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Static Optimality and Dynamic Search-Optimality
in Lists and Trees1

Avrim Blum,2 Shuchi Chawla,2 and Adam Kalai3

Abstract. Adaptive data structures form a central topic of on-line algorithms research. The area of Compet-
itive Analysis began with the results of Sleator and Tarjan showing that splay trees achieve static optimality
for search trees, and that Move-to-Front is constant competitive for the list update problem [ST1], [ST2].
In a parallel development, powerful algorithms have been developed in Machine Learning for problems of
on-line prediction [LW], [FS]. This paper is inspired by the observation made in [BB] that if computational
decision-making costs are not considered, then these “weighted experts” techniques from Machine Learning
allow one to achieve a 1 + ε ratio against the best static object in hindsight for a wide range of data structure
problems.

In this paper we give two results. First, we show that for the case of lists, we can achieve a 1 + ε ratio with
respect to the best static list in hindsight, by a simple efficient algorithm. This algorithm can then be combined
with existing results to achieve good static and dynamic bounds simultaneously. Second, for trees, we show
a (computationally inefficient) algorithm that achieves what we call “dynamic search optimality”: dynamic
optimality if we allow the on-line algorithm to make free rotations after each request. We hope this to be a
step towards solving the longstanding open problem of achieving true dynamic optimality for trees.
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1. Introduction. Adaptive data structures form one of the central topics of on-line
algorithms research, beginning with the results of Sleator and Tarjan that splay trees
perform within a constant factor of the best static search tree for any request sequence,
and that Move-to-Front is constant competitive with respect to the best off-line (adaptive)
algorithm for lists [ST1], [ST2]. On-line algorithms for lists have subsequently been well
studied, with upper and lower bounds of 1.6 and 1.5, respectively, on the competitive
ratio of randomized algorithms [AvSW], [T]. The case of trees appears much harder: it is
not known whether splay trees or any other on-line algorithm performs within a constant
factor of the optimal off-line adaptive tree algorithm.

An interesting point is that in terms of competing against the best static object in
hindsight, one can in principle achieve a ratio of 1+ε for a wide variety of data structure
problems, if we ignore time spent computing which update to perform. In particular,
Blum and Burch [BB] show the following general result.
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THEOREM 1.1 (Theorem 4 of [BB]). Given N on-line algorithms for a Metrical Task
System Problem of diameter D, and given ε > 0, one can use the Randomized Weighted
Majority algorithm [LW] to achieve on any request sequence σ an expected cost at most
(1 + ε)Lσ + O((1/ε)D log N ), where Lσ is the cost of the best of the N algorithms on
σ in hindsight.4

For example, the list-update problem is a Metrical Task System problem with one state
for each ordering of the n elements. There are N = n! different lists of n elements,
and the diameter of the space (the maximum cost to move between one list and an-
other) is O(n2). Therefore, viewing each static list as an on-line algorithm, applying
Randomized Weighted Majority achieves a (1 + ε) static ratio with additive constant
O((1/ε)n3 log n). For trees, there are “only” 2O(n) different search trees on n elements,
and the diameter of the space is O(n). So, this algorithm achieves a 1 + ε static ratio
with additive constant O((1/ε)n2). We call this type of bound (namely, a 1 + ε ratio
with additive constant polynomial in n and 1/ε) strong static optimality. Unfortunately,
the algorithm of Theorem 1.1 is horribly computationally inefficient, because it must
explicitly maintain a probability distribution over all the component algorithms. Some
progress on efficient Markov Chain Monte Carlo simulations for these type of algorithms
has been made [CLS], [KV1] but not for the situations of interest to us.

In many situations the best static algorithm may be much worse than an optimal
dynamic algorithm. In the case of list update, for instance, the best static algorithm can
be up to �(n) times worse than the best dynamic algorithm if the adversary repeatedly
accesses every element in succession. On the other hand, in many cases the optimal
static algorithm is near optimal for dynamic algorithms—for instance, this would be the
case if accesses come from some fixed distribution. The possibility of achieving strong
optimality then becomes appealing.

In this paper we present two results. First, for the case of lists, we show how to achieve
a 1+ε ratio with respect to the best static list in hindsight by a simple efficient algorithm.
The algorithm is randomized: the standard lower bound of 2 for deterministic algorithms
holds for static ratio as well. We combine this algorithm with the currently best known
dynamic algorithm (COMB, see [BEY] for details) to obtain one which has almost
the same dynamic competitive ratio but at the same time has strong static optimality.
Second, for trees, we show a (computationally inefficient) algorithm motivated by on-line
learning, that achieves what we call “dynamic search optimality”: dynamic optimality if
we allow the on-line algorithm to make free rotations after each request. We hope this to
be a step towards addressing the long-standing open problem of achieving true dynamic
optimality for trees. At the very least, this shows that dynamic optimality cannot be proven
impossible by any argument that neglects the rotation cost of the on-line algorithm.5

4 The Randomized Weighted Majority algorithm [LW] maintains a probability distribution over the N com-
ponent algorithms (“experts”). At each time step, the experts are penalized based on their cost at that step,
multiplying the weight on an expert incurring cost c by (1−ε′)c , and then renormalizing, where ε′ = O(ε/D).
The name of the algorithm comes from a setting in which each expert is making a prediction. In that case this
procedure can be viewed as taking a weighted vote and then choosing a prediction probabilistically based on
the vote totals. It is also called the Hedge algorithm [FS].
5 In contrast, the standard �(log k) lower bound for randomized paging, based on considering a sequence
in which pages in {1, . . . , k + 1} are requested completely at random, holds even if the on-line algorithm is
allowed to move items into and out of its cache between requests for free.
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Following our work, Kalai and Vempala [KV2] developed an efficient algorithm for
Binary Search Trees that achieves a ratio of 1 + ε with respect to the best static tree in
hindsight.

2. Strong Static Optimality for List Update. The List Update problem is to maintain
a list of n elements while serving requests of the form ACCESS(x), where x is an element
in the list. The cost of an access for element x is the depth of x in the list. That is, the
i th element has a cost of i − 1. This is known as the Partial Cost model (as opposed
to the Full Cost model in which the cost of access is i for the i th element). Following
an access, the element x may be moved anywhere higher in the list without additional
costs. Then other elements may be moved at a cost of one per transposition.

In this section we describe two different algorithms for list update, both based on the
same idea of reducing the problem to a two-expert “combining expert advice” problem,
and both achieving a 1 + ε competitive ratio with respect to the best static list. We prove
the bound for the first algorithm using a theorem of [LW], and prove the bound for the
second algorithm from first principles. We refer to the optimal static list as OPT .

2.1. Algorithm A. Let L be a list of n elements and let σ be a sequence of accesses
presented to the algorithm. Algorithm A proceeds as follows:

1. Pick n numbers r1, . . . , rn from [0, 1] uniformly at random such that
∑n

i=1 ri = 1.
(This is easily done by throwing n − 1 darts into [0, 1] and letting ri be the length of
the i th interval.) Assign ri to the i th element in L .

Let β < 1 be a performance parameter for the algorithm.
2. Assign a weight wi to each element in the list, with initial value 1. Order elements in

the list in increasing order of riwi .
3. When an element x at position i is accessed, update wi = βwi .
4. Move element x up in the list, if necessary, to maintain ordering of elements by

weight.
5. Go to 3.

THEOREM 2.1. Algorithm A with β = e−ε is (1 + ε)-competitive with the best static
list.

In the following analysis, we use Lxy to denote the sublist of L that contains only the
elements x and y. We use σxy to denote the subsequence of sequence σ consisting of
only the elements x and y.

LEMMA 2.2 (Pairwise Property Lemma [BEY]). An algorithm ALG satisfies the pair-
wise property if and only if for every request sequence σ and every pair {x, y} ∈ L , the
probability that x precedes y in L when ALG serves σ , is the same as the probability
that x precedes y in Lxy when ALG serves σxy .

Let ALG be an algorithm that satisfies the pairwise property. Suppose that for every
pair {x, y} ⊆ L , and for every request sequence σ , ALG(σxy) ≤ c · OPT(σxy) in the
Partial Cost model, then ALG is strictly c competitive in both the Partial Cost and Full
Cost models.
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LEMMA 2.3. Algorithm A satisfies the pairwise property.

PROOF. Consider two elements x and y in L . The relative order of x and y in L depends
only on which of wxrx or wyry is greater. What we need to show is that Pr[wxrx < wyry]
is unaffected by any of the other elements in the list or request sequence.

Let R = 1−∑
i �=x,y ri . The distribution over the ri is such that conditioned on R, rx and

ry are random in [0, R] subject to having a sum of R. So, Pr[wxrx < wyry] = Pr[rx/ry <

wy/wx ] = wx/(wx + wy). Notice that this is independent of R (and everything except
wx and wy). Therefore, the probability that x precedes y depends only on the number of
requests so far to x and y, and thus A has the pairwise property.

LEMMA 2.4. For a list of two elements, algorithm A has a performance ratio of
log(1/β)/(1 − β) compared with the best static list.

PROOF. Consider a list L of two elements x and y. If a request accesses the element
which is second in the list at the time of access, the algorithm incurs a cost of 1; otherwise,
it incurs no cost. There are only two static lists on two elements—(x, y) and (y, x). We
consider these as experts. When element y is accessed, the list (x, y) incurs a cost of 1
(or makes a “mistake”), while (y, x) incurs no cost (so it is “correct” on this request).
The reverse happens when element x is accessed.

Notice that if we associate weight wy with the list (x, y) and wx with the list (y, x),
then the weight of each expert is β(# of mistakes made by that expert). Algorithm A uses one of
the two experts with probability in proportion to its weight because, as noted in the proof
of Lemma 2.3, Pr[wxrx < wyry] = wy/(wx + wy). This is the same as the Randomized
Weighted Majority algorithm of [LW] for the case of two experts. Therefore, following
[LW], we get

E[A(σxy)] ≤ OPT(σxy) log(1/β) + log 2

1 − β
.

PROOF OF THEOREM 2.1. First, notice that algorithm A does not incur any movement
costs other than ordering the list initially after choosing the weights. This is because the
relative order of elements changes only when one of them is accessed, and, at that time,
the list is reordered just by moving up the accessed element. The initial movement cost
is at most n(n − 1)/2.

Using the List Factoring Lemma [BEY] with Lemmas 2.3 and 2.4, we obtain the
competitive ratio of algorithm A with respect to the cost incurred by OPT as

E[A(σ )] ≤ OPT(σ ) log(1/β) + O(n(n − 1))

1 − β
.

Putting β = e−ε, we get a competitive ratio of (1 + ε) for A with an additive cost of at
most O(n(n − 1)(1 + 1/ε)).

2.2. Algorithm B. Algorithm B is a simpler variant of algorithm A. The basic difference
between the two is that here we pick the initial random numbers iid, and we update
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additively instead of multiplicatively. The algorithm proceeds as follows:

1. Pick n numbers r1, . . . , rn from [0, 1/ε] independently uniformly at random. Assign
ri to the i th element in L .

2. Assign a weight wi to each element in the list, which tracks the number of accesses
to that element. Initially, all wi = 0. Order elements in the list in decreasing order of
ri + wi .

3. When an element x at position i is accessed, increase wi by 1.
4. Move element x up if necessary to maintain ordering by weights.
5. Go to step 3.

THEOREM 2.5. Algorithm B is (1 + O(ε))-competitive with the optimal static list.

The proof of Theorem 2.5 closely follows the proof of Theorem 2.1. We first note that
algorithm B also satisfies the pairwise property, because the probability that x is above
y in the list is just Pr[rx + wx > ry + wy] which does not depend on any of the other
elements. The following lemma analyzes performance of algorithm B on a two element
list.

LEMMA 2.6. For a list of two elements, algorithm B has a competitive ratio of 1+ O(ε)

with the optimal static list.

PROOF. Consider a list L of two elements x and y. The probability that x precedes y after
wx accesses to x and wy to y, is given by Pr[rx +wx > ry +wy] = Pr[rx −ry > wy −wx ].
Let  = wy − wx . Since both rx and ry are chosen uniformly at random from [0, 1/ε],
this probability p() = (1−ε)2/2 if  > 0, and p() = 1− (1+ε)2/2 otherwise.
When  > 1/ε or  < −1/ε, p() = 0 or 1, respectively.

As before, we consider the two lists (x, y) and (y, x) as experts. The probability
of picking expert (x, y) then becomes p(). p() takes on 2/ε + 1 distinct values
corresponding to  ∈ {−1/ε, . . . , 1/ε}. As the algorithm proceeds, this probability
either moves one step up or one step down depending on whether (x, y) or (y, x) makes
a mistake, respectively.

The algorithm starts at  = 0. As it moves through various values of , we can
couple every movement from  = x to  = x + 1 with a movement from  = x + 1
to  = x , with at most 2/ε movements left uncoupled. Notice that this coupling has the
property that both experts make exactly one mistake among the two moves ((x, y) while
moving up and (y, x) while moving down).

Algorithm B on the other hand, makes an expected number of mistakes equal to
p(x) + 1 − p(x + 1). For x ≥ 0, p(x) + 1 − p(x + 1) = 1 + ε − ε2(x + 1

2 ) < 1 + ε.
For x < 0, p(x) + 1 − p(x + 1) = 1 + ε + ε2(x + 1

2 ) < 1 + 2ε.
The total number of mistakes made by algorithm B on uncoupled steps are at most

O(1/ε). Putting these together, we get a competitive ratio of 1 + O(ε) with the best
static list with an additive term of O(1/ε).

PROOF OF THEOREM 2.5. The result follows, as before, from the List Factoring Lemma
and Lemma 2.6.
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Notice that both algorithms A and B can be thought of as randomized versions of the
frequency count algorithm.

3. Combining Statically and Dynamically Optimal Algorithms. In the previous
section we described two algorithms which are variants of the Experts algorithm and are
(1 + ε) optimal with respect to the best static list. In this section we reapply the experts
technique, this time using algorithm A (or B) and algorithm COMB [BEY] as the two
experts. There are some issues that need to be addressed, but through this we can achieve
both (1 + ε) static optimality and (1.6 + ε) dynamic optimality simultaneously.

The key idea is to use one of the experts for some number of accesses, and then
probabilistically decide to switch the expert or stay with the same algorithm. However,
in making the probabilistic decision, we do not want to calculate the weights of the
two experts explicitly, as that would require running the two algorithms simultaneously,
defeating the very purpose of this algorithm.6 In order to circumvent this difficulty, we
use a variant of the Exp3 algorithm proposed by Auer et al. [ACB+]. This algorithm was
proposed for the multi-armed bandit problem in which a gambler must decide to play on
one of K slot machines, but gets to see the profit of only the machine that he is playing
on.

Burch [B] extends the Exp3 algorithm to the case where there is a cost d for switching
between the different experts. We will use this to deal with the fact that when we switch
algorithms, we may have a different internal state (probability distribution over lists)
than had we used the other algorithm from the start. We now describe the two algorithms
Hedge and Hedge-Bandit as given in [B].

3.1. Algorithm Hedge. Algorithm Hedge uses K algorithms (experts), choosing one
for each time step and obtaining a gain equal to the gain of the chosen expert in that
time period. Expert i obtains a gain xi (t) in time step t with xi (t) ∈ [0, 1]. Define
Gi (t) = ∑

j<t xi ( j), the total gain obtained by expert i up to time step t . Let η > 0 be
a performance parameter. The algorithm proceeds as follows:

In every time step the algorithm chooses an expert it according to the distribution
pi = eηGi (t−1)/

∑
j eηGj (t−1), and updates the gains according to the obtained vector

x(t).

3.2. Algorithm Hedge-Bandit. Algorithm Hedge-Bandit is similar to Hedge except
that it does not get to see the entire gain vector x(t), but only gets to see the gain of the
expert that it chooses at a particular time step. In each time step, the algorithm simulates
Hedge to obtain a distribution that it uses to select the expert for that time step. It then
returns a “fake” gain vector x̂(t) to Hedge based on the gain x(t) that it actually observed,
in order to get the next distribution.

To avoid spending too much in switching between experts, this algorithm runs each
expert for s steps before making the next decision. It obtains a gain of at most s in a
single time segment, and loses at most d in switching from one expert to another. To

6 If we only care about access cost, and not the running time of the algorithms, then this is not a problem.
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use this algorithm for list update, in every time step, we return a gain of 1 − i/n, if the
access cost for an element is i . We assume that the algorithm runs for T time steps. The
following describes the behavior of the algorithm in each time segment:

For time segments t = 1, 2, . . . , T/s do:

• Get p̂i (t) from Hedge. Let pi (t) = (1 − γ ) p̂i (t) + γ /K .
• Select it according to pi (t).
• Use expert it for s steps observing a total gain of xit (t). Send gains x̂ j (t) to Hedge,

where x̂ j (t) = xit (t)/pit (t) if j = it , and 0 otherwise.

THEOREM 3.1 (Theorem 5.3 of [B]). The expected gain of Hedge-Bandit is at least

G∗ − (1 − γ )
T

s
d − 1 − γ

γ
sK ln K − (e − 1)γ G∗,

where G∗ is the largest total actual gain acquired by any single expert, and where
η = eγ /sn.

For the List Update problem we have K = 2. We also have d = O(n2) for reasons
described below. Reverting back to our loss model and choosing appropriate values for
s and γ , we obtain the following result:

THEOREM 3.2. Algorithm Hedge-Bandit using algorithms A and COMB as experts is
(1 + 2ε) statically optimal and 1.6(1 + ε) dynamically optimal in the Full Cost model,
with an additive term of O(n5/ε2) for the List Update problem, if it makes a switching
decision every en3/ε steps and uses γ = ε/en.

PROOF. From Theorem 3.1,

GHB ≥ G∗ − (1 − γ )
T

s
d − 1 − γ

γ
sK ln K − (e − 1)γ G∗.

Putting LHB = n(T − GHB), L∗ = n(T − G∗) and using G∗ < T , we obtain the
following:

LHB ≤ n

{
T − G∗ + (1 − γ )

T

s
d + 1 − γ

γ
sK ln K + (e − 1)γ G∗

}

= L∗ + (1 − γ )
T

s
dn + 1 − γ

γ
nsK ln K + (e − 1)γ nT − (e − 1)γ L∗.

However, L∗ ≥ T in the full cost model (we always incur a cost of at least 1). So we
have

LHB ≤ L∗
{

1 + (1 − γ )
dn

s
+ (e − 1)γ (n − 1)

}
+ 1 − γ

γ
nsK ln K .

Using the values γ = ε/en, s = en3/ε, d = n2, and K = 2 gives us the desired result:

LHB ≤ (1 + ε)L∗ + 8.9
n5

ε2
.
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We omitted a few details in the above description of the algorithm. When we switch
from one algorithm to the other at the end of a phase, we need to know the state of
the other algorithm at the end of that phase. It is not obvious that this is calculable,
as we want to avoid running the other algorithm explicitly. However, it can be argued
that extra overhead incurred in starting the algorithms in a “wrong” state is at most
O(n2). Alternatively, the state can be easily determined without running the algorithms
explicitly, by keeping access counts for each element in the case of algorithm A, and
keeping timestamps for each element in the case of COMB. These variables can be
updated in constant time per access. Unfortunately, although using these extra variables
would help us determine the next state of the list, it is not clear how to use it to calculate
the losses made by the experts, which necessitates the use of the Hedge-Bandit algorithm.

4. Search Trees. An on-line binary search tree algorithm is dynamically optimal if its
total cost (sum of search cost and number of rotations) is never more than a constant times
the total cost of the best off-line algorithm, for any sequence of accesses. Much work
has gone into an attempt to prove the dynamic optimality of splay trees since Sleator and
Tarjan made their conjecture in [ST2]. We are unable to prove the dynamic optimality
of splay trees or any other on-line search tree algorithm.

Instead, we show that it is possible to have dynamic search-optimality, a property
much weaker than dynamic optimality. In general the total cost of an algorithm is its
search cost, the sum of the depths of the accesses, plus its rotation cost, the number of
rotations made. We say that our algorithm has dynamic search-optimality because its
search cost is at most a constant times the total cost of any off-line algorithm. While our
algorithm is exponentially slow, it is based on simple principles.

There are two main difficulties in achieving dynamic optimality. First, the algorithm
has to decide which nodes to keep near the root.7 Secondly, for full dynamic optimality it
has to be able to get these nodes near the root without using too many rotations. We show
that the first difficulty is not insurmountable. Equivalently, dynamic optimality cannot
be proven impossible by any argument that neglects the rotation cost of the on-line
algorithm.

There is no especially strong evidence suggesting that any BST algorithm is dynami-
cally optimal. A natural approach to disproving this would be to present a set of sequences,
and argue that no on-line algorithm can handle all these sequences in a dynamically op-
timal manner. The simplest form of this argument would be that the on-line algorithm
cannot “guess” which node comes next and therefore has too many nodes to keep near
the root. However, the existence of an algorithm with dynamic search optimality implies
that this type of argument is not possible.

Wilber [W] made some progress by proving lower bounds for off-line algorithms.
In particular, he has shown that a random sequence of accesses in {1, 2, . . . , n} costs

7 Since rotations are free, a natural idea is at each step, to choose the tree of the optimal off-line algorithm
so far. This is not as simple as it sounds, because off-line optimality is ambiguous. For example, suppose you
start with a seven node “line” tree of depth 7. After several accesses to node 1, the deepest node, any optimal
off-line algorithm must have brought it to the root. There are 132 equally optimal ways to do this, all using six
rotations.
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an expected �(log n) per access for off-line algorithms. This is a necessary condition
for dynamic optimality to be possible, because any on-line algorithm pays an expected
θ(log n) just in search cost (not counting rotations) since the average depth of a node
is θ(log n).

We go slightly farther in analyzing the cost of random sequences. We show that the
number of sequences with off-line cost k is less than 212k for any k. The fact that there are
only 2O(k) sequences of cost k is also a necessary condition for dynamic optimality, for
information-theoretic reasons.8 Essentially, we give a way to describe off-line rotations
in 12 bits per rotation, even though there are, in general, n − 1 possible rotations one
can perform.

4.1. Structural Preliminaries. We assume that the nodes in the tree are simply the
numbers 1, 2, . . . , n, and let m be the length of the access sequence. We further assume
that all algorithms, on- and off-line, begin with the same fixed tree, say, rooted at n and
having depth n. In this section we prove the following. The constant 12 is not really
important: we are mostly interested in the fact that it is 2O(k).

THEOREM 4.1. The number of access sequences having optimal off-line cost k is at
most 212k , for all k ≥ 0, regardless of n or m.

PROOF. We use an information-theoretic argument based on the fact that one can con-
cisely describe any sequence having optimal off-line cost k. We argue that it is possible
to describe any access sequence via the trees used in the optimal off-line algorithm. First,
as several people have observed, we may assume that the off-line algorithm rotates the
next node to be accessed to the root before each access, and we only lose a factor of 2
in the optimal cost. The reason is that given any off-line algorithm, we can modify it
by making it rotate a node to the root immediately before accessing it, and then reverse
these rotations to move the node back to where it was. If the node was at depth d, we
have paid 2(d − 1) in rotations (and incurred no additional search cost), whereas the
former algorithm paid only d − 1.

Now it suffices to describe the sequence of trees, because the accesses will just be
their roots. To do this, we describe the set of rotations performed from each tree to the
next, which we show how to do in at most 6r bits if there are r rotations. This implies
that there are at most 26k possible sequences of cost k because there are at most 26k

descriptions of length 6k. We then get 212k because of the factor of 2 lost in our initial
assumption.

What remains is to describe a set of r rotations using 6r bits. Like Lucas [L], we think
of a rotation as an edge rotation which changes a single edge from either left to right or
right to left. Of course, the nodes adjacent to an edge may change. However, based on

8 Given an on-line algorithm, such as splaying, any access sequence can be described by the location of each
node in its corresponding tree. This can be described using three symbols (left, right, and stop) and has length
proportional to the search cost. There is no need to describe the rotations performed by the on-line algorithm,
since those can be determined from the access sequence. So, for any on-line algorithm, there are at most 3k

sequences costing less than k.
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our assumption that the next access is rotated to the root, it is not difficult to see that all
the edges on its path to the root must be rotated at least once.

Lucas argues that without further loss of generality we may assume that the set of
edges rotated by an optimal off-line algorithm form a single connected component that
includes the root and the next node to be accessed. Briefly, this is because any rotations of
edges not in this connected component could easily be delayed (using lazy programming)
until they are in such a connected component. Their delay will not affect the search cost,
since these rotations cannot affect the depth of the next request, nor does their delay
affect the rotation costs.

Next, observe that regardless of the order of the rotations, we can completely describe
the result of the rotations in 6w bits if there are w edges. First, we describe the subset of
edges that were rotated one or more times. Since this is a rooted subtree, we can describe
this using the symbols left (00), right (01), and up (1) to form a cycle that traverses each
edge twice, using a total of 3w bits. Next we describe their position in the resulting tree.
In the resulting tree these edges will still be a rooted subtree, so we can describe them
also with 3w bits. First, note that the set of nodes in this subtree does not change even as
the positions of the edges do. Secondly, notice that the shape of this subtree completely
determines the positions of all the nodes, because this is a binary search tree. Finally,
note that the off-line algorithm has to perform at least w rotations.

Thus, we can describe the optimal sequence of trees (and thus the access sequence) in
6r bits if it performs r rotations. Since we lose a factor of 2 due to our first assumption,
this proves the theorem.

4.2. Dynamic Search-Optimality. In this section we consider probability distributions.
A tree can be thought of as predicting the next access, where it predicts nodes closer to
the root with higher probability. From our structural result, we see:

COROLLARY 4.2. There is a probability distribution over arbitrary sequences of ac-
cesses that assigns probability at least 2−13k to an access sequence of optimal off-line
cost k.

PROOF. Choose a cost k according to the distribution 1/2k , then pick a random sequence
of that cost. By Theorem 4.1, there are at most 212k sequences of cost k, so the probability
on any given sequence is at most 2−13k .

It is easy to convert a binary search tree into a probability distribution p over elements
such that p( j) ≥ 3−depth( j). Simply choose j by beginning at the root, going left, right,
or stopping, each with probability 1/3 (when possible). It is also possible to convert a
probability distribution over elements into a tree.

OBSERVATION 4.1. For a probability distribution p over individual accesses, we can
create a binary search tree such that depth(a) ≤ 1 − log p(a) for any node a.

PROOF. For the root, choose the first i such that
∑i−1

1 p(i) ≤ 1
2 and

∑n
i+1 p(i) ≤ 1

2 .
Recurse on the numbers less than i (normalizing p) to create the left subtree, and the
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numbers greater than i for the right subtree. It is easy to see that the total probability of
any subtree rooted at depth d is at most 1/2d−1 so a node of probability p(i) cannot be
deeper than − log p(i).

We can combine these two ideas to make an on-line algorithm.

THEOREM 4.3. For any probability distribution p over access sequences, we can create
an on-line algorithm with search cost at most m − log p(a1a2 · · · am) for every access
sequence a1a2 · · · am .

PROOF. The distribution p can be thought of as predicting the next access from the
previous accesses. In particular, the conditional probability of the next access given the
previous accesses is

pi (ai ) = p(ai | a1a2 · · · ai−1) =
∑

bi+1,...,bm
p(a1 · · · ai−1ai bi+1 · · · bm)∑

bi ,...,bm
p(a1 · · · ai−1bi bi+1 · · · bm)

.

We can write p as a product of the conditional distributions of access i , i.e.,

p(a1a2 · · · am) =
m∏
1

pi (ai ).

Our on-line algorithm works as follows. For the i th access, we have enough infor-
mation to compute pi . We then convert pi into a tree by the method of Observation 4.1.
Thus, the depth of access ai in this tree will be no more than 1 − log pi (ai ). Our total
search over m accesses is at most

m∑
1

1 − log pi (ai ) = m − log p(a1a2 · · · am).

COROLLARY 4.4. There is an on-line algorithm that has dynamic search-optimality. In
particular, on any access sequence, its search cost is at most 14 times the optimal off-line
total cost.

PROOF. We use the probability distribution of Corollary 4.2 in combination with The-
orem 4.3 to get a total cost of m plus 13 times the optimal off-line cost. However, m is
no larger than the optimal off-line cost.

5. Conclusions and Open Problems. In this paper we have presented two results:
an efficient algorithm achieving strong static optimality for the list-update problem, and
an inefficient algorithm achieving dynamic search-optimality for trees. Recently Kalai
and Vempala [KV2] gave an efficient algorithm achieving strong static optimality for
Binary Search Trees. Several natural open problems are: Can dynamic search-optimality
be achieved efficiently for trees? and, of course, Can we achieve true dynamic optimality
(efficiently or inefficiently) for search trees?
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[LW] Nicolò Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information and

Computation, 108:212–261, 1994.
[ST1] Daniel Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules. Commu-

nications of the ACM, 28:202–208, 1985.
[ST2] Daniel D. Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal of the ACM,

32:652–686, 1985.
[T] Boris Teia. A lower bound for randomized list update algorithms. Information Processing Letters,

47:5–9, 1993.
[W] Robert Wilber. Lower bounds for accessing binary search trees with rotations. SIAM Journal on

Computing, 18:56–67, 1989.


