA15213zemail: akalai�
s.
mu.edu, Computer S
ien
e Department,Carnegie Mellon University, Pittsburgh, PA15213

any other online algorithm performs within a
onstantfa
tor of the optimal o�-line adaptive tree algorithm.An interesting point is that in terms of
ompetingagainst the best stati
 obje
t in hindsight, one
an inprin
iple a
hieve a ratio of 1+� for a wide variety of datastru
ture problems, if we ignore time spent
omputingwhi
h update to perform. In parti
ular, Blum andBur
h [BB00℄ show the following general result.Theorem 1.1. (Theorem 4 of [BB00℄) Given Non-line algorithms for a Metri
al Task System Problemof diameter D, and given � > 0, one
an use theRandomized Weighted Majority algorithm to a
hieveon any request sequen
e � an expe
ted
ost at most(1 + �)L� + O(1�D logN), where L� is the
ost of thebest of the N algorithms on � in hindsight.1For example, the list-update problem is a Metri
al TaskSystem problem with one state for ea
h ordering of the nelements. There areN = n! di�erent lists of n elements,and the diameter of the spa
e (the maximum
ost tomove between one list and another) is O(n2). Therefore,viewing ea
h stati
 list as an online algorithm, apply-ing Randomized Weighted Majority a
hieves a (1 + �)stati
 ratio with additive
onstant O(1�n3 logn). Fortrees, there are \only" 2O(n) di�erent sear
h trees on nelements, and the diameter of the spa
e is O(n). So,this algorithm a
hieves a 1+ � stati
 ratio with additive
onstant O(1�n2). We
all this type of bound (namely,a 1 + � ratio with additive
onstant polynomial in nand 1=�) strong stati
 optimality. Unfortunately, thealgorithm of Theorem 1.1 is horribly
omputationallyineÆ
ient, be
ause it must expli
itly maintain a prob-ability distribution over all the
omponent algorithms.Some progress on eÆ
ient MCMC simulations for thesetype of algorithms has been made [CLS01, KV00℄ butnot for the situations of interest to us.1The Randomized Weighted Majority algorithm [LW94℄ main-tains a probability distribution over the N
omponent algorithms(\experts"). At ea
h time step, the experts are penalized basedon their
ost at that step, multiplying the weight on an expertin
urring
ost
 by (1 � �0)
, and then renormalizing, where wewill use �0 = O(�=D). The name of the algorithm
omes from asetting in whi
h ea
h expert is making a predi
tion, in whi
h
asethis pro
edure
an be viewed as taking a weighted vote and then
hoosing a predi
tion probabilisti
ally based on the vote totals.It is also
alled the Hedge algorithm [FS96℄.

In many situations the best stati
 algorithm maybe mu
h worse than an optimal dynami
 algorithm. Inthe
ase of list update, for instan
e, the best stati
algorithm would be O(n) times worse than the bestdynami
 algorithm if the adversary repeatedly a

essesevery element in su

ession. One might ask then, whyshould we
are for stati
 optimality. The reason is thatwhen a

esses
ome from a �xed distribution, whi
his the
ase with many real world appli
ations, stati
algorithms perform the best.In this paper, we present two results. First, forthe
ase of lists, we show how to a
hieve a 1 + � ra-tio with respe
t to the best stati
 list in hindsight bya simple eÆ
ient algorithm. The algorithm is random-ized: the standard lower bound of 2 for deterministi
algorithms holds for stati
 ratio as well. We
ombinethis algorithm with the
urrently best known dynami
algorithm (COMB, see [BEY98℄ for details) to obtainone whi
h is dynami
ally optimal and at the same timehas strong stati
 optimality. Se
ond, for trees, we showa (
omputationally ineÆ
ient) algorithm motivated byonline learning algorithms that a
hieves what we
all\dynami
 sear
h optimality": dynami
 optimality if weallow the online algorithm to make free rotations af-ter ea
h request. We hope this to be a step towardsaddressing the longstanding open problem of a
hievingtrue dynami
 optimality for trees. At the very least,this shows that dynami
 optimality
annot be provenimpossible by any argument that negle
ts the rotation
ost of the online algorithm.22 Strong Stati
 Optimality for List UpdateThe List Update problem is to maintain a list of nelements while serving requests of the form ACCESS(x),where x is an element in the list. The
ost of an a

essfor element x is the depth of x in the list i.e. the i-thelement has a
ost of i�1. This is known as the PartialCost model (as opposed to the Full Cost model in whi
hthe
ost of a

ess is i for the i-th element). Following ana

ess, the element x may be moved anywhere higher inthe list without additional
osts. Then other elementsmay be moved at a
ost of one per transposition.In this se
tion, we des
ribe two di�erent algorithmsfor list update, both based on the same idea of redu
ingthe problem to a 2-expert \
ombining expert advi
e"problem, and both a
hieving a 1 + �
ompetitive ratiowith respe
t to the best stati
 list. We prove the boundfor the �rst algorithm by redu
ing to the algorithm of2In
ontrast, the standard
(log k) lower bound for randomizedpaging, based on
onsidering a sequen
e in whi
h pages inf1; : : : ; k + 1g are requested
ompletely at random, holds evenif the online algorithm is allowed to move items into and out ofits
a
he between requests for free.

[LW94℄, and prove the bound for the se
ond algorithmfrom �rst prin
iples. We refer to the optimal stati
 listas OPT .2.1 Algorithm A Let L be a list of n elements and� be a sequen
e of a

esses presented to the algorithm.Algorithm A pro
eeds as follows:1. Pi
k n numbers r1; � � � ; rn from [0; 1℄ uniformly atrandom su
h thatPni=1 ri = 1. (This is easily doneby throwing n� 1 darts into [0; 1℄ and letting ri bethe length of the ith interval.) Assign ri to the i-thelement in L.Let � < 1 be a performan
e parameter for thealgorithm.2. Assign a weight wi to ea
h element in the list,with initial value 1. Order elements in the list inin
reasing order of ri � wi.3. When an element x at position i is a

essed, updatewi = � � wi.4. Move element x up in the list, if ne
essary, tomaintain ordering of elements by weight.5. Go to step 3 till last request is served.Theorem 2.1. Algorithm A with � = e�� is (1+�)-
ompetitive with the best stati
 list.In the following analysis, we use axy to denote thesublist of a list a that
ontains all o

urren
es of onlythe elements x and y.Lemma 2.1. Pairwise Property Lemma [BEY98℄An algorithm ALG satis�es the pairwise property if andonly if for every request sequen
e � and every pairfx; yg 2 L, the probability that x pre
edes y in L whenALG serves �, is the same as the probability that xpre
edes y in Lxy when ALG serves �xy.Let ALG be an algorithm that satis�es the pairwiseproperty. Suppose that for every pair fx; yg � L,and for every request sequen
e �, ALG(�xy) �
 �OPT (�xy) in the Partial Cost model, then ALG isstri
tly

ompetitive in both the Partial Cost and FullCost models.Lemma 2.2. Algorithm A satis�es the Pairwise prop-erty.Proof. Consider two elements x and y in L. The relativeorder of x and y in L depends only on whi
h of wxrxand wyry is greater. Let R = 1 �Pi 6=x;y ri. Then,
onditioned on R, rx and ry are random in [0; R℄ subje
tto having a sum of R. So, Pr[x pre
edes y in L℄ =

Pr[wxrx < wyry℄ = P [wxrx < wy(R � rx)℄ = P [rx <Rwywx+wy ℄ = wywx+wy as in this
ase, rx 2R [0; R℄.Now let �xy be a subsequen
e of � whi
h
ontainsall o

urren
es of x and y and no others. Let Lxy be alist
ontaining only x and y but in the same initial orderas in L. If we run algorithm A on Lxy with sequen
eof a

esses �xy, the weights of x and y will be the sameas in the original
ase. However, the random numbersasso
iated with the two elements are now di�erent andsatisfy the property r0x + r0y = 1.Now, Pr[x pre
edes y in Lxy℄ = Pr[wxr0x < wyr0y ℄= P [wxr0x < wy(1 � r0x)℄ = P [r0x < wywx+wy ℄ = wywx+wy .This is the same as the probability obtained before.Therefore, the order of the two elements in Lxywould re
e
t their relative order in the list L and thelemma follows.Lemma 2.3. For a list of two elements, algorithm A hasa performan
e ratio of log 1�1��
ompared to the best stati
list.Proof. Consider a list L of two elements x and y. If arequest a

esses the element whi
h is se
ond in the listat the time of a

ess, the algorithm in
urs a
ost of 1;otherwise, it in
urs no
ost. There are only two stati
lists on two elements { (x; y) and (y; x). We
onsiderthese as experts. When element y is a

essed, the list(x; y) in
urs a
ost of 1 (or makes a \mistake"), while(y; x) in
urs no
ost (so it is \
orre
t" on this request).The reverse happens when element x is a

essed.Re
all that, rx+ry = 1. Algorithm A will move x tothe front at any point of time when wxrx < wyry. Thishappens with probability P [wxrx < wyry ℄ = wywx+wy as
al
ulated in proof of Lemma 2.2.Noti
e that if we asso
iate weight wy with the list(x; y) and wx with the list (y; x), then the weight of ea
hexpert is �(# of mistakes made by that expert). Algo-rithm A uses one of the two experts with probabilityin proportion to their weights. This is the same as theRandomizedWeighted Majority algorithm of [LW94℄ forthe
ase of 2 experts.Therefore, following [LW94℄, we get, E[A(�xy)℄ �OPT (�xy) log 1�+log 21�� .Proof of Thm 2.1 First, noti
e that algorithm A doesnot in
ur any movement
osts other than ordering thelist initially after
hoosing the weights. This is be
ausethe relative order of elements
hanges only when oneof them is a

essed, and at that time, the list
anbe reordered by putting just the a

essed element inthe right pla
e. The initial movement
ost is at mostn(n� 1)=2.

Using the List Fa
toring lemma [BEY98℄ withLemma 2.2 and Lemma 2.3, we obtain the
ompetitiveratio of algorithm A with respe
t to the
ost in
urredby OPT as E[A(�)℄ � OPT (�) log 1�+O(n(n�1))1�� .Putting � = e��, we get a
ompetitive ratio of (1+�)for A with an additive
ost of at most O(n(n � 1)(1 +1=�)).2.2 Algorithm B Algorithm B is a simpler variantof algorithm A. The basi
 di�eren
e between the two isthat here, we pi
k the initial random numbers iid, andwe update additively instead of multipli
atively. Thealgorithm pro
eeds as follows:1. Pi
k n numbers r1; � � � ; rn from [0; 1=�℄ indepen-dently uniformly at random. Assign ri to the i-thelement in L.2. Assign a weight wi to ea
h element in the list, whi
htra
ks the number of a

esses to that element.Order elements in the list in de
reasing order ofri + wi.3. When an element x at position i is a

essed,in
rease wi by 1.4. Move element x up if ne
essary to maintain order-ing by weights.5. Go to step 3 till last request is served.Theorem 2.2. Algorithm B is (1+O(�))-
ompetitivewith the optimal stati
 list.The proof of Theorem 2.2
losely follows the proofof 2.1. We �rst note that algorithm B also satis�es thePairwise property. The proof is left to the reader. Thefollowing lemma analyzes performan
e of algorithm Bon a two element list.Lemma 2.4. For a list of two elements, algorithm B hasa
ompetitive ratio of 1 + O(�) with the optimal stati
list.Proof. Consider a list L of two elements x and y. Theprobability that x pre
edes y after wx a

esses to xand wy to y, is given by Pr[rx + wx > ry + wy℄ =Pr[rx � ry > wy � wx℄. Let � = wy � wx. Sin
eboth rx and ry are
hosen uniformly at random from[0; 1=�℄, this probability p(�) = (1���)22 if � > 0, andp(�) = 1 � (1+��)22 otherwise. When � > 1=� or� < �1=�, p(�) = 0 or 1 respe
tively.As before, we
onsider the two lists (x; y) and (y; x)as experts. The probability of pi
king expert (x; y) thenbe
omes p(�). p(�) takes on 2=� + 1 distin
t values

orresponding to � 2 f�1=�; ::; 1=�g. As the algorithmpro
eeds, this probability either moves one step up orone step down depending on whether (x; y) or (y; x)makes a mistake respe
tively.The algorithm starts at � = 0. As it moves throughvarious values of �, we
an
ouple every movement from� = x to � = x + 1 with a movement from � = x+ 1to � = x, with at most 2=� movements left un
oupled.Noti
e that this
oupling has the property that bothexperts make exa
tly one mistake among the two moves((x; y) while moving up and (y; x) while moving down).Algorithm B on the other hand, makes an expe
tednumber of mistakes equal to p(x) + 1 � p(x + 1). Forx � 0, p(x)+1�p(x+1) = 1+���2(x+1=2) < 1+�. Forx < 0, p(x)+1�p(x+1) = 1+ �+ �2(x+1=2) < 1+2�.The total number of mistakes made by algorithm Bon un
oupled steps are at most O(1=�). Putting thesetogether, we get a
ompetitive ratio of 1+O(�) with thebest stati
 list with an additive term of O(1=�).Proof of Thm 2.2 The result follows, as before, from ListFa
toring lemma and Lemma 2.4.Noti
e that both algorithms A and B
an be thoughtof as randomized versions of the frequen
y
ount algo-rithm.3 Combining Stati
ally and Dynami
allyOptimal AlgorithmsIn the previous se
tion we des
ribed two algorithmswhi
h are variants of the Experts algorithm and are(1 + �) optimal with respe
t to the best stati
 list. Inthis se
tion we reapply the experts te
hnique, this timeusing algorithm A (or B) and algorithm COMB [BEY98℄as the two experts. Through this we
an a
hieve both(1+�) stati
 optimality and (1:6+�) dynami
 optimalitysimultaneously.The key idea is to use one of the experts for somenumber of a

esses, and then probabilisti
ally de
ideto swit
h the expert or stay with the same algorithm.However, in making the probabilisti
 de
ision, we donot want to expli
itly
al
ulate the weights of thetwo experts, as that would require running the twoalgorithms simultaneously, defeating the very purposeof this algorithm. In order to get around this diÆ
ulty,we use a variant of the Exp3 algorithm proposed by[ACBFS95℄. This algorithm was proposed for the multi-armed bandit problem in whi
h a gambler must de
ideto play on one of K slot ma
hines, but gets to see thepro�t of only the ma
hine that he is playing on.[Bur00℄ extend the Exp3 algorithm to the
asewhere there is a
ost d for swit
hing between thedi�erent experts, and so, we may want to swit
h afterevery s steps, rather than after every step. We will now

des
ribe the two algorithms Hedge and Hedge-Banditas given in [Bur00℄.3.1 Algorithm Hedge Algorithm Hedge uses Kalgorithms (experts),
hoosing one for ea
h time stepand obtaining a gain equal to the gain of the
hosenexpert in that time period. Expert i obtains a gainxi(t) in time step t with xi(t) 2 [0; 1℄. The algorithmpro
eeds as follows:� > 0 is a performan
e parameter. Gain of expert iat time step t is the total gain obtained by that expertupto time step t. That is, Gi(t) =Pj<t xi(j) 8i. Gainof the algorithm GH(t) = Pj<t xij (j), where ij is theexpert
hosen in step j.In every time step, the algorithm
hooses an expert ita

ording to the distribution pi = e�Gi(t�1)Pj e�Gj (t�1) , andupdates the gains a

ording to the obtained ve
tor x(t).3.2 Algorithm Hedge-Bandit Algorithm Hedge-Bandit is similar to Hedge ex
ept that it does not get tosee the entire gain ve
tor x(t), but only gets to see thegain of the expert that it
hooses at a parti
ular timestep. In ea
h time step, the algorithm simulates Hedgeto obtain a distribution using whi
h it sele
ts the expertfor that time step. It then returns a \fake" gain ve
torx̂(t) to Hedge based on the gain x(t) that it a
tuallyobserved, in order to get the next distribution.To avoid spending too mu
h in swit
hing betweenexperts, this algorithm runs ea
h expert for s stepsbefore making the next de
ision. It obtains a gain ofat most s in a single time segment, and looses at mostd in swit
hing from one expert to another. To use thisalgorithm for list update, in every time step, we returna gain of 1 � in , if the a

ess
ost for an element is i.We assume that the algorithm runs for T time steps.The following des
ribes the behavior of the algorithmin ea
h time segment:For time segments t = 1; 2; :::; T=s do:� Get p̂i(t) from Hedge. Let pi(t) = (1�
)p̂i(t) +
K� Sele
t it a

ording to pi(t).� Use expert it for s steps observing a total gain ofxit(t). Send gains x̂j(t) to Hedge, where x̂j(t) =xit (t)pit (t) if j = it, and 0 otherwise.Theorem 3.1. (Theorem 5.3 of [Bur00℄) The ex-pe
ted gain of Hedge-Bandit is at leastG� � (1�
)Ts d� 1�

 sKlnK � (e� 1)
G�where G� is the largest total a
tual gain a
quired by anysingle expert, and where � = e
=sn

For the List Update problem, we have K = 2, andd = O(n2). Reverting ba
k to our loss model and
hoosing appropriate values for s and
, we obtain thefollowing result:Theorem 3.2. Algorithm Hedge-Bandit using algo-rithm A and algorithm COMB as experts is (1 + 2�)stati
ally optimal and 1:6(1+ �) dynami
ally optimal inthe Full Cost model, with an additive term of O(n5=�2)for the List Update problem, if it makes a swit
hing de-
ision every en3=� steps and uses
 = �=en.Proof. From theorem 3.1,G� (1�
)Ts d� 1�

 sKlnK � (e� 1)
GPutting LHB = n(T�GHB), L� = n(T�G�) and usingG� < T , we obtain the following:LHB � nfT �G� + (1�
)Ts d+ 1�

 sKlnK + (e� 1)
Tg= L� + (1�
)Ts dn+ 1�

 nsKlnK + (e� 1)
nTBut, L� � T in the full
ost model (we always in
ur a
ost of at least 1). So we haveL � L�f1 + (1�
)dns + (e� 1)
ng+ 1�

 nsKlnKUsing the values
 = �=en, s = en3� , d = n2 and K = 2gives us the desired result:LHB � (1 + �)L� + 8:9n5�2We omitted a few details in the above des
riptionof the algorithm. When we swit
h from one algorithmto the other at the end of a phase, we need to knowthe state of the other algorithm at the end of thatphase. It is not obvious that this is
al
ulable, as wewant to avoid running the other algorithm expli
itly.However, it
an be argued that extra overhead in
urredin starting the algorithms in a \wrong" state is at mostO(n2). Moreover, the state
an be easily determinedwithout running the algorithms expli
itly, by keepinga

ess
ounts for ea
h element in the
ase of algorithmA, and keeping timestamps for ea
h element in the
aseof COMB. We wish to
larify here, that though usingthese extra variables would help us determine the nextstate of the list, it does not help us
al
ulate the lossesmade by the experts, whi
h ne
essitates the use of theHedge-Bandit algorithm.

4 Sear
h treesAn on-line binary sear
h tree algorithm is dynami
allyoptimal if its total
ost (sum of sear
h
ost and numberof rotations) is never more than a
onstant times thetotal
ost of the best o�-line algorithm, for any sequen
eof a

esses. Mu
h work has gone into an attempt toprove the dynami
 optimality of splay trees sin
e Sleatorand Tarjan made their
onje
ture in [ST85b℄. We areunable to prove the dynami
 optimality of splay treesor any other on-line sear
h tree algorithm.Instead, we show that it is possible to have dy-nami
 sear
h-optimality, a property mu
h weaker thandynami
 optimality. In general the total
ost of an al-gorithm is its sear
h
ost, the sum of the depths of thea

esses, plus its rotation
ost, the number of rotationsmade. We say that our algorithm has dynami
 sear
h-optimality be
ause its sear
h
ost is at most a
onstanttimes the total
ost of any o�-line algorithm. While ouralgorithm is exponentially slow, it is based on simpleprin
iples.There are two main diÆ
ulties in a
hieving dynami
optimality. First of all, the algorithm has to de
idewhi
h nodes to keep near the root3. Se
ondly, forfull dynami
 optimality it has to be able to get thesenodes near the root without using too many rotations.We show that the �rst diÆ
ulty is not insurmountable.Equivalently, dynami
 optimality
annot be provenimpossible by any argument that negle
ts the rotation
ost of the on-line algorithm.There is no espe
ially strong eviden
e suggestingthat any BST algorithm is dynami
ally optimal. Anatural approa
h to disproving this would be to presenta set of sequen
es, and argue that no on-line algorithm
an handle all these sequen
es in a dynami
ally optimalmanner. The simplest form of this argument would bethat the on-line algorithm
annot \guess" whi
h node
omes next and therefore has too many nodes to keepnear the root. However, the existen
e of an algorithmwith dynami
 sear
h optimality implies that this typeof argument is not possible.Wilber [Wil89℄ made some progress by provinglower bounds for o�-line algorithms. In parti
ular,he has shown that a random sequen
e of a

esses inf1; 2; : : : ; ng
osts an expe
ted
(logn) per a

ess foro�-line algorithms. This is a ne
essary
ondition fordynami
 optimality to be possible, be
ause any on-line3Sin
e rotations are free, a natural idea is at ea
h step, to
hoose the tree of the optimal o�-line algorithm so far. This is notas simple as it sounds, be
ause o�-line optimality is ambiguous.For example, suppose you start with a 7 node \line" tree of depth7. After several a

esses to node 1, the deepest node, any optimalo�-line algorithm must have brought it to the root. There are 132equally optimal ways to do this, all using 6 rotations.

algorithm pays an expe
ted �(log n) just in sear
h
ost(not
ounting rotations) sin
e the average depth of anode is �(log n).We go slightly farther in analyzing the
ost of ran-dom sequen
es. We show that the number of sequen
eswith o�-line
ost k is less than 212k for any k. This isalso a ne
essary
ondition for dynami
 optimality, forinformation-theoreti
 reasons4. Essentially, we give away to des
ribe o�-line rotations in 12 bits per rota-tion, even though there are, in general, n � 1 possiblerotations one
an perform.4.1 Stru
tural preliminaries We assume that thenodes in the tree are simply the numbers 1; 2; : : : ; n, andlet m be the length of the a

ess sequen
e. We furtherassume that all algorithms, on- and o�-line, begin withthe same �xed tree, say, rooted at n and having depthn. In this se
tion, we prove the following. The
onstant12 is not really important: we are mostly interested inthe fa
t that it is 2O(k).Theorem 4.1. The number of a

ess sequen
es havingoptimal o�-line
ost k is at most 212k, for all k � 0,regardless of n or m.Proof. We use an information theoreti
 argument basedon the fa
t that one
an
on
isely des
ribe any sequen
ehaving optimal o�-line
ost k. We argue that it ispossible to des
ribe any a

ess sequen
e via the treesused in the optimal o�-line algorithm. First, as severalpeople have observed, we may assume that the o�-linealgorithm rotates the next node to be a

essed to theroot before ea
h a

ess, and we only lose a fa
tor of twoin the optimal
ost. The reason is that given any o�-line algorithm, we
an modify it by making it rotate anode to the root immediately before a

essing it, andthen reverse these rotations to move the node ba
k towhere it was. If the node was at depth d, we have paid2(d� 1) in rotations (and in
urred no additional sear
h
ost), whereas the former algorithm paid only d� 1.Now it suÆ
es to des
ribe the sequen
e of trees,be
ause the a

esses will just be their roots. To do this,we des
ribe the set of rotations performed from ea
h treeto the next, whi
h we show how to do in at most 6r bitsif there are r rotations. This implies that there are atmost 26k possible sequen
es of
ost k be
ause there are4Given an on-line algorithm, su
h as splaying, any a

esssequen
e
an be des
ribed by the lo
ation of ea
h node in its
orresponding tree. This
an be des
ribed using 3 symbols (left,right, and stop) and has length proportional to the sear
h
ost.There is no need to des
ribe the rotations performed by the on-line algorithm, sin
e those
an be determined from the a

esssequen
e. So, for any on-line algorithm, there are at most 3ksequen
es
osting less than k.

at most 26k des
riptions of length 6k. We then get 212kbe
ause of the fa
tor of 2 lost in our initial assumption.What remains is to des
ribe a set of r rotationsusing 6r bits. Like Lu
as [Lu
88℄, we think of a rotationas an edge rotation whi
h
hanges a single edge fromeither left to right or right to left. Of
ourse, the nodesadja
ent to an edge may
hange. But based on ourassumption that the next a

ess is rotated to the root,it is not diÆ
ult to see that all the edges on its path tothe root must be rotated at least on
e.Lu
as argues that without further loss of general-ity we may assume that the set of edges rotated byan optimal o�-line algorithm form a single
onne
ted
omponent that in
ludes the root and the next nodeto be a

essed. Brie
y, this is be
ause any rotationsof edges not in this
onne
ted
omponent
ould easilybe delayed (using lazy programming) until they are insu
h a
onne
ted
omponent. Their delay will not a�e
tthe sear
h
ost, sin
e these rotations
annot a�e
t thedepth of the next request, nor does their delay a�e
tthe rotation
osts.Next, observe that regardless of the order of therotations, we
an
ompletely des
ribe the result of therotations in 6w bits if there are w edges. First, wedes
ribe the subset of edges that were rotated one ormore times. Sin
e this is a rooted subtree, we
andes
ribe this using the symbols left (00), right (01) andup (1), to form a
y
le that traverses ea
h edge twi
e,using a total of 3w bits. Next we des
ribe their positionin the resulting tree. In the resulting tree, these edgeswill still be a rooted subtree, so we
an des
ribe themalso with 3w bits. First note that the set of nodes inthis subtree doesn't
hange even as the positions of theedges do. Se
ondly, noti
e that the shape of this subtree
ompletely determines the positions of all the nodes,be
ause this is a binary sear
h tree. Finally, note thato�-line algorithm has to perform at least w rotations.Thus, we
an des
ribe the optimal sequen
e of trees(and thus the a

ess sequen
e) in 6r bits if it performs rrotations. Sin
e we lose a fa
tor of two due to our �rstassumption, this proves the theorem.4.2 Dynami
 Sear
h Optimality In this se
tion,we will
onsider probability distributions. A tree
an bethought of predi
ting the next a

ess, where it predi
tsnodes
loser to the root with higher probability. Fromour stru
tural result, we see:Corollary 4.1. There is a probability distributionover arbitrary sequen
es of a

esses, that assigns prob-ability at least 2�13k to an a

ess sequen
e of optimalo�-line
ost k.Proof. Choose a
ost k a

ording to the distribution

1=2k. By Theorem 4.1, there are at most 212k sequen
esof that
ost.It is easy to
onvert a binary sear
h tree into aprobability distribution p su
h that p(j) � 3�depth(j).Simply
hoose j by beginning at the root, going left,right, or stopping, ea
h with probability 1/3 (whenpossible). It is also possible to
onvert a probabilitydistribution into a tree.Observation 4.1. For a probability distribution p overindividual a

esses, we
an
reate a binary sear
h treesu
h that depth(a) � 1� log p(a) for any node a.Proof. For the root,
hoose the �rst i su
h thatPi�11 p(i) � 1=2 and Pni+1 p(i) � 1=2. Re
urse on thenumbers less than i (normalizing p) to
reate the leftsubtree, and the numbers greater than i for the rightsubtree. It is easy to see that the total probability of anysubtree rooted at depth d is at most 1=2d�1 so a nodeof probability p(i)
annot be deeper than � log p(i).We
an
ombine these two ideas to make an on-linealgorithm.Theorem 4.2. For any probability distribution p overa

ess sequen
es, we
an
reate an on-line algorithmwith sear
h
ost at most m� log p(a1a2 : : : am) for everya

ess sequen
e a1a2 : : : am.Proof. The distribution p
an be thought of as predi
t-ing the next a

ess from the previous a

esses. In par-ti
ular, the
onditional probability of the next a

essgiven the previous a

esses is:pi(ai) = p(aija1a2 : : : ai�1)= Pbi+1;:::;bm p(a1:::ai�1aibi+1:::bm)Pbi;:::;bm p(a1:::ai�1bibi+1:::bm)We
an write p as a produ
t of the
onditionaldistributions of a

ess i, i.e.,p(a1a2 : : : am) = mY1 pi(ai):Our on-line algorithm works as follows. For the itha

ess, we have enough information to
ompute pi. Wethen
onvert pi into a tree by the method of Observation4.1. Thus, the depth of a

ess ai in this tree will beno more than 1 � log pi(ai). Our total sear
h over ma

esses is at mostmX1 1� log pi(ai) = m� log p(a1a2 : : : am):

Corollary 4.2. There is an on-line algorithm thathas dynami
 sear
h optimality. In parti
ular, on anya

ess sequen
e, its sear
h
ost is at most 14 times theoptimal o�-line total
ost.Proof. We use the probability distribution of Corollary4.1 in
ombination with Theorem 4.2 to get a total
ostof m plus 13 times the optimal o�-line
ost. But m isno larger than the optimal o�-line
ost.5 Con
lusions and open problemsIn this paper we have presented two results: an eÆ
ientalgorithm a
hieving strong stati
 optimality for the list-update problem, and an ineÆ
ient algorithm a
hievingdynami
 sear
h-optimality for trees. Several naturalopen problems are: Can strong stati
 optimality bea
hieved eÆ
iently for the
ase of trees? Can dynami
sear
h-optimality be a
hieved eÆ
iently for trees? And,of
ourse,
an we a
hieve true dynami
 optimality(eÆ
iently or ineÆ
iently) for sear
h trees?A
knowledgements: We would like to thankSantosh Vempala for a number of helpful dis
ussions.This material is based upon work supported underNSF grants CCR-9732705 and CCR-0105488, an NSFMathemati
al S
ien
es Postdo
toral Resear
h Fellow-ship, and an IBM Graduate Fellowship.Referen
es[ACBFS95℄ P. Auer, N. Cesa-Bian
hi, Y. Freund, and R.S
hapire Gambling in a rigged
asino: The adversarialmultiarmed bandit problem In Pro
eedings of the36th Annual Symposium on Foundations of ComputerS
ien
e, pages 322-331, November 1995.[AvW95℄ Susanne Albers, Bernhard von Stengel, and RalphWer
hner. A
ombined bit and timestamp algorithmfor the list update problem. Information Pro
essingLetters, 56:135{139, 1995.[Bur00℄ C. Bur
h. Ma
hine learning in metri
al task sys-tems and other on-line problems. CMU Te
h ReportCMU-CS-00-135, May 2000.[BB00℄ A. Blum and C. Bur
h. On-line learning and themetri
al task system problem. Ma
hine Learning,39(1):35{58, April 2000.[BEY98℄ Allan Borodin and Ran El-Yaniv. On-line Computation and Competitive Anal-ysis. Cambridge University Press, 1998.http://www.
up.org/Titles/56/0521563925.html.[CLS01℄ Deepak Chawla, Lin Li, and Stephen S
ott. Ef-�
iently approximating weighted sums with exponen-tially many terms. In Pro
eedings of the FourteenthAnnual Conferen
e on Computational Learning The-ory, July 2001.[FS96℄ Yoav Freund and Robert S
hapire. Game theory,on-line predi
tion and boosting. In Pro
. 9th Conf. onComputational Learning Theory, pages 325{332, 1996.

[KV00℄ Adam Kalai and Santosh Vempala. EÆ
ient algo-rithms for universal portfolios. In Pro
eedings of the41st Annual Symposium on the Foundations of Com-puter S
ien
e, November 2000.[Lu
88℄ Joan M. Lu
as. Canoni
al forms for
ompetitivebinary sear
h tree algorithms. Te
hni
al Report DCS-TR-250, Rutgers University, 1988.[LW94℄ N. Littlestone and M. K. Warmuth. The weightedmajority algorithm. Information and Computation,108:212{261, 1994.[ST85a℄ Daniel Sleator and Robert E. Tarjan. AmortizedeÆ
ien
y of list update and paging rules. Communi
a-tions of the ACM, 28:202{208, 1985.[ST85b℄ Daniel D. Sleator and Robert Endre Tarjan. Self-adjusting binary sear
h trees. Journal of the ACM,32:652{686, 1985.[Tei93℄ Boris Teia. A lower bound for randomized listupdate algorithms. Information Pro
essing Letters,47:5{9, 1993.[Wil89℄ Robert Wilber. Lower bounds for a

essing binarysear
h trees with rotations. SIAM Journal on Com-puting, 18:56{67, 1989.

