
Stati Optimality and Dynami Searh-Optimality in Lists and TreesAvrim Blum� Shuhi Chawlay Adam KalaizAbstratAdaptive data strutures form a entral topi of on-line algorithms researh, beginning with the results ofSleator and Tarjan showing that splay trees ahievestati optimality for searh trees, and that Move-to-Front is onstant ompetitive for the list update prob-lem [ST85a, ST85b℄. This paper is inspired by theobservation that one an in fat ahieve a 1 + � ra-tio against the best stati objet in hindsight for awide range of data struture problems via \weightedexperts" tehniques from Mahine Learning, if ompu-tational deision-making osts are not onsidered.In this paper, we give two results. First, we showthat for the ase of lists, we an ahieve a 1 + � ratiowith respet to the best stati list in hindsight, by asimple eÆient algorithm. This algorithm an thenbe ombined with existing results to simultaneouslyahieve good stati and dynami bounds. Seond, fortrees, we show a (omputationally ineÆient) algorithmthat ahieves what we all \dynami searh optimality":dynami optimality if we allow the online algorithmto make free rotations after eah request. We hopethis to be a step towards solving the longstanding openproblem of ahieving true dynami optimality for trees.1 IntrodutionAdaptive data strutures form one of the entral topisof online algorithms researh, beginning with the resultsof Sleator and Tarjan that splay trees perform within aonstant fator of the best stati searh tree for anyrequest sequene, and that Move-to-Front is onstantompetitive with respet to the best o�-line (adaptive)algorithm for lists [ST85a, ST85b℄. Online algorithmsfor lists have subsequently been well-studied, with upperand lower bounds of 1.6 and 1.5 respetively, on theompetitive ratio of randomized algorithms for thisproblem [AvW95, Tei93℄. The ase of trees appearsmuh harder: it is not known whether splay trees or�email: avrim�s.mu.edu, Computer Siene Department,Carnegie Mellon University, Pittsburgh, PA15213yemail: shuhi�s.mu.edu, Computer Siene Department,Carnegie Mellon University, Pittsburgh, PA15213zemail: akalai�s.mu.edu, Computer Siene Department,Carnegie Mellon University, Pittsburgh, PA15213

any other online algorithm performs within a onstantfator of the optimal o�-line adaptive tree algorithm.An interesting point is that in terms of ompetingagainst the best stati objet in hindsight, one an inpriniple ahieve a ratio of 1+� for a wide variety of datastruture problems, if we ignore time spent omputingwhih update to perform. In partiular, Blum andBurh [BB00℄ show the following general result.Theorem 1.1. (Theorem 4 of [BB00℄) Given Non-line algorithms for a Metrial Task System Problemof diameter D, and given � > 0, one an use theRandomized Weighted Majority algorithm to ahieveon any request sequene � an expeted ost at most(1 + �)L� + O(1�D logN), where L� is the ost of thebest of the N algorithms on � in hindsight.1For example, the list-update problem is a Metrial TaskSystem problem with one state for eah ordering of the nelements. There areN = n! di�erent lists of n elements,and the diameter of the spae (the maximum ost tomove between one list and another) is O(n2). Therefore,viewing eah stati list as an online algorithm, apply-ing Randomized Weighted Majority ahieves a (1 + �)stati ratio with additive onstant O(1�n3 logn). Fortrees, there are \only" 2O(n) di�erent searh trees on nelements, and the diameter of the spae is O(n). So,this algorithm ahieves a 1+ � stati ratio with additiveonstant O(1�n2). We all this type of bound (namely,a 1 + � ratio with additive onstant polynomial in nand 1=�) strong stati optimality. Unfortunately, thealgorithm of Theorem 1.1 is horribly omputationallyineÆient, beause it must expliitly maintain a prob-ability distribution over all the omponent algorithms.Some progress on eÆient MCMC simulations for thesetype of algorithms has been made [CLS01, KV00℄ butnot for the situations of interest to us.1The Randomized Weighted Majority algorithm [LW94℄ main-tains a probability distribution over the N omponent algorithms(\experts"). At eah time step, the experts are penalized basedon their ost at that step, multiplying the weight on an expertinurring ost by (1 � �0), and then renormalizing, where wewill use �0 = O(�=D). The name of the algorithm omes from asetting in whih eah expert is making a predition, in whih asethis proedure an be viewed as taking a weighted vote and thenhoosing a predition probabilistially based on the vote totals.It is also alled the Hedge algorithm [FS96℄.

In many situations the best stati algorithm maybe muh worse than an optimal dynami algorithm. Inthe ase of list update, for instane, the best statialgorithm would be O(n) times worse than the bestdynami algorithm if the adversary repeatedly aessesevery element in suession. One might ask then, whyshould we are for stati optimality. The reason is thatwhen aesses ome from a �xed distribution, whihis the ase with many real world appliations, statialgorithms perform the best.In this paper, we present two results. First, forthe ase of lists, we show how to ahieve a 1 + � ra-tio with respet to the best stati list in hindsight bya simple eÆient algorithm. The algorithm is random-ized: the standard lower bound of 2 for deterministialgorithms holds for stati ratio as well. We ombinethis algorithm with the urrently best known dynamialgorithm (COMB, see [BEY98℄ for details) to obtainone whih is dynamially optimal and at the same timehas strong stati optimality. Seond, for trees, we showa (omputationally ineÆient) algorithm motivated byonline learning algorithms that ahieves what we all\dynami searh optimality": dynami optimality if weallow the online algorithm to make free rotations af-ter eah request. We hope this to be a step towardsaddressing the longstanding open problem of ahievingtrue dynami optimality for trees. At the very least,this shows that dynami optimality annot be provenimpossible by any argument that neglets the rotationost of the online algorithm.22 Strong Stati Optimality for List UpdateThe List Update problem is to maintain a list of nelements while serving requests of the form ACCESS(x),where x is an element in the list. The ost of an aessfor element x is the depth of x in the list i.e. the i-thelement has a ost of i�1. This is known as the PartialCost model (as opposed to the Full Cost model in whihthe ost of aess is i for the i-th element). Following anaess, the element x may be moved anywhere higher inthe list without additional osts. Then other elementsmay be moved at a ost of one per transposition.In this setion, we desribe two di�erent algorithmsfor list update, both based on the same idea of reduingthe problem to a 2-expert \ombining expert advie"problem, and both ahieving a 1 + � ompetitive ratiowith respet to the best stati list. We prove the boundfor the �rst algorithm by reduing to the algorithm of2In ontrast, the standard
(log k) lower bound for randomizedpaging, based on onsidering a sequene in whih pages inf1; : : : ; k + 1g are requested ompletely at random, holds evenif the online algorithm is allowed to move items into and out ofits ahe between requests for free.

[LW94℄, and prove the bound for the seond algorithmfrom �rst priniples. We refer to the optimal stati listas OPT .2.1 Algorithm A Let L be a list of n elements and� be a sequene of aesses presented to the algorithm.Algorithm A proeeds as follows:1. Pik n numbers r1; � � � ; rn from [0; 1℄ uniformly atrandom suh thatPni=1 ri = 1. (This is easily doneby throwing n� 1 darts into [0; 1℄ and letting ri bethe length of the ith interval.) Assign ri to the i-thelement in L.Let � < 1 be a performane parameter for thealgorithm.2. Assign a weight wi to eah element in the list,with initial value 1. Order elements in the list ininreasing order of ri � wi.3. When an element x at position i is aessed, updatewi = � � wi.4. Move element x up in the list, if neessary, tomaintain ordering of elements by weight.5. Go to step 3 till last request is served.Theorem 2.1. Algorithm A with � = e�� is (1+�)-ompetitive with the best stati list.In the following analysis, we use axy to denote thesublist of a list a that ontains all ourrenes of onlythe elements x and y.Lemma 2.1. Pairwise Property Lemma [BEY98℄An algorithm ALG satis�es the pairwise property if andonly if for every request sequene � and every pairfx; yg 2 L, the probability that x preedes y in L whenALG serves �, is the same as the probability that xpreedes y in Lxy when ALG serves �xy.Let ALG be an algorithm that satis�es the pairwiseproperty. Suppose that for every pair fx; yg � L,and for every request sequene �, ALG(�xy) � �OPT (�xy) in the Partial Cost model, then ALG isstritly ompetitive in both the Partial Cost and FullCost models.Lemma 2.2. Algorithm A satis�es the Pairwise prop-erty.Proof. Consider two elements x and y in L. The relativeorder of x and y in L depends only on whih of wxrxand wyry is greater. Let R = 1 �Pi 6=x;y ri. Then,onditioned on R, rx and ry are random in [0; R℄ subjetto having a sum of R. So, Pr[x preedes y in L℄ =

Pr[wxrx < wyry℄ = P [wxrx < wy(R � rx)℄ = P [rx <Rwywx+wy ℄ = wywx+wy as in this ase, rx 2R [0; R℄.Now let �xy be a subsequene of � whih ontainsall ourrenes of x and y and no others. Let Lxy be alist ontaining only x and y but in the same initial orderas in L. If we run algorithm A on Lxy with sequeneof aesses �xy, the weights of x and y will be the sameas in the original ase. However, the random numbersassoiated with the two elements are now di�erent andsatisfy the property r0x + r0y = 1.Now, Pr[x preedes y in Lxy℄ = Pr[wxr0x < wyr0y ℄= P [wxr0x < wy(1 � r0x)℄ = P [r0x < wywx+wy ℄ = wywx+wy .This is the same as the probability obtained before.Therefore, the order of the two elements in Lxywould reet their relative order in the list L and thelemma follows.Lemma 2.3. For a list of two elements, algorithm A hasa performane ratio of log 1�1�� ompared to the best statilist.Proof. Consider a list L of two elements x and y. If arequest aesses the element whih is seond in the listat the time of aess, the algorithm inurs a ost of 1;otherwise, it inurs no ost. There are only two statilists on two elements { (x; y) and (y; x). We onsiderthese as experts. When element y is aessed, the list(x; y) inurs a ost of 1 (or makes a \mistake"), while(y; x) inurs no ost (so it is \orret" on this request).The reverse happens when element x is aessed.Reall that, rx+ry = 1. Algorithm A will move x tothe front at any point of time when wxrx < wyry. Thishappens with probability P [wxrx < wyry ℄ = wywx+wy asalulated in proof of Lemma 2.2.Notie that if we assoiate weight wy with the list(x; y) and wx with the list (y; x), then the weight of eahexpert is �(# of mistakes made by that expert). Algo-rithm A uses one of the two experts with probabilityin proportion to their weights. This is the same as theRandomizedWeighted Majority algorithm of [LW94℄ forthe ase of 2 experts.Therefore, following [LW94℄, we get, E[A(�xy)℄ �OPT (�xy) log 1�+log 21�� .Proof of Thm 2.1 First, notie that algorithm A doesnot inur any movement osts other than ordering thelist initially after hoosing the weights. This is beausethe relative order of elements hanges only when oneof them is aessed, and at that time, the list anbe reordered by putting just the aessed element inthe right plae. The initial movement ost is at mostn(n� 1)=2.

Using the List Fatoring lemma [BEY98℄ withLemma 2.2 and Lemma 2.3, we obtain the ompetitiveratio of algorithm A with respet to the ost inurredby OPT as E[A(�)℄ � OPT (�) log 1�+O(n(n�1))1�� .Putting � = e��, we get a ompetitive ratio of (1+�)for A with an additive ost of at most O(n(n � 1)(1 +1=�)).2.2 Algorithm B Algorithm B is a simpler variantof algorithm A. The basi di�erene between the two isthat here, we pik the initial random numbers iid, andwe update additively instead of multipliatively. Thealgorithm proeeds as follows:1. Pik n numbers r1; � � � ; rn from [0; 1=�℄ indepen-dently uniformly at random. Assign ri to the i-thelement in L.2. Assign a weight wi to eah element in the list, whihtraks the number of aesses to that element.Order elements in the list in dereasing order ofri + wi.3. When an element x at position i is aessed,inrease wi by 1.4. Move element x up if neessary to maintain order-ing by weights.5. Go to step 3 till last request is served.Theorem 2.2. Algorithm B is (1+O(�))-ompetitivewith the optimal stati list.The proof of Theorem 2.2 losely follows the proofof 2.1. We �rst note that algorithm B also satis�es thePairwise property. The proof is left to the reader. Thefollowing lemma analyzes performane of algorithm Bon a two element list.Lemma 2.4. For a list of two elements, algorithm B hasa ompetitive ratio of 1 + O(�) with the optimal statilist.Proof. Consider a list L of two elements x and y. Theprobability that x preedes y after wx aesses to xand wy to y, is given by Pr[rx + wx > ry + wy℄ =Pr[rx � ry > wy � wx℄. Let � = wy � wx. Sineboth rx and ry are hosen uniformly at random from[0; 1=�℄, this probability p(�) = (1���)22 if � > 0, andp(�) = 1 � (1+��)22 otherwise. When � > 1=� or� < �1=�, p(�) = 0 or 1 respetively.As before, we onsider the two lists (x; y) and (y; x)as experts. The probability of piking expert (x; y) thenbeomes p(�). p(�) takes on 2=� + 1 distint values

orresponding to � 2 f�1=�; ::; 1=�g. As the algorithmproeeds, this probability either moves one step up orone step down depending on whether (x; y) or (y; x)makes a mistake respetively.The algorithm starts at � = 0. As it moves throughvarious values of �, we an ouple every movement from� = x to � = x + 1 with a movement from � = x+ 1to � = x, with at most 2=� movements left unoupled.Notie that this oupling has the property that bothexperts make exatly one mistake among the two moves((x; y) while moving up and (y; x) while moving down).Algorithm B on the other hand, makes an expetednumber of mistakes equal to p(x) + 1 � p(x + 1). Forx � 0, p(x)+1�p(x+1) = 1+���2(x+1=2) < 1+�. Forx < 0, p(x)+1�p(x+1) = 1+ �+ �2(x+1=2) < 1+2�.The total number of mistakes made by algorithm Bon unoupled steps are at most O(1=�). Putting thesetogether, we get a ompetitive ratio of 1+O(�) with thebest stati list with an additive term of O(1=�).Proof of Thm 2.2 The result follows, as before, from ListFatoring lemma and Lemma 2.4.Notie that both algorithms A and B an be thoughtof as randomized versions of the frequeny ount algo-rithm.3 Combining Statially and DynamiallyOptimal AlgorithmsIn the previous setion we desribed two algorithmswhih are variants of the Experts algorithm and are(1 + �) optimal with respet to the best stati list. Inthis setion we reapply the experts tehnique, this timeusing algorithm A (or B) and algorithm COMB [BEY98℄as the two experts. Through this we an ahieve both(1+�) stati optimality and (1:6+�) dynami optimalitysimultaneously.The key idea is to use one of the experts for somenumber of aesses, and then probabilistially deideto swith the expert or stay with the same algorithm.However, in making the probabilisti deision, we donot want to expliitly alulate the weights of thetwo experts, as that would require running the twoalgorithms simultaneously, defeating the very purposeof this algorithm. In order to get around this diÆulty,we use a variant of the Exp3 algorithm proposed by[ACBFS95℄. This algorithm was proposed for the multi-armed bandit problem in whih a gambler must deideto play on one of K slot mahines, but gets to see thepro�t of only the mahine that he is playing on.[Bur00℄ extend the Exp3 algorithm to the asewhere there is a ost d for swithing between thedi�erent experts, and so, we may want to swith afterevery s steps, rather than after every step. We will now

desribe the two algorithms Hedge and Hedge-Banditas given in [Bur00℄.3.1 Algorithm Hedge Algorithm Hedge uses Kalgorithms (experts), hoosing one for eah time stepand obtaining a gain equal to the gain of the hosenexpert in that time period. Expert i obtains a gainxi(t) in time step t with xi(t) 2 [0; 1℄. The algorithmproeeds as follows:� > 0 is a performane parameter. Gain of expert iat time step t is the total gain obtained by that expertupto time step t. That is, Gi(t) =Pj<t xi(j) 8i. Gainof the algorithm GH(t) = Pj<t xij (j), where ij is theexpert hosen in step j.In every time step, the algorithm hooses an expert itaording to the distribution pi = e�Gi(t�1)Pj e�Gj (t�1) , andupdates the gains aording to the obtained vetor x(t).3.2 Algorithm Hedge-Bandit Algorithm Hedge-Bandit is similar to Hedge exept that it does not get tosee the entire gain vetor x(t), but only gets to see thegain of the expert that it hooses at a partiular timestep. In eah time step, the algorithm simulates Hedgeto obtain a distribution using whih it selets the expertfor that time step. It then returns a \fake" gain vetorx̂(t) to Hedge based on the gain x(t) that it atuallyobserved, in order to get the next distribution.To avoid spending too muh in swithing betweenexperts, this algorithm runs eah expert for s stepsbefore making the next deision. It obtains a gain ofat most s in a single time segment, and looses at mostd in swithing from one expert to another. To use thisalgorithm for list update, in every time step, we returna gain of 1 � in , if the aess ost for an element is i.We assume that the algorithm runs for T time steps.The following desribes the behavior of the algorithmin eah time segment:For time segments t = 1; 2; :::; T=s do:� Get p̂i(t) from Hedge. Let pi(t) = (1�)p̂i(t) + K� Selet it aording to pi(t).� Use expert it for s steps observing a total gain ofxit(t). Send gains x̂j(t) to Hedge, where x̂j(t) =xit (t)pit (t) if j = it, and 0 otherwise.Theorem 3.1. (Theorem 5.3 of [Bur00℄) The ex-peted gain of Hedge-Bandit is at leastG� � (1�)Ts d� 1� sKlnK � (e� 1)G�where G� is the largest total atual gain aquired by anysingle expert, and where � = e=sn

For the List Update problem, we have K = 2, andd = O(n2). Reverting bak to our loss model andhoosing appropriate values for s and , we obtain thefollowing result:Theorem 3.2. Algorithm Hedge-Bandit using algo-rithm A and algorithm COMB as experts is (1 + 2�)statially optimal and 1:6(1+ �) dynamially optimal inthe Full Cost model, with an additive term of O(n5=�2)for the List Update problem, if it makes a swithing de-ision every en3=� steps and uses = �=en.Proof. From theorem 3.1,G� (1�)Ts d� 1� sKlnK � (e� 1)GPutting LHB = n(T�GHB), L� = n(T�G�) and usingG� < T , we obtain the following:LHB � nfT �G� + (1�)Ts d+ 1� sKlnK + (e� 1)Tg= L� + (1�)Ts dn+ 1� nsKlnK + (e� 1)nTBut, L� � T in the full ost model (we always inur aost of at least 1). So we haveL � L�f1 + (1�)dns + (e� 1)ng+ 1� nsKlnKUsing the values = �=en, s = en3� , d = n2 and K = 2gives us the desired result:LHB � (1 + �)L� + 8:9n5�2We omitted a few details in the above desriptionof the algorithm. When we swith from one algorithmto the other at the end of a phase, we need to knowthe state of the other algorithm at the end of thatphase. It is not obvious that this is alulable, as wewant to avoid running the other algorithm expliitly.However, it an be argued that extra overhead inurredin starting the algorithms in a \wrong" state is at mostO(n2). Moreover, the state an be easily determinedwithout running the algorithms expliitly, by keepingaess ounts for eah element in the ase of algorithmA, and keeping timestamps for eah element in the aseof COMB. We wish to larify here, that though usingthese extra variables would help us determine the nextstate of the list, it does not help us alulate the lossesmade by the experts, whih neessitates the use of theHedge-Bandit algorithm.

4 Searh treesAn on-line binary searh tree algorithm is dynamiallyoptimal if its total ost (sum of searh ost and numberof rotations) is never more than a onstant times thetotal ost of the best o�-line algorithm, for any sequeneof aesses. Muh work has gone into an attempt toprove the dynami optimality of splay trees sine Sleatorand Tarjan made their onjeture in [ST85b℄. We areunable to prove the dynami optimality of splay treesor any other on-line searh tree algorithm.Instead, we show that it is possible to have dy-nami searh-optimality, a property muh weaker thandynami optimality. In general the total ost of an al-gorithm is its searh ost, the sum of the depths of theaesses, plus its rotation ost, the number of rotationsmade. We say that our algorithm has dynami searh-optimality beause its searh ost is at most a onstanttimes the total ost of any o�-line algorithm. While ouralgorithm is exponentially slow, it is based on simplepriniples.There are two main diÆulties in ahieving dynamioptimality. First of all, the algorithm has to deidewhih nodes to keep near the root3. Seondly, forfull dynami optimality it has to be able to get thesenodes near the root without using too many rotations.We show that the �rst diÆulty is not insurmountable.Equivalently, dynami optimality annot be provenimpossible by any argument that neglets the rotationost of the on-line algorithm.There is no espeially strong evidene suggestingthat any BST algorithm is dynamially optimal. Anatural approah to disproving this would be to presenta set of sequenes, and argue that no on-line algorithman handle all these sequenes in a dynamially optimalmanner. The simplest form of this argument would bethat the on-line algorithm annot \guess" whih nodeomes next and therefore has too many nodes to keepnear the root. However, the existene of an algorithmwith dynami searh optimality implies that this typeof argument is not possible.Wilber [Wil89℄ made some progress by provinglower bounds for o�-line algorithms. In partiular,he has shown that a random sequene of aesses inf1; 2; : : : ; ng osts an expeted
(logn) per aess foro�-line algorithms. This is a neessary ondition fordynami optimality to be possible, beause any on-line3Sine rotations are free, a natural idea is at eah step, tohoose the tree of the optimal o�-line algorithm so far. This is notas simple as it sounds, beause o�-line optimality is ambiguous.For example, suppose you start with a 7 node \line" tree of depth7. After several aesses to node 1, the deepest node, any optimalo�-line algorithm must have brought it to the root. There are 132equally optimal ways to do this, all using 6 rotations.

algorithm pays an expeted �(log n) just in searh ost(not ounting rotations) sine the average depth of anode is �(log n).We go slightly farther in analyzing the ost of ran-dom sequenes. We show that the number of sequeneswith o�-line ost k is less than 212k for any k. This isalso a neessary ondition for dynami optimality, forinformation-theoreti reasons4. Essentially, we give away to desribe o�-line rotations in 12 bits per rota-tion, even though there are, in general, n � 1 possiblerotations one an perform.4.1 Strutural preliminaries We assume that thenodes in the tree are simply the numbers 1; 2; : : : ; n, andlet m be the length of the aess sequene. We furtherassume that all algorithms, on- and o�-line, begin withthe same �xed tree, say, rooted at n and having depthn. In this setion, we prove the following. The onstant12 is not really important: we are mostly interested inthe fat that it is 2O(k).Theorem 4.1. The number of aess sequenes havingoptimal o�-line ost k is at most 212k, for all k � 0,regardless of n or m.Proof. We use an information theoreti argument basedon the fat that one an onisely desribe any sequenehaving optimal o�-line ost k. We argue that it ispossible to desribe any aess sequene via the treesused in the optimal o�-line algorithm. First, as severalpeople have observed, we may assume that the o�-linealgorithm rotates the next node to be aessed to theroot before eah aess, and we only lose a fator of twoin the optimal ost. The reason is that given any o�-line algorithm, we an modify it by making it rotate anode to the root immediately before aessing it, andthen reverse these rotations to move the node bak towhere it was. If the node was at depth d, we have paid2(d� 1) in rotations (and inurred no additional searhost), whereas the former algorithm paid only d� 1.Now it suÆes to desribe the sequene of trees,beause the aesses will just be their roots. To do this,we desribe the set of rotations performed from eah treeto the next, whih we show how to do in at most 6r bitsif there are r rotations. This implies that there are atmost 26k possible sequenes of ost k beause there are4Given an on-line algorithm, suh as splaying, any aesssequene an be desribed by the loation of eah node in itsorresponding tree. This an be desribed using 3 symbols (left,right, and stop) and has length proportional to the searh ost.There is no need to desribe the rotations performed by the on-line algorithm, sine those an be determined from the aesssequene. So, for any on-line algorithm, there are at most 3ksequenes osting less than k.

at most 26k desriptions of length 6k. We then get 212kbeause of the fator of 2 lost in our initial assumption.What remains is to desribe a set of r rotationsusing 6r bits. Like Luas [Lu88℄, we think of a rotationas an edge rotation whih hanges a single edge fromeither left to right or right to left. Of ourse, the nodesadjaent to an edge may hange. But based on ourassumption that the next aess is rotated to the root,it is not diÆult to see that all the edges on its path tothe root must be rotated at least one.Luas argues that without further loss of general-ity we may assume that the set of edges rotated byan optimal o�-line algorithm form a single onnetedomponent that inludes the root and the next nodeto be aessed. Briey, this is beause any rotationsof edges not in this onneted omponent ould easilybe delayed (using lazy programming) until they are insuh a onneted omponent. Their delay will not a�etthe searh ost, sine these rotations annot a�et thedepth of the next request, nor does their delay a�etthe rotation osts.Next, observe that regardless of the order of therotations, we an ompletely desribe the result of therotations in 6w bits if there are w edges. First, wedesribe the subset of edges that were rotated one ormore times. Sine this is a rooted subtree, we andesribe this using the symbols left (00), right (01) andup (1), to form a yle that traverses eah edge twie,using a total of 3w bits. Next we desribe their positionin the resulting tree. In the resulting tree, these edgeswill still be a rooted subtree, so we an desribe themalso with 3w bits. First note that the set of nodes inthis subtree doesn't hange even as the positions of theedges do. Seondly, notie that the shape of this subtreeompletely determines the positions of all the nodes,beause this is a binary searh tree. Finally, note thato�-line algorithm has to perform at least w rotations.Thus, we an desribe the optimal sequene of trees(and thus the aess sequene) in 6r bits if it performs rrotations. Sine we lose a fator of two due to our �rstassumption, this proves the theorem.4.2 Dynami Searh Optimality In this setion,we will onsider probability distributions. A tree an bethought of prediting the next aess, where it preditsnodes loser to the root with higher probability. Fromour strutural result, we see:Corollary 4.1. There is a probability distributionover arbitrary sequenes of aesses, that assigns prob-ability at least 2�13k to an aess sequene of optimalo�-line ost k.Proof. Choose a ost k aording to the distribution

1=2k. By Theorem 4.1, there are at most 212k sequenesof that ost.It is easy to onvert a binary searh tree into aprobability distribution p suh that p(j) � 3�depth(j).Simply hoose j by beginning at the root, going left,right, or stopping, eah with probability 1/3 (whenpossible). It is also possible to onvert a probabilitydistribution into a tree.Observation 4.1. For a probability distribution p overindividual aesses, we an reate a binary searh treesuh that depth(a) � 1� log p(a) for any node a.Proof. For the root, hoose the �rst i suh thatPi�11 p(i) � 1=2 and Pni+1 p(i) � 1=2. Reurse on thenumbers less than i (normalizing p) to reate the leftsubtree, and the numbers greater than i for the rightsubtree. It is easy to see that the total probability of anysubtree rooted at depth d is at most 1=2d�1 so a nodeof probability p(i) annot be deeper than � log p(i).We an ombine these two ideas to make an on-linealgorithm.Theorem 4.2. For any probability distribution p overaess sequenes, we an reate an on-line algorithmwith searh ost at most m� log p(a1a2 : : : am) for everyaess sequene a1a2 : : : am.Proof. The distribution p an be thought of as predit-ing the next aess from the previous aesses. In par-tiular, the onditional probability of the next aessgiven the previous aesses is:pi(ai) = p(aija1a2 : : : ai�1)= Pbi+1;:::;bm p(a1:::ai�1aibi+1:::bm)Pbi;:::;bm p(a1:::ai�1bibi+1:::bm)We an write p as a produt of the onditionaldistributions of aess i, i.e.,p(a1a2 : : : am) = mY1 pi(ai):Our on-line algorithm works as follows. For the ithaess, we have enough information to ompute pi. Wethen onvert pi into a tree by the method of Observation4.1. Thus, the depth of aess ai in this tree will beno more than 1 � log pi(ai). Our total searh over maesses is at mostmX1 1� log pi(ai) = m� log p(a1a2 : : : am):

Corollary 4.2. There is an on-line algorithm thathas dynami searh optimality. In partiular, on anyaess sequene, its searh ost is at most 14 times theoptimal o�-line total ost.Proof. We use the probability distribution of Corollary4.1 in ombination with Theorem 4.2 to get a total ostof m plus 13 times the optimal o�-line ost. But m isno larger than the optimal o�-line ost.5 Conlusions and open problemsIn this paper we have presented two results: an eÆientalgorithm ahieving strong stati optimality for the list-update problem, and an ineÆient algorithm ahievingdynami searh-optimality for trees. Several naturalopen problems are: Can strong stati optimality beahieved eÆiently for the ase of trees? Can dynamisearh-optimality be ahieved eÆiently for trees? And,of ourse, an we ahieve true dynami optimality(eÆiently or ineÆiently) for searh trees?Aknowledgements: We would like to thankSantosh Vempala for a number of helpful disussions.This material is based upon work supported underNSF grants CCR-9732705 and CCR-0105488, an NSFMathematial Sienes Postdotoral Researh Fellow-ship, and an IBM Graduate Fellowship.Referenes[ACBFS95℄ P. Auer, N. Cesa-Bianhi, Y. Freund, and R.Shapire Gambling in a rigged asino: The adversarialmultiarmed bandit problem In Proeedings of the36th Annual Symposium on Foundations of ComputerSiene, pages 322-331, November 1995.[AvW95℄ Susanne Albers, Bernhard von Stengel, and RalphWerhner. A ombined bit and timestamp algorithmfor the list update problem. Information ProessingLetters, 56:135{139, 1995.[Bur00℄ C. Burh. Mahine learning in metrial task sys-tems and other on-line problems. CMU Teh ReportCMU-CS-00-135, May 2000.[BB00℄ A. Blum and C. Burh. On-line learning and themetrial task system problem. Mahine Learning,39(1):35{58, April 2000.[BEY98℄ Allan Borodin and Ran El-Yaniv. On-line Computation and Competitive Anal-ysis. Cambridge University Press, 1998.http://www.up.org/Titles/56/0521563925.html.[CLS01℄ Deepak Chawla, Lin Li, and Stephen Sott. Ef-�iently approximating weighted sums with exponen-tially many terms. In Proeedings of the FourteenthAnnual Conferene on Computational Learning The-ory, July 2001.[FS96℄ Yoav Freund and Robert Shapire. Game theory,on-line predition and boosting. In Pro. 9th Conf. onComputational Learning Theory, pages 325{332, 1996.

[KV00℄ Adam Kalai and Santosh Vempala. EÆient algo-rithms for universal portfolios. In Proeedings of the41st Annual Symposium on the Foundations of Com-puter Siene, November 2000.[Lu88℄ Joan M. Luas. Canonial forms for ompetitivebinary searh tree algorithms. Tehnial Report DCS-TR-250, Rutgers University, 1988.[LW94℄ N. Littlestone and M. K. Warmuth. The weightedmajority algorithm. Information and Computation,108:212{261, 1994.[ST85a℄ Daniel Sleator and Robert E. Tarjan. AmortizedeÆieny of list update and paging rules. Communia-tions of the ACM, 28:202{208, 1985.[ST85b℄ Daniel D. Sleator and Robert Endre Tarjan. Self-adjusting binary searh trees. Journal of the ACM,32:652{686, 1985.[Tei93℄ Boris Teia. A lower bound for randomized listupdate algorithms. Information Proessing Letters,47:5{9, 1993.[Wil89℄ Robert Wilber. Lower bounds for aessing binarysearh trees with rotations. SIAM Journal on Com-puting, 18:56{67, 1989.

